
Evaluating Efficiency and Engagement in Scripted 
and LLM-Enhanced Human-Robot Interactions 

Tim Schreiter* 

PercInS, Technical University of Munich 
Munich, Germany 

Jens V. Ruppel¨ * 

Chemnitz University of Technology 
Chemnitz, Germany 

Rishi Hazra 
AASS, Or¨ ebro University 

Orebro,¨  Sweden 

Andrey Rudenko 
Corporate Research, Robert Bosch GmbH 

Stuttgart, Germany 

Martin Magnusson 
AASS, Or¨ ebro University 

Orebro,¨  Sweden 

Achim J. Lilienthal 
PercInS, Technical University of Munich 

Munich, Germany 

Abstract—To achieve natural and intuitive interaction with 
people, HRI frameworks combine a wide array of methods 
for human perception, intention communication, human-aware 
navigation and collaborative action. In practice, when encoun-
tering unpredictable behavior of people or unexpected states 
of the environment, these frameworks may lack the ability to 
dynamically recognize such states, adapt and recover to resume 
the interaction. Large Language Models (LLMs), owing to their 
advanced reasoning capabilities and context retention, present 
a promising solution for enhancing robot adaptability. This 
potential, however, may not directly translate to improved inter-
action metrics. This paper considers a representative interaction 
with an industrial robot involving approach, instruction, and 
object manipulation, implemented in two conditions: (1) fully 
scripted and (2) including LLM-enhanced responses. We use gaze 
tracking and questionnaires to measure the participants’ task 
efficiency, engagement, and robot perception. The results indicate 
higher subjective ratings for the LLM condition, but objective 
metrics show that the scripted condition performs comparably, 
particularly in efficiency and focus during simple tasks. We also 
note that the scripted condition may have an edge over LLM-
enhanced responses in terms of response latency and energy 
consumption, especially for trivial and repetitive interactions. 

Index Terms—Human-Robot Interaction, AI-Enabled Robotics 

I. INTRODUCTION 

The overarching objective of Human-Robot Interaction 
(HRI) research is the development of robots capable of en-
gaging with humans naturally and intuitively [1], [2]. To 
reach this objective, researchers develop and combine various 
methods to perceive and communicate with people, navigate 
in human environments, and perform collaborative actions. 
In practice, such systems are typically implemented with 
partially scripted scenarios or pre-programmed behaviors [1], 
[3]. While these approaches work well in controlled settings, 
they often lack the ability to adapt to inherently dynamic 
and unpredictable human behavior. Robots such as the NAO, 
commonly deployed as transmitters of social cues [4], [5] by 
researchers, often utilize such scripted behaviors [6]. The lack 
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of flexibility becomes particularly problematic when testing 
new behaviors in user studies, as minor deviations from the ex-
pected protocol by participants can lead to invalid experiment 
states or unsuccessful outcomes. Another method deployed 
to compensate for technical limitations is the Wizard of Oz 
method [7]. However, this approach does not only still suffer 
from limited contextual inputs and intervention capabilities, it 
also ultimately replaces human-robot interaction with human-
human interaction, mediated by a robot [8], always at the risk 
of failing to create the illusion of autonomous interaction. 

LLMs represent a promising opportunity to facilitate flexible 
and context-aware responses to user inputs, potentially adapt-
ing and recovering from unexpected interaction states. How-
ever, augmenting scripted interactions with LLM-enhanced ac-
tions is not trivial due to the complexity and cost of integrating 
these models into existing systems [9]. The integration process 
requires substantial computational infrastructure, specialized 
expertise in model deployment, and careful consideration of 
the system architecture. Additionally, researchers must address 
conversational coherence and manage latency in real-time 
interactions [10]. Moreover, the resource-intensive nature of 
LLMs, including their computational demands and energy 
consumption [11], necessitates a careful cost-benefit analysis 
when considering an implementation in robotic systems. 

This paper compares a scripted human-robot interaction 
with one in which an LLM is used to generate responses 
dynamically for a collaborative pick-and-place task usually 
found in industrial applications [12]. We consider the partic-
ipants’ visual attention as an input to the LLM framework 
and also use it to quantify their perception of the robot. 
Additionally, we measure the participants’ task performance 
and use questionnaires to assess their subjective ratings of 
the robot. By analyzing participants’ gaze patterns, we aim to 
understand if and how attention allocation differs between the 
two conditions, mainly focusing on key interaction moments 
and robot communication behaviors. Our experimental design 
employs a within-subjects approach, where participants expe-
rience both interaction conditions in random order, allowing 
for direct comparison of behavioral and perceptual differences. 
Our results offer valuable insights into the potential of LLMs 
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Fig. 1: Setup for interacting with a NAO robot mounted on a forklift. 
The participant begins at the corridor entrance, the robot is located 
behind a wall. Interaction steps: Black: Carrying and placing a tin 
can; Red: Receiving instructions from the NAO robot; Green, Blue: 
Box delivery; Yellow: Interaction conclusion. Insets show egocentric 
eye-tracking with gaze sequences overlaid in brown. 

to enhance classical HRI methods by making interactions 
more adaptive and robust against unexpected human behavior. 
We also emphasize the importance of selecting interaction 
approaches that match the specific demands and complexity of 
the task, taking into account factors such as technical imple-
mentation challenges, energy consumption, and the trade-off 
between adaptability and predictability in the user experience. 

II. METHODS 

This paper considers a representative interaction with an 
industrial forklift robot mediated by an anthropomorphic NAO 
robot [5]. During the interaction, the robot asks the participant 
to approach, manipulate objects, and disengage. The interac-
tion is implemented in two conditions: one where the steps 
are scripted and timed, and another where an LLM backbone 
is used to generate flexible actions, adapting to the interaction 
status. We aim to quantify the difference in robot perception 
and task execution between those two conditions. To that end 
we analyze gaze tracking and questionnaire responses, and 
measure energy consumption in both conditions by computing 
power across network nodes and API service calls. 

A. Experiment Design 

The study was conducted in a 10 m x 5 m corridor. Figure 1 
illustrates a sample interaction including sample cutouts of the 
recorded gaze overlays to show what participants observed 
during the interaction. Participants began the experiment at 
one end of the corridor, holding a tin can with both hands. 
Their initial task (given by the experimenter) was to approach 
a table on their right and place the tin can there. During this 
stage, the robot they would later interact with was occluded 
and not visible to them. After the participant had placed the 
tin can on the table and approached the forklift (≤ 3 m), the 
robot initiated interaction with a predefined phrase: “Hello, 
colleague. Please help me with my task.” 

The subsequent interaction followed a sequence plan im-
plemented in two conditions (pre-programmed schedule, or 
PPS, and LLM-enhanced), as depicted in Figure 2. The key 

Fig. 2: Sequence plan of the experiment. The robot is either 
controlled by an LLM (in blue) or a pre-programmed schedule (PPS, 
in orange). Roman numbers I–IV denote the key interaction steps, 
color coded according to Figure 1. 

difference between the two conditions was the interaction 
control mechanism. In the PPS condition, the robot’s behavior 
followed a fixed schedule based on the design in [5], providing 
deterministic and predictable cues without adapting to the 
participant’s specific behavior. In contrast, LLM-enhanced re-
sponses utilized an interaction interface incorporating multiple 
visual and gaze attention cues and LLM reasoning abilities. It 
considered possibly visible objects in the participants’ field 
of view and the objects they fixated on, providing action 
suggestions based on the egocentric view of the participant 
and the task description. The LLM received these inputs in text 
form, i.e., “These objects are detected in the scene” and “User 
fixated on these objects”. In both conditions, the NAO robot, 
acting as a mediator for the forklift [5], employed multimodal 
communication throughout the interaction, including speech, 
referential gestures (pointing) and gaze behaviors (eye contact 
and head movements) to track and guide the participants. 

In the PPS condition (blue section in Figure 2), Step II 
began once the participant’s walking speed fell below 0.3 m/s. 
The robot instructed them to pick up a box near the table and 
place it on the forklift. When participants focused on the box 
(either immediately or after a 1.5 s delay), the robot specified 
where to place it. The robot used referential gestures and gaze 
throughout this process to improve clarity. If participants did 
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not place the box on the forks, the robot repeated its directive 
until they placed it, triggering Step IV after 2.5 s. 

In the LLM condition (orange section in Figure 2), a 
custom framework [13] combining “GPT 4o-mini”, mobile 
eye-tracking (Tobii Glasses 3) with YOLOv8-based object 
detection to guide interactions in real-time. Rather than using 
fixed transitions, it adapted to a participant’s gaze and locomo-
tion. For example, a stationary participant (moving at v ≤ 0.3 
m/s) triggered a step by fixating on an object (such as a forklift 
or box) for more than three seconds without receiving any 
recent instructions. After seven seconds of inactivity, the robot 
prompted further action to avoid prolonged idling. Gaze data, 
captured as pixel coordinates and mapped to object bounding 
boxes, identified fixations lasting at least 30 ms. This data 
was sent as a Python dictionary to the LLM to generate 
real-time prompts. Once the participant placed the box on 
the forklift (Step IV), both conditions aligned again. Using 
OpenAI’s “Chat Completions,” the LLM maintained context 
and used Chain-of-Thought Reasoning [14] to produce code 
for NAO’s pointing, gaze, and speech. The robot then thanked 
the participants and instructed them to disengage. 

B. Participants 

We recruited 15 participants for the experiment, aged 20 to 
65 years (M = 30.1, SD = 10.8). All participants are fluent in 
English and identify as female (7/15), male (7/15), or preferred 
not to answer the question (1/15). Written informed consent 
was obtained from all participants prior to the experiment, 
following consultation with local authorities. Participants ex-
perienced both conditions in random order to counterbalance 
possible learning effects. Participants also received instructions 
on proper forklift interaction techniques, as they were not 
expected to have prior experience with such equipment. 

C. Data Collection 

Eye-tracking data was obtained from the Tobii Pro Glasses 
3. We applied the standard Tobii I-VT gaze filter with a classi-
fication threshold of 100◦/s and used Tobii’s software for eval-
uation. We measured visual engagement through fixation du-
ration (sustained attention on specific areas), saccade velocity-
and amplitude (attention shifts and scanning behavior), pupil 
diameter (cognitive activity), and color-coded heatmaps dis-
playing fixation density. All metrics were recorded separately 
for task elements and robot interaction. To correctly resolve the 
participants and robot position during the experiment, the eye-
tracking data is supported by a motion capture system. Passive 
IR markers were attached to the robot and to the helmets that 
participants wore to resolve the orientation and position in 6D. 

In addition to eye-tracking metrics, we measured subjective 
perceptions of the robot using questionnaires. We employed 
the “Trust in Industrial Human-Robot Collaboration” scale 
[15] to assess how each interaction condition affects user trust. 
We applied changes regarding the gripper-related items as 
described by the authors of [16]. Additionally, we used Bart-
neck’s “Godspeed Questionnaire” [17] to better understand 
participants’ perceptions of the robot system. 

TABLE I: Gaze metrics during task execution and interaction with 
the robot in the LLM and PPS conditions. 

Metric (Phase) PPS LLM 

Interval Duration [s] (Task Execution)* 10.1 ± 3.48 11.42 ± 10.6 
Interval Duration [s] (Interaction) 10.43 ± 4.23 12.39 ± 4.00 
Fixation Duration [s] (Task Execution)* 70.08 ± 24.31 79.08 ± 74.73 
Fixation Duration [s] (Interaction) 67.49 ± 28.09 82.38 ± 27.44 
Pupil Diameter [mm] (Task Execution) 3.66 ± 0.58 3.66 ± 0.59 
Pupil Diameter [mm] (Interaction) 3.57 ± 0.59 3.57 ± 0.53 
Saccade Velocity [°/s] (Task Execution)* 434.05 ± 89.49 420.03 ± 128.92 
Saccade Velocity [°/s] (Interaction) 332.29 ± 75.63 380.05 ± 79.09 
Saccade Amplitude [°] (Task Execution)* 130.64 ± 83.66 126.47 ± 98.09 
Saccade Amplitude [°] (Interaction)** 63.59 ± 33.32 82.48 ± 39.11 

Note: *p < 0.05; **p < 0.01 

We measured time allocation and visual attention in both 
conditions separately in the task execution and robot interac-
tion phases. After marking distinct phases of task-related ac-
tions and robot communication events, participants’ durations 
were extracted from the eye-tracking software. Additionally, 
direct power measurements quantified energy consumption 
across both interaction modalities. A single-machine power 
monitor was utilized for the PPS condition. At the same 
time, we incorporated the LLM condition’s measurements as 
a sum of computing power across network nodes and API 
service calls. The analysis factored in both operational power 
consumption and the training energy costs of the LLM. 

III. RESULTS 

The results of the Trust scale show a slightly higher median 
rating for the LLM condition (44) than for the PPS condition 
(42). A one-way ANOVA (F = 1.05, p = 0.32) showed 
the result was not statistically significant. The Godspeed 
questionnaire assessed participants’ perceptions of the robot in 
both conditions. As the data was not normally distributed (con-
firmed by Shapiro-Wilk tests), we used Mann-Whitney U tests, 
which showed minor, non-significant differences (p > 0.05) 
across subscales: Anthropomorphism (Medians of 13/25 for 
LLM; 12/25 for PPS), Animacy (20/30 for LLM; 19/30 for 
PPS), Likeability (both 20/25), Perceived Intelligence (17/25 
for LLM; 16/25 for PPS), and Safety (both 11/15). 

The heatmaps in Figure 3 show distinct visual attention 
patterns in both conditions during the interaction and task 
execution phases. In the LLM condition, fixations are almost 
exclusively on the robot’s upper body during the interaction 
and are widely spread across the robotic forklift during the 
task. In contrast, in the PPS condition fixation patterns are 
more dispersed with broader visual exploration during the 
interaction phase but more focused during task execution. 

In addition to the heatmaps, other gaze tracking metrics 
highlighted engagement differences between the two condi-
tions as shown in Table I. The LLM condition showed a longer 
sum of all fixation durations, indicating sustained attention 
to task elements and the robot. The LLM condition exhib-
ited slightly lower peak saccade velocities and amplitudes 
during task execution. The PPS condition recorded shorter 
fixation durations, with slightly higher saccade velocities and 
amplitudes. The pupil diameter, as a measure of cognitive 
load [18], was consistent across both conditions, indicating 
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(a) LLM-enhanced interaction (b) PPS-controlled interaction (c) LLM-enhanced task (d) PPS-guided task 

Fig. 3: Fixation heatmaps in the interaction and task execution phases for the LLM and PPS conditions. Subfigures (a) and (b) highlight 
differences in attention during robot interaction. Subfigures (c) and (d) highlight differences in visual attention during task execution. 

a similar cognitive load. The objective measures show differ-
ences in time allocation between the LLM-enhanced and PPS-
controlled conditions. The participants spent 31.65% (LLM), 
15.74% (PPS) of their time on task execution, and 52.95% 
(LLM), 47.86% (PPS) on robot interaction. The remainder of 
the time was spent on approach, waiting, and disengagement 
times 15.40% (LLM), 36.40% (PPS). The lower task time 
ratio in the PPS condition indicates less engagement with task 
elements, potentially due to the predictability of the PPS. 

The energy consumption of robot interaction with the user-
centric framework [13] varied between the two conditions as 
expected. In the PPS condition (single-machine computation), 
the energy consumption per interaction was found to be 
506 Wh. The LLM condition exhibited a base consumption 
of 491 Wh per interaction. We supplement this by accounting 
for the energy consumed during model training and inference. 
Referring to a recent study [11] for GPT-3’s total training 
energy (1,287,000 kWh) and dividing it by its estimated 
annual queries (71.2B = 195M daily × 365), we calculated 
an additional 18 Wh per interaction. As for inference in [11], 
the daily energy consumption is approximated with 564 MWh 
(based on the number of GPUs used), which would add 3 Wh 
(564MWh * 365 days = 205860 MWh / 71.2B interactions ≈ 
3 Wh) per interaction resulting in a total of 21Wh per API 
call. With 2-4 API queries per participant, the total energy 
consumption of the LLM condition ranged from 538 to 580 
Wh per interaction. Although our study employed GPT-4o-
mini, we used GPT-3 data as a proxy due to the unavailability 
of specific energy metrics for the newer model. 

IV. DISCUSSION 

Our participants rated the LLM condition marginally higher 
(but not statistically significant) in trust and anthropomor-
phism. This may indicate that users feel more comfortable 
with robots offering dynamic, context-aware responses, which 
is beneficial in industrial settings where trust impacts produc-
tivity and safety. Still, the marginal difference indicates that 
PPS remains a viable, simpler option for the examined task. 

The analysis of eye-tracking data revealed distinct visual 
attention patterns for both conditions. We observed longer 
fixation durations in the LLM condition, indicating a sustained 
engagement with both the robot and task elements due to 
the adaptive, context-sensitive cues produced by the LLM. 
The heatmaps for the LLM condition showed that participants 
concentrated on the NAO’s upper body during the interac-
tion phase while distributing task-related fixations across the 

forklift. This sustained focus may benefit scenarios requiring 
frequent interaction or focused monitoring, enhancing long-
term interaction quality. On the other hand, the PPS condition 
exhibited shorter fixations and faster saccades, with more dis-
persed gaze patterns during interaction and focused attention 
during task execution. These differences suggest that while 
the LLM adaptability supports complex, dynamic tasks, the 
predictability of PPS and focused engagement may be better 
suited for repetitive, efficiency-driven applications. 

Our analysis revealed distinct operational characteristics of 
the two conditions. The PPS condition delivered determin-
istic interactions independent of network connectivity, with 
commands structured into discrete steps (e.g., “Put the brown 
box”; “On the forks”). This approach minimized redundancy 
and reduced response latency, which would be particularly 
effective for repetitive tasks. The LLM condition exhibited 
contextual adaptation, modifying instructions based on the 
participant’s behavior and environment state. While its inter-
active feedback (e.g., “It seems you are looking in the right 
direction”) enhanced engagement, it occasionally produced in-
struction redundancies. Therefore, this condition might better 
suit complex tasks requiring dynamic adaptation. 

Enhancing human-robot interaction with LLMs presents 
development and deployment challenges. Dependencies on 
a stable network connection and OpenAI API impact sys-
tem robustness, while the output variability of the LLM re-
quires prompt engineering to maintain interaction consistency. 
Prompting the LLM to respond with code generation produces 
more structured outputs than natural language responses. How-
ever, additional parsing mechanisms were required to ensure 
efficient interactions. The observed response latency of the 
API of 2.5 s constrained real-time interaction capabilities. 
Future implementations could leverage open-source models 
(e.g., Llama 40B or Mixtral models) for local deployment, 
mitigating the latency issue and reducing operational costs, 
given an adequate computational infrastructure. 

Our findings highlight the importance of aligning interaction 
modalities with task requirements. The PPS is suitable for 
straightforward tasks due to its predictability, efficiency, and 
low energy demands, especially for systems with limited 
computational resources. In contrast, an LLM’s adaptability 
and dynamic guidance offer advantages in complex, interactive 
scenarios but are subject to higher implementation complexity 
and operational demands. 
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