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Abstract
We present a new large dataset of indoor human and robot navigation and interaction, called THÖR-MAGNI, that is
designed to facilitate research on social human navigation: for example, modeling and predicting human motion, analyzing
goal-oriented interactions between humans and robots, and investigating visual attention in a social interaction context.
THÖR-MAGNI was created to fill a gap in available datasets for human motion analysis and HRI. This gap is characterized
by a lack of comprehensive inclusion of exogenous factors and essential target agent cues, which hinders the development
of robust models capable of capturing the relationship between contextual cues and human behavior in different scenarios.
Unlike existing datasets, THÖR-MAGNI includes a broader set of contextual features and offers multiple scenario
variations to facilitate factor isolation. The dataset includes many social human–human and human–robot interaction
scenarios, rich context annotations, and multi-modal data, such as walking trajectories, gaze-tracking data, and lidar and
camera streams recorded from a mobile robot. We also provide a set of tools for visualization and processing of the
recorded data. THÖR-MAGNI is, to the best of our knowledge, unique in the amount and diversity of sensor data collected
in a contextualized and socially dynamic environment, capturing natural human–robot interactions.
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1. Introduction

In recent years, the topics of human motion modeling, pre-
diction, and interaction with social and service robots have
been rapidly growing, driven by industrial interests and a quest
for safer algorithms in human–robot interaction settings.
Various advanced automated systems, such as mobile robots
(including autonomous vehicles), manipulators, and sensor
networks, benefit from human motion models for safe and
efficient operation in the presence of humans. Human motion
data is central to human-aware path planning, collision
avoidance, tracking, interaction, understanding human activ-
ities, and collaborating on shared tasks.

Modern approaches for modeling human motion require
plentiful data recorded in diverse environments and settings to
train on, as well as for the evaluation (Rudenko et al., 2020b).
Among the growing numbers of human trajectory datasets,
most focus on capturing interactions between the moving
agents in indoor (Brščić et al., 2013), outdoor (Robicquet et al.,

2016), and automated driving (Bock et al., 2020) settings.
These datasets are designed to study how people interact and
avoid collisions in social settings by describing their motion
through position and velocity information. Further datasets
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attempt to capture full-body motion in various activities and
human–object interactions in household settings (Ehsanpour
et al., 2022; Kratzer et al., 2020; Liu et al., 2019).

Human motion is influenced by many exogenous factors,
which cumulatively amount to the context in which people
move and interact. Among those are numerous environ-
mental factors: motion and activities of other people and
robots, locations of obstacles, semantic attributes such as
points of common interest, direction signs, and special
zones. Motion datasets should not only capture these factors
to enable computational analysis of how people navigate but
also vary them systematically to support factor isolation in
various conditions. Datasets with access to rich context can
help to better explain, model, and predict human motion.

Furthermore, beyond the environment context, there are
various aspects of the specific person—target agent cues
(Rudenko et al., 2020b)—which are helpful in better un-
derstanding their intention, ongoing activity, attention, and
distraction, preferences, and abilities. These cues include
head orientations, full body positions, gaze directions, so-
cial grouping, and past activity patterns. Multi-modal ap-
proaches for human motion modeling and prediction can
provide more accurate results by combining these cues
(Almeida et al., 2023), and their development is subject to
the availability of high-quality multi-modal data.

Existing datasets in human motion analysis often lack the
comprehensive inclusion of the exogenous factors and the
target agent cues necessary for holistic studies of human
motion dynamics. This research gap hinders the develop-
ment of robust models that capture the relationship between
contextual cues and human behavior in different scenarios.
To address this gap, we present a novel dataset incorporating
a broader set of contextual features and multiple variations
to support factor isolation. By integrating diverse modalities
such as walking trajectories, eye-tracking data, and envi-
ronmental sensory inputs captured by a mobile robot (see
Figure 1), our dataset fosters the exploration and analysis of
human motion in various scenarios with increased fidelity
and granularity.In this paper, we propose a novel dataset of
accurate human and robot navigation and interaction in
diverse indoor contexts, building on the previous THÖR
dataset (Rudenko et al., 2020a). The THÖR dataset es-
tablished a foundation for collecting open-source data on
human social navigation toward randomized targets in a
controlled setting using motion capture technology with
minimal scripting. Building on the helpful work of previous
studies (Mavrogiannis et al., 2019), which utilized reflective
markers on helmets in small, spatially confined settings with
a limited number of participants, the THÖR datasets extend
this methodology and offer a broader scope. In particular,
the THÖR-MAGNI dataset represents a significant ad-
vancement, enhancing data quality and features to provide
rich insights into human motion and interactions within a
larger room. The publicly available THÖR datasets, espe-
cially THÖR-MAGNI, facilitate more comprehensive
human–robot interaction and human social navigation
research. The THÖR-MAGNI data collection is designed

around systematic variation of environmental factors to
allow building cue-conditioned models of human motion
and verifying hypotheses on factor impact. To that end, we
propose several scenarios in which the participants, in
addition to primary navigation, need to move objects, in-
teract with each other and the robot, and respond to remote
instructions. The dataset includes differential and omnidi-
rectional robot navigation, semantic zones, direction signs
in the environment, and many other aspects. We provide
position and head orientation for each moving agent, as well
as 3D lidar scans and gaze tracking. Finally, we provide
tools to visualize the dataset’s multiple modalities and
preprocess the trajectory data. In total, THÖR-MAGNI
captures 3.5 hours of motion of 40 participants over
5 days of recording, which is available for download.1

Furthermore, we note the continuity between the THÖR and
THÖR-MAGNI recordings due to their shared environment
(in diverse configurations), motion capture system, and
complimentary scenario composition.

In this paper, we motivate and detail the THÖR-
MAGNI data collection and sensor setup, describe the
interfaces to the dataset, and compare it to the prior
datasets. The paper is structured as follows: in Section 2,
we review the prior state-of-the-art datasets, and in
Section 3, we outline the target application domains.
Section 4 provides all necessary information about the
data collection, and Section 5 describes the data formats
and tools used to visualize and preprocess the data. Fi-
nally, Section 6 presents a quantitative evaluation of the
collected data followed by a conclusion in Section 7.

2. Related work

Multi-modal human motion datasets drive various research
applications, including gait patterns, gaze vectors, human–
robot interactions, and robot sensor data. These include
human motion prediction (Kothari et al., 2022; Rudenko
et al., 2020b), human motion representation for mobile
robots (Kucner et al., 2023), human–robot interaction
(Dahiya et al., 2023), human awareness in robot motion
planning (Faroni et al., 2022; Heuer et al., 2023), and gaze-
based prediction of human pose and locomotion mode (Li
et al., 2022; Zheng et al., 2022).

2.1 Human trajectory datasets

Early datasets such as UCY (Lerner et al., 2007) and ETH
(Pellegrini et al., 2009) have contributed significantly to our
understanding of human movement in outdoor environ-
ments. Although these datasets encompass a range of hu-
man motion attributes such as trajectories, group
identification, and goal points, social interactions play a
minor role in shaping human trajectories (Makansi et al.,
2022). The indoor ATC dataset introduced by Brščić et al.
(2013) represents a data collection with high coverage and
tracking accuracy due to the use of 49 range sensors for raw
data acquisition. The tracking method involved the

2 The International Journal of Robotics Research 0(0)



independent estimation of positions and body orientations
from each sensor, which were subsequently fused. This
fusion process increased the robustness of the primary esti-
mates and ensured a high degree of accuracy in the resulting
dataset. In contrast to the UCYand ETH datasets, our dataset
contains many social interactions, as we always had multiple
participants moving in the same space between goal points,
deliberately allowing for frequent interactions between par-
ticipants (see Section 3.1). Furthermore, unlike the ATC
dataset, we have included a mobile robot in the scene, which
allows the study of human–robot interaction scenarios (see
Section 3.4).

Munaro and Menegatti (2014), Dondrup et al. (2015a),
and Ehsanpour et al. (2022) have presented human
motion datasets acquired through mobile robotic systems.
While the datasets presented by Munaro and Menegatti
(2014) and Dondrup et al. (2015a) consist of short ac-
quisitions and have limited contextual information such
as maps or environmental goals, Ehsanpour et al. (2022)
have contributed a more comprehensive dataset. Their
dataset includes detailed annotations of micro-actions
and social group dynamics, offering a richer and more
contextualized understanding of human motion patterns
in diverse environments. However, in these datasets,
human locations are based on detections in the sensor’s
field of view onboard the mobile robot, which limits the

scope of tracking due to occlusions. In contrast to these
works, we used a motion capture system to track the
moving agents (described in Section 4.5), which provides
longer continuous tracking of each observed agent.

Kratzer et al. (2020) presented the MoGaze dataset, a
notable advancement, by incorporating a motion capture
system for full-body pose tracking and eye-tracking data
for humans engaged in various activities. Similarly, Chen
et al. (2022) proposed a human-tracking dataset for re-
cording human–robot cooperation tasks in retail envi-
ronments. However, neither dataset captures social
interactions as they track only one person. In addition,
MoGaze does not include a mobile robot in the scene. The
absence of these elements hinders the study of down-
stream applications, for instance, robot motion planning
methods in the “invisible robot” settings (Heuer et al.,
2023), in which the humans do not react to the robot’s
motion and location, but rather the full extent of collision
avoidance falls on the robot. Similar to THÖR-MAGNI,
the THÖR dataset introduced by Rudenko et al. (2020a)
presents accurate human motion trajectories in the
presence of a robot. While the THÖR dataset provides
tracking accuracy in a socially dynamic environment, its
limited recording duration (1 hour) poses challenges for
in-depth studies, particularly concerning data-intensive
deep learning-based methods for trajectory prediction.

Figure 1. THÖR-MAGNI data modalities. (1) Walking trajectories of participants in a workplace setting shared with other humans and
robots; (2) lidar sweep recorded with a mobile robot; (3) snapshot from an eye tracker’s gaze overlay video; (4) fish-eye camera image
from the mobile robot, showing object stashes and two goal points from our scenarios.
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2.2 Human–robot interaction

Understanding human motion is crucial in spatial human–
robot interaction (sHRI). It allows robots to anticipate and
adapt to human movements in shared environments, en-
hancing their safety, efficiency, and naturalness. This sec-
tion situates the THÖR-MAGNI dataset within the context
of existing HRI and robotics datasets.

Datasets like UF-Retail HRI (Chen et al., 2022), SiT
(Bae et al., 2024), Mavrogiannis (Mavrogiannis et al.,
2019), SoGRIN (Webb et al., 2023), and THÖR
(Rudenko et al., 2020a) offer varied insights into HRI across
different settings. UF-Retail HRI emphasizes social human
navigation in retail environments using sensors like MoCap,
eye tracking, and RGB cameras. SiT provides indoor and
outdoor data to analyze pedestrian detection and trajectory
prediction. SoGRIN investigates nonverbal social signals in
group interactions, utilizing MoCap and RGB cameras to
capture detailed motion and interaction cues. THÖR ex-
plores motion trajectories in shared spaces with a robot,
using a MoCap system to enhance data accuracy. Several
studies further emphasize the importance of understanding
human social behaviors in HRI. For instance, Althaus et al.
(2004) highlight the need for robots to exhibit behaviors that
align with human social norms to enhance natural inter-
action in shared environments. Kretzschmar et al. (2016)
present a novel approach to model cooperative behavior,
highlighting the importance of understanding and imitating
human interaction patterns for effective HRI. These studies
emphasize the significance of data acquisitions like the ones
from Bae et al. (2024), Dondrup et al. (2015b), and Yan et al.
(2017), which provide critical data for analyzing pedestrian
behaviors and interactions in shared spaces.

The THÖR-MAGNI dataset offers extensive indoor
human–robot interaction data using MoCap, 3D lidar, and
RGB-D cameras to record motion and social interactions in
various contexts. It enriches the field by including scenario-
based interactions, making it ideal for analyzing human social
navigation and collaboration. In comparison to the predecessor
THÖR dataset, THÖR-MAGNI represents a significant im-
provement, incorporating more exogenous factors such as lane
markings and one-way passages, and introducing specific HRI
scenarios. These scenarios involve participants navigating
shared environments with a semi-autonomous mobile robot,
supervised by an experimenter. The dataset explores robotic
assistance in industrial settings, focusing on task efficiency and
user experience in collaborative workflows. This makes
THÖR-MAGNI uniquely valuable for advancing our under-
standing of human–robot interaction.

2.3 Comparison between THÖR and THÖR-
MAGNI

In summary, the THÖR-MAGNI dataset, based on the pro-
tocol proposed by Rudenko et al. (2020a), overcomes the
limitations of its predecessors. Table 1 compares well-
established and recent datasets thoroughly. THÖR-MAGNI

contains 3.5 times more trajectory data than THÖR, therefore
providing a broader range of situations for the analysis of
human motion trajectories. In addition, THÖR-MAGNI in-
cludes sensor data recorded by a mobile robot. Furthermore,
our dataset provides gaze vectors aligned with the corre-
sponding trajectories, allowing simultaneous analysis of both
modalities. This alignment not only enables studies of human–
robot interaction but also facilitates in-depth analyses of the
complex interplay between human visual attention and motion
patterns. Finally, to the best of our knowledge, THÖR-
MAGNI stands out among other datasets for its extensive
and diverse collection of sensor data within a contextualized
and socially dynamic environment, effectively capturing
natural human–robot interactions.

3. Context of the THÖR-MAGNI dataset

The THÖR-MAGNI dataset provides diverse navigation styles
of a mobile robot, and humans engaged in various activities in
a shared environment with robotic agents. It incorporates
multi-modal data for a complete representation. Following a
comparative analysis of our dataset with state-of-the-art da-
tasets contributing to the evolving landscape of human motion
research (see Section 2), this section supports users of our
dataset by providing a detailed exploration of its features in the
context of human motion and robot navigation and interac-
tions. We explain their significance in addressing identified
gaps before describing the dataset in Section 4.

3.1 Goal-directed human motion trajectories

Goal-directed human agents are crucial in human motion
prediction (Chiara et al., 2022; Dendorfer et al., 2021; Zhao
and Wildes, 2021). Traditional approaches often depict
human agents as rational entities, acting logically and
moving toward specific goals or destinations (Ziebart et al.,
2009). Real-world recordings commonly show this direc-
tional traffic flow, characterized by distinct goal points,
often resulting in a consistent and linear motion with limited
diversity. In our dataset, we include scenes with seven
different goal points distributed over a larger spatial volume
and scenes where they are arranged in a more compact space
(see Section 4). Goal points and static obstacles are posi-
tioned strategically to ensure that recorded trajectories are
sufficiently long and topologically diverse, that is, covering
a range of spatial arrangements and configurations. This
approach allows for the inclusion of frequent interactions
between the moving agents, contributing to a more com-
prehensive understanding of human motion dynamics.

3.2 Navigation of heterogeneous agents

Heterogeneous agents are dynamic entities that navigate
with distinct motion patterns. This heterogeneity stems
from various factors that affect the motion, such as tasks
and ongoing activities performed by the agent (Almeida
et al., 2023). For instance, several works have studied
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či
ć
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how humans move individually or as part of a social
group (Moussaı̈d et al., 2010; Rudenko et al., 2018; Wang
et al., 2022). It has been shown that humans can coor-
dinate their movements as a group by following simple
rules based on the visual perception of local motion
(Boos et al., 2014). Previous research on the anatomy of
leadership in collective behavior (Garland et al., 2018)
describes human collective behavior as optimal coordi-
nation and leadership dynamics in various group sce-
narios. In particular, crowd dynamics are determined by
physical constraints and significantly influenced by
communicative and social interactions among individuals
(Moussaı̈d et al., 2010). Autonomous driving datasets
often highlight the motion of heterogeneous agents in
mixed traffic (Chandra et al., 2019; Salzmann et al.,
2020). In our dataset, we introduce roles for partici-
pants tailored for industrial tasks, such as navigating
alone or in groups of different sizes, transporting various
objects, and interacting with a robot. This heterogeneous
social setting provides a novel way to study how specific
industrial roles influence human motion, aligning with
the work conducted by Almeida et al. (2023).

3.3 Navigation of a robotic agent

Human-aware robot motion planning is crucial for safe
navigation in shared spaces, especially in narrow and
crowded indoor environments (Cancelli et al., 2023).
Understanding human interaction with robots of different
driving styles promotes the design of socially acceptable
motion planners (Möller et al., 2021). Analyzing par-
ticipant behavior with robots of varied movement pat-
terns reveals insights into how robot motion style affects
human expectations (Karnan et al., 2022; Mavrogiannis
et al., 2019), guiding the development of robots that
interact safely and are well-received by people (Shah
et al., 2023). Our dataset features scenarios with a mobile
robot in teleoperated and semi-autonomous modes and
two driving styles: differential drive (forward, backward,
and turning) and omnidirectional mode (allowing the
robot to drive in any direction while keeping its heading).
This variety of motion modes (detailed in Section 4.2.2)
extends the state-of-the-art datasets of teleoperated
navigation which feature a single driving style (Karnan
et al., 2022; Rudenko et al., 2020a). Lastly, while some
parts of our dataset (Section 4.3.3) might be interesting
for the field of social robot navigation (see Mavrogiannis
et al., 2023, who recently surveyed this field), the main
focus of the dataset is on human social navigation and
spatial human–robot interaction in shared workplaces.

3.4 Spatial human–robot interaction in shared
workplace settings

Industry 5.0 aims to prioritize human well-being in
manufacturing systems (Leng et al., 2022). This requires
enhancing the quality of human–machine and human–robot

interactions in these environments. Designing robots that
clearly express their intentions to human collaborators is a
crucial step toward fostering mutual understanding and
enhancing the well-being of workers who regularly interact
with robots (Pascher et al., 2023). Furthermore, intuitive
human–robot interaction (HRI) improves well-being and
enhances safety and efficiency in collaborative settings
(Haddadin et al., 2011).

Spatial HRI (sHRI) and navigation in shared environ-
ments are research areas that have an adherent need for
accurate datasets of human motion tracking and prediction
(Chen et al., 2022; Rudenko et al., 2020a) and for robots that
understand the underlying physical interactions between
nearby agents and objects (Castri et al., 2022). Our dataset
contains recordings of explicit interactions between a
mobile robot and individuals in shared workplace settings.
THÖR-MAGNI is a valuable resource for studying human
responses to robotic approaches and assistance initiatives,
enabling researchers to analyze goal-oriented interactions
between humans and robots.

3.5 Eye tracking and head orientation in
navigation tasks

Eye tracking is a powerful method to study various aspects
of human behavior, including attention, emotion, cognition,
and decision-making, with applications spanning education,
marketing, gaming, and healthcare (Duchowski, 2017). Eye
tracking provides objective data about eye movements and
positions and enables researchers to quantify visual infor-
mation processing through various metrics (Duchowski,
2017; Mahanama et al., 2022). In HRI applications, hu-
man eye-gaze is an important nonverbal signal (Admoni and
Scassellati, 2017). Our dataset aligns human gaze data with
human motion trajectories, allowing us to study human gaze
during visual exploration across dynamic tasks, activities,
and scenarios.

Head orientation provides another essential modality of
human behavior that is complementary to gaze direction and
attentional focus. Head orientation plays a vital role in joint
attention, that is, attention coordination between individuals
focusing on the same point of interest (Tomasello, 2014).
Furthermore, it is valuable for detecting interpersonal dy-
namics in multi-party interactions (Stiefelhagen and Zhu,
2002). Beyond its social implications, head orientation
becomes a predictive indicator of walking motion goals
(Holman et al., 2021) and can enhance human motion
prediction through vision-based features (Salzmann et al.,
2023). Using a state-of-the-art motion capture system and
eye-tracking devices, our dataset provides highly accurate
head poses and orientations aligned with the eye-tracking
data.

3.6 Semantic environment cues

Crucial environmental information, conveyed by semantic
cues such as doors, stairs, floor markings, and signs, is
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essential in guiding humans and robots within a given space.
These cues, combined with obstacle configurations, influ-
ence human interactions with the environment, leading to
actions like detouring, bypassing, overtaking, and avoiding
specific areas. In our dataset, we include semantic cues like
markings on the floor indicating areas to be cautious of the
environment or one-way passages that limit the flow of
motion in one direction. In this way, we enable the ex-
ploration of navigation and interactions in semantically-rich
environments. For instance, leveraging Maps of Dynamics
(Kucner et al., 2023) allows the quantification of motion
patterns changes around these cues. This information, in
turn, can be utilized to predict long-term human motion
dynamics, as demonstrated by Zhu et al. (2023).

4. Description of the THÖR-MAGNI dataset

The THÖR-MAGNI dataset is a large-scale indoor mo-
tion capture recording of human movement and robot
interaction. It consists of 52 four-minute recordings
(runs) of participants performing various activities re-
lated to navigating alone and in groups, finding and
transporting small and large objects, and interacting with
robots. THÖR-MAGNI contains over 3.5 hours of motion
data for 40 participants, including position, velocity, and
head orientation. Eye-tracking data is available for 16 of
them, totaling 8.3 hours for eight activities (see Table 2).
In 24 runs, THÖR-MAGNI also includes the robot sensor
data of 3D point clouds from an Ouster lidar. Addi-
tionally, videos recorded by an Azure Kinect camera and
a Basler fish-eye camera onboard a mobile robot are
available on request.

In this section, we detail the environment in which we
recorded the data (Section 4.1), the navigation and task
design for the participants and the robot (Section 4.2), in-
teractive scenarios to emphasize the various contextual
aspects of human motion (Section 4.3), participants’
background and priming (Section 4.4), and the technical
implementation of the recording pipeline and collection of
motion capture and eye-tracking data (Section 4.5).

4.1 Environment design

We conducted the data acquisition in a laboratory at
Örebro University, the same as in the THÖR dataset
(Rudenko et al., 2020a). There are two different con-
figurations for the laboratory. One features a small but
free-space environment (see Figure 2 left). The other
resembles an industrial logistics setting and promotes
frequent interactions between human and robotic co-
workers (see Section 4.3). Both room configurations
have seven goal positions to drive purposeful human
navigation through the available space, generating fre-
quent interactions in the center. Additionally, we include
several environmental layouts (i.e., obstacle maps) in the
THÖR-MAGNI dataset, which vary the placement of
static obstacles (robotic manipulators and tables) in the
room to prevent walking between goals in a straight path.
Apart from static obstacles, two robots are in the room: a
static robotic arm near the podium and an omnidirectional
mobile robot with a robotic arm on top (see Section
4.2.2).

4.2 Navigation and interaction design

The interaction and navigation design in THÖR-MAGNI
extends the weakly-scripted motion recording procedure
introduced in the THÖR dataset (Rudenko et al., 2020a).
This procedure facilitates realistic motion in controlled
settings, in which, accurate ground truth motion capture
and eye-tracking data are collected using specialized
equipment (see Figure 2 on the right). Our key idea is to
assign meaningful activities and tasks to the recording’s
participants, allowing them to concentrate on their
continuous activity during which they freely move in-
side the room shared with other people and robots. To
generate a diverse range of interactions, we developed
several scenes that vary in the composition of tasks,
robot operation, and other contextual cues, as discussed
in Section 3.

Table 2. Amount of eye-tracking and trajectory data recorded for
various activities with all three devices: Tobii 2, Tobii 3, and Pupil
Invisible glasses.

Activity
Eye
tracking (min.)

Trajectory
data (min.)

Visitors–Alone 108 392
Visitors–Group 2 124 344
Visitors–Group 3 52 168
Visitors–Alone HRI 64 112
Carrier–Bucket 32 96
Carrier–Box 60 96
Carrier–Large Object 92 192
Carrier–Storage Bin HRI 16 16
Total 548 1416

Figure 2. Our dataset comprehensively explores human–robot
interaction in a shared workplace environment. Left:
Participants navigate independently, collaborate in social groups,
and engage with a mobile robot. Navigation between goal points is
coordinated via card decks at the goal points that assign a
participant a new goal point upon drawing a card, as seen on the
far left.Right: Equipment utilized in our data collection comprises
(1) bicycle helmets equipped with motion capture tracking
markers, (2) eye tracking glasses, and (3) headphones used for
receiving spoken instructions.
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4.2.1 Tasks, activities, and roles requiring search and
navigation. We aimed to simulate authentic scenes that
reflect the different activities individuals perform in a
workplace environment. To that end, we designed
several tasks that require search, navigation, and in-
teraction with objects, other participants, and a mobile
robot. Participants engaged in those tasks according to
their assigned role.

Our dataset has two types of roles:Visitors and Carriers.
Visitors navigate either individually (Visitors–Alone) or in
groups of two (Visitors–Group 2) or three (Visitors–Group 3)
between target points in the environment. The Visitors role
includes a human–robot interaction component denoted by
Visitors–Alone HRI, where participants interact with a robot
in a joint navigation task (see Section 4.2.2). In addition,
Carriers are involved in transporting various objects, in-
cluding Carrier–Bucket, Carrier–Box, Carrier–Storage Bin
HRI, and Carrier–Large Object (see Figure 3). Carriers
transport objects between pre-defined target points, and
objects themselves representing different levels of difficulty
for navigation, categorized as small (lowest difficulty),
medium (medium difficulty), and large (highest difficulty).

Visitors used a card-based system to navigate, receiving
new destinations each time they reached a designated goal
point. At each goal point, a deck of cards was available,
featuring instructions such as “Go to Goal 1.” The instruc-
tions could specify a new destination or contain instructions
on how to go to the robot. In the case of Visitors–Alone, they
drew a card and placed it at the bottom of the deck. After-
ward, the participant moved to the destination. In the case of
groups, the members could choose who will draw the card.

Carriers were asked to transport objects of different
shapes and sizes. These include small objects such as a blue
plastic storage bin for the Carrier–Storage Bin HRI and
plastic buckets of canned vegetables for the Carrier–Bucket,
designed for easy, one-handed transportation. For the
Carrier–Box, the participants had to move cardboard boxes
as medium-sized objects. These boxes were filled with a few
books, allowing for comfortable two-handed transportation.
In addition, a collaborative effort involving two participants
working as a group featured moving a large object, specif-
ically a poster stand (Carrier–Large Object). This stand-up,

equippedwith four wheels, is thin and long and can bemoved
by two people working in tandem. The overall goal of this
setup is to assess how different ongoing activities affect
participants’ behavioral patterns, including factors such as
gaze direction and movement.

4.2.2 Modes of robot navigation and HRI. Our dataset
includes a mobile robot, “DARKO2” (see Figure 4), which
acts as a static obstacle in some scenes and moves in others.
This range of behaviors enables the study of participants’
movements and gaze behaviors concerning the stationary and
mobile status of the robot. In certain scenes, the robot was
teleoperated and moved omnidirectionally, enabling it to
reach any 2D position from a stationary position. In some, it
moved directionally with a predetermined orientation (front).
In others, the DARKO robot navigated semi-autonomously
with manually set goal points. An experimenter was su-
pervising the navigation of DARKO for safety reasons.
When acting semi-autonomously, the robot interacted with
participants through a communication intermediary called the
“Anthropomorphic Robot Mock Driver” (ARMoD).

The ARMoD is a small humanoid NAO robot, as
shown in Figure 4. It was sitting on the DARKO robot.
The ARMoD displayed two behaviors during interac-
tions: One using only the voice (Verbal-Only HRI).
The other uses multi-modal features such as eye contact,
robotic gaze, and pointing gestures to support the voice
(Multi-modal HRI). This style of interaction reduces
fixations on the DARKO robot, increases focus on the
ARMoD’s face, and triggers faster response times to
instructions of participants, effectively directing atten-
tion and improving the quality communication with the
robot (Schreiter et al., 2023).

Figure 3. Participants in the role of Carrier were transporting
various objects in different sizes and shapes. (1) Carrier–Box
carrying a medium-sized card box with two hands. (2) Carrier–
Storage Bin HRI placing the bin at a goal point. (3) Stash of small
objects transported by the Carrier–Bucket. (4) Large object
(poster stand) moved by two Carrier–Large Object.

Figure 4. Robot used in and for data collection (the “DARKO”
robot) with an omnidirectional mobile base (RB-Kairos) of the
dimensions: 760 × 665 × 690 mm (5), equipped with two sensor
towers, one hosting two Azure Kinect RGB-D cameras (2), and
one hosting an Ouster OS0-128 lidar and two Basler fish-eye
RGB cameras (4). Additional equipment includes two Sick
MicroScan 2D safety lidars (6), mecanum wheels (7), and a NAO
robot (“ARMoD”) for interaction with participants (3). Our
recordings did not use the robotic armwith a maximum arm height
of 855 mm (1).
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4.3 Scenario design

We address the context of agent movement by including
both humans and robots, as previously discussed, in five
specifically designed scenes we call “scenarios.” Sce-
nario 1 captures the dynamics of motion because of
semantic attributes of the environment and sets up a
baseline for goal-directed social human navigation.
Scenario 2 adds role-specific motion for some partici-
pants navigating the environment. Subsequently, Sce-
nario 3 explores the impact of different robot motion
styles on these role-specific patterns. Figure 5 depicts a
detailed overview of the room configuration and varying
environmental layouts for Scenarios 1–3. Scenario 1’s
conditions A and B capture regular social behavior in a
static environment with and without additional floor
markings and a one-way passage. Scenario 2 maintains
the same layout as Scenario 1A but introduces indi-
viduals performing tasks, emulating industrial activities.
Scenario 3 explores human–robot interactions by
varying the driving modes of the mobile robot tele-
operated by experimenters on a podium.

Transitioning to a smaller room configuration, we
present two scenarios to explore human motion and
intended interactions between humans and robots:
Scenarios 4 and 5. In Scenario 4, participants engaged in
intermittent interaction with a mobile robot. This robot
communicated in two interaction styles through another
entity to mediate joint navigation with participants to-
ward goal points. In Scenario 5, the robots and a human

co-worker collaborated actively in transporting small
storage bins. For a comprehensive overview of roles and
scenarios, see Figure 6.

We recorded multiple runs for each condition in Sce-
narios 1–5. Specifically, we recorded two runs per condition
for Scenarios 1 and 3, two for Scenario 2, four per condition
for Scenario 4, and four runs for Scenario 5. To counter-
balance learning-based effects, we randomized the re-
cording order of conditions for Scenarios 3 and 5. We
implemented this systematic approach to ensure a broad and
impartial exploration of the scenarios, capturing subtle
interactions and behaviors in each setting.

4.3.1 Scenario 1: Capturing motion dynamics in
the environment

Scenario 1 comprises two conditions: condition A involves
static obstacles such as tables, stationary robots, and goal
points. Condition B introduces floor markings and stop signs
in a one-way corridor in addition to the elements presented in
condition A. The recording of condition B was before
condition A to avoid biasing the participants toward the floor
markings and to capture their natural reaction. Baseline
condition A provides a clean environment without any floor
markings or stop signs, allowing for the study of participants’
motion patterns independently of these factors. This condition
provides a foundation for understanding the effects of addi-
tional variables introduced in our other scenarios. Conditions
A and B together enable the exploration of the impact of
environmental cues on human motion (see Figure 7).

Figure 5. Varying environmental layouts for the room configuration of Scenarios 1–3. Right: Sample scene view for the site used for data
acquisition of the THÖR-MAGNI dataset showing the room configuration for Scenarios 1–3with the environment layout for Scenario 1B.Left:
Overviewof the room configuration and the scenario-specific layout changes.Bottom:Legend explaining layout elements, including driving styles
for the robot in Scenario 3, semantic elements specific for Scenario 1 (floormarkings, passage), and position of goals and obstacles.Upon placement,
some objects were subject to a slight rotation between runs, which is accounted for in the layouts with the rotation tolerance.

10 The International Journal of Robotics Research 0(0)



4.3.2 Scenario 2: Role-specific motion patterns in in-
dustrial environments. Scenario 2 features the same
environment layout as Scenario 1A (Figure 7 left). In
addition to the goal-driven navigation (Visitors role),
this scenario introduces people performing different
tasks as Carriers. For each run, we assign new roles to
the participants. One participant carries small objects
(i.e., buckets), and another carries medium objects (i.e.,
boxes) between two goal points. Finally, two participants
move a large object (i.e., a poster stand). We use Discord3

to instruct one member of the two-person team re-
sponsible for moving the large object. The usage of
Discord enabled the dynamic allocation of new goal
points and facilitated the coordination of participants’
movements in this industrial context.

In summary, this scenario presents role-specific tasks for
participants and goal-driven navigation, creating a platform
to study the impact of human occupation on their motion
profiles and those of the other agents in a shared
environment.

4.3.3 Scenario 3: Impact of mobile robot motion on human
behavior. With Scenario 3, we introduce an opportunity
to study the interplay between human activities and a

mobile robot. In this scenario, the stationary DARKO
robot of Scenarios 1 and 2 becomes mobile, exploring
changes in the humans’ motion patterns based on the
mobile robot driving style. This scenario comprises two
conditions, in which we modulated the way the mobile
robot navigates: condition A, where the robot’s motion
always has a designated direction using directional
differential-drive kinematics (see Figure 8 bottom left)
and condition B, where it can drive in any direction, that
is, omnidirectional (see Figure 8 bottom right) using it’s
mecanum wheels (see Figure 8 top). In both conditions,
the roles of the participants remain the same as in
Scenario 2, and a human operator controls the mobile
robot using a remote controller to ensure the safety of the
participants. Besides allowing for the study of human
activities in the presence of a mobile robot, this setup
also provides insights into how varying robot motion
styles impact human behavior.

4.3.4 Scenario 4: Spatial HRI in a shared
environment. This scenario includes participants with the
roles of Visitors–Alone HRI and Visitors–Group 2, who
freely move around a shared environment alongside the
DARKO robot that navigates semi-autonomously. The

Figure 6. Scenario definitions in the THÖR-MAGNI dataset, including roles, robot motion status (e.g., autonomous or teleoperated),
environment layout (i.e., obstacle maps), specific scenario conditions, and duration and recording days. Each recording day has a
unique set of participants. Day 1 has nine participants and days 2–4 have seven participants each. Three mobile eye-tracking devices
were used daily for three participants. On day 5, two devices were used for two sets of participants. The duration of recorded trajectory and
eye-tracking data is provided in Table 2.
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robot moved autonomously, with the restriction of being
supervised by an experimenter who could intervene and halt
its movements via a controller.

Participants assigned with the role of Visitors–Alone HRI
received instructions regarding a joint navigation task and
engaged in interactions with the ARMoD. These partici-
pants take place in two conditions based on the interaction
styles outlined in Section 4.2.2, a verbal-only interaction
style in condition A and a multi-modal one in condition B.
Depending on the interaction style and the distance between
goals, one interaction lasted around 30–40 s. If too many
participants were at a goal point, the experimenter inter-
rupted the mobile robot’s autonomous navigation shortly
before reaching the goal. If interrupted prematurely, the
mobile robot told the participants to abort the interaction
and continue drawing cards. The mobile robot finished
navigating autonomously to the goal point once it was less
crowded.

Participants move either individually or in pairs between
designated goal points. A specific card directs the individual
participants (Visitors-Alone HRI) to approach the ARMoD
and await further guidance. Visitors–Group 2 are instructed
to disregard this card. The experimenter controls ARMoD’s
behavior and sets the mobile robot’s next goal point. Upon
participants’ arrival, ARMoD greets them and leads them
jointly to the next goal point, where participants draw
another card.

To ensure safe and seamless interactions, ARMoD’s
behaviors are triggered by an experimenter using a

Figure 8. Two types of mobile robot motion achievable with
mecanum wheels (top), the impact of these types on human
behavior is explored in Scenario 3. Left: Differential driving
where the two wheels on each side are synchronized to generate
forward, backward, and turning motions. The gray arrows
indicate the directions in which the individual wheel axis propels,
and the length of the arrow is proportional to the turning speed of
the wheel. Right: Omnidirectional driving allows movement in
any direction, including sideways and diagonally. Gray arrows
indicate the forward or backward propulsion of the individual
wheels. The small black arrows indicate the normal vector of the
direction the wheel pushes the robot. We refer the reader to Tian
et al. (2017) for more details.

Figure 9. Top: Input mapping used to control the ARMoD during
HRI Scenarios 4 and 5. Purple items are used in both scenarios;
yellow ones only in Scenario 4 and green ones only in Scenario 5.
Bottom: Sample interaction with superimposed coordinate
systems of (1) Participant’s Helmet, (2) ARMoD-, (3) DARKO-,
and (4) QTM-World Frame.

Figure 7. Maps of dynamics created from one day of data
acquisitions. Top: Scenario 1A, as a baseline for human motion
without semantic cues being present. Bottom: Scenario 1B
layout, in which gray areas around two robotic agents represent the
lane markings to signalize caution areas. Circular Linear Flow
Field map (CLiFF-map) (Kucner et al., 2020) is used to capture
probabilistic representations of human motion patterns, where
colored arrows show the mean values of the components in the
CLiFF-map model.
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controller (see Figure 9 left). The experimenter initiates
actions like “Greet the closest participant” and “Talking
to the participant,” guiding ARMoD’s communication
with participants. Concurrently, the mobile robot con-
tinues its autonomous navigation, albeit under the
oversight of the experimenter, who can pause its
movements if necessary.

Accurate tracking of individuals was essential for facilitating
seamless interactions between the ARMoD and the participants.
To determine the ARMoD’s position relative to individuals at
any given moment, we leveraged the motion capture system’s
data, broadcasted into the local network using “Robot Operating
System (ROS)” (Quigley et al., 2009). This integration ensured
precise transformations and provided position and orientation
information, enabling ARMoD to accurately point, look, and
establish eye contact with its interaction partners. Figure 9 right
illustrates an interaction between a participant and ARMoD in
this scenario. The position and orientation data of participants,
robots, and the world frame are broadcasted within the local
network, providing essential information to the path planner for
DARKO and the interaction scheduler for ARMoD. In this
figure, examples of established coordinate frames include (1) that
of the helmets of participants defined based on the orientation of
the marker, (2) a static coordinate frame for the ARMoD derived
from theDARKOrobot’s frame through an offset, (3)DARKO’s
coordinate frame, and (4) the motion capture reference’s frame
called the “QTM-World Frame.”

This scenario investigates free movement in a shared envi-
ronment alongside the DARKO robot, exploring semi-
autonomous navigation. Participants engaged in interactions
with ARMoD under varied conditions. These allow for a study
of human–robot interactions, navigation tasks, and the impact of
different interaction styles on participants’ activities and
movements.

4.3.5 Scenario 5: Spatial human–robot interaction, pro-
active robotic assistance. This scenario involves the roles:
Visitors–Alone,Visitors–Group 2, andCarrier–Storage BinHRI.
Thefirst two navigate between goal points by drawing cards. The
Carrier–Storage Bin HRI takes on the role of a factory worker
responsible for transporting storage bins and interacting with
DARKO through ARMoD. The experimenter controlled AR-
MoD’s behavior and supervised DARKO’s motion for safety.
During the interaction, ARMoDproactively offered assistance to
the Carrier–Storage Bin HRI, informing them of the option to
place a small storage bin on the mobile robot. If participants
accepted, they could put the small storage bin on the DARKO
robot for transportation between two designated points. The
procedure described in Section 4.3.4 enabled reliable perception
of both human and robot positions for this scenario. This scenario
features proactive assistance from a mobile robot to a human
worker in a simulated factory environment.

4.4 Participants background and priming

The average age of the participants was 30.18 years, with a
standard deviation of 6.73, indicating a relatively homogeneous

age group. The dataset contains a balanced gender distribution
with 40 participants, of which 21 are male and 19 female.
Geographically, 23 participants are from Sweden. From other
European countries, there are 10, including theCzechRepublic,
Spain, Germany, and Italy, reflecting a diverse European
representation. The remaining seven participants come from
countries on other continents like Asia, Africa, and South
America, providing a broader international scope. We recruited
the participants from different areas of the campus. Their
backgrounds varied considerably, including differences in their
highest academic degree and primary subjects. At the begin-
ning of each recording day, participants completed a demo-
graphic questionnaire. We used this information to create
diverse group compositions, aiming for optimal allocation of
eye-tracking devices across different roles (see Figure 10). For
example, we ensured that groups of two or three participants
contained only one participant equippedwith an eye tracker and
the equipment of at least one of the carriers with an eye tracker.

At the beginning of each recording day, we provided
standardized information to participants to ensure natural and
unbiased behaviors. The instruction emphasized the experi-
ment’s focus on testing the robot’s perception of humans,
involving tasks such as navigating the laboratory and executing
physical activities, with an estimated duration of 15 min.

During the data collection procedure, we guided the par-
ticipants through a series of runs with specific instructions
tailored to each scenario. Between successive runs, participants
complete questionnaires while logistical preparations are made,
such as removing floormarkings, configuring a phone for voice
chat using Discord (before Scenarios 2 and 3), monitoring and,
if necessary, changing the batteries of eye trackers, and pre-
paring the robots for Scenarios 3–5. After completing the
questionnaire, participants are assigned new roles in Scenarios
2 and 3. We gave each group a new starting point for the next
run, from which they drew their first card. Participants unfa-
miliar with their roles got a brief recap of their task-related
responsibilities. In Scenario 3, we informed participants that an

Figure 10. Initial priming of participants performed at the
beginning of each recording day. Participants were instructed
about the experimental setting and the recording procedure,
including a briefing on the tasks, establishing familiarity with the
equipment, filling out consent forms, and an initial set of
questionnaires.
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experimenter monitored the robot’s motion for safety and
teleoperated the robot. In Scenarios 4 and 5, participants were
first briefed about their roles in the scenario (see Section 4.3)
and then introduced to the ARMoD and the DARKO robot as
co-workers in the room, with the ARMoD acting as a com-
municator on behalf of the DARKO robot.

After each run, participants completed the raw version of
the NASATask Load Index (RTLX) (Hart,, 2006; Hart and
Staveland 1988). The scale consisted of a 21-point set of
subscales [1 = low; 21 = high], each of which assessed the
mental demand, physical demand, temporal demand, and
frustration produced by the task as reported by the partic-
ipant, as well as their self-perceived performance and
frustration. After each session of the last run of Scenarios 3
or 5, participants complete two additional mobile robot
questionnaires. First, they complete the Godspeed Ques-
tionnaire Series (Bartneck et al., 2009), a semantic differ-
ential set of subscales [5-point] that measures participants’
perceptions of the robot in terms of anthropomorphism,
animacy, likeability, perceived intelligence, and perceived
safety. Second, they complete a 5-point Likert scale [1 =
strongly disagree; 5 = strongly agree] to assess trust in the
robot in industrial human–robot collaborations
(Charalambous et al., 2016). Participants complete all
questionnaires on paper.

4.5 System setup

4.5.1 Hardware and software configuration. We used a
motion capture system from Qualisys with 10 infrared cameras
(Oqus 7+) positioned around the room to track moving agents.
The system provided comprehensive coverage of the room
volume. Reflective markers arranged in distinct patterns of six
degrees of freedom (6DoF) on bicycle helmets. These were
tracked at 100 Hz with a spatial resolution of 1 mm. The co-
ordinate frame of the system originated at the ground level in the
center of the room. Each participant and the robot are represented
as unique rigid bodies (identifiable through the group of passive
reflective markers arranged in specific patterns) in the system.
This configuration enabled the precise capture of each partici-
pant’s 6DoF head position and orientation. We provided the
participants with individualized helmets for the recording ses-
sions. The specific helmet IDs used during each recording
session are listed in Tables 3, 4, and 5 in the Appendix.

We captured eye-tracking data using three distinct models of
eye-tracking devices: Tobii Pro Glasses 2 and 3 and Pupil In-
visible. The Tobii Glasses models record raw gaze data at a
frequency of 50Hz and camera footage at 25Hz, while the Pupil
Glasses record gaze data at 100Hz and camera footage at 30Hz.
We used the I-VT Attention filter to export Tobii Glasses data,
optimized for dynamic situations, to classify gaze points into
fixations and saccades based on a velocity threshold of 100°/s.
All eye trackers have an IMU comprising an accelerometer and a
gyroscope operating at 100 Hz. In addition, the Tobii Glasses 3
has amagnetometer that operates at 10 Hz. The infrared cameras
in these devices capture the human gaze, which is then super-
imposed onto a 2D video by the scene cameras. The Pupil

Invisible Glasses’ scene camera has a resolution of 1088 × 1080
pixels, with both horizontal and vertical field of view (FOV)
angles measuring 80°. In contrast, the Tobii Glasses offer a
resolution of 1920 × 1080 pixels. The Tobii 3 Glasses feature
FOV angles of 95° horizontally and 63° vertically, while the
FOVof the Tobii 2 Glasses 82° horizontally and 52° vertically.

The DARKO robot integrates several sensors, including an
Ouster OS0-128 lidar, two Azure Kinect RGB-D cameras (one
ofwhichwas used in these recordings), twoBaslerfish-eyeRGB
cameras, and two Sick MicroScan 2D safety lidars. The Azure
Kinect cameras have a resolution of 2048 × 1536 at 6 Hz, a
horizontal field of view of 75°, and a tracking range of up to 5m.
The Basler fish-eye RGB cameras have a resolution of 1700 ×
1536 at 20 Hz. The DARKO robot is augmented with a NAO
robot acting as ARMoD for participant interaction. The NAO is
attached to a seat on the DARKO robot, facilitating the com-
munication of spatial motion intent. This arrangement aligns the
ARMoD’s body orientation with the direction of movement in
scenarios where DARKO employs a directional driving style.

Recordings from the DARKO robot and the motion
capture system were synchronized using ROS timestamps.
Taking advantage of the integration of the motion capture
system with ROS 1 Melodic, we recorded all of the robot’s
onboard sensor data and the 6DoF positions of the people
using ROS bag files and in text form.

4.5.2 Sensor calibration. The precision of the data acquisition
relied on sensor calibration procedures to ensure accurate
measurements and reliable data interpretation throughout the
experiments. This section describes our calibration methods for
both themotion capture system and the eye-tracking devices.We
followed separate calibration routines for each sensor. These
calibration routines allowed for the robustness and reliability of
our dataset, allowing for accurate analysis and interpretation of
participants’ behaviors and interactions within the recorded
scenarios.

For the eye-tracking devices, we followed the calibration
procedures for both Tobii Glasses models (see Figure 11) as

Figure 11. Left: Calibration pattern encompassing circles of
different sizes printed on the card used for calibrations. The outer
circle has a diameter of 43 mm. The radii of the inner two circles
20 mm and 3 mm for the smallest center circle Right: A calibration
procedure for mobile eye-tracking glasses. The participant stands
and holds a card with a black dot at eye level, about an arm’s length
away. The participant focuses on the dot to align the eye-tracking
system with their eye movements. This step is essential to account
for individual eye anatomy and behavior differences.
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outlined in their respective usermanuals to optimize eye-tracking
accuracy (see Tobii AB Accessed: 2024-02-02(a) and Tobii AB
Accessed: 2024-02-02(b)). This process involved positioning a
calibration target, ensuring its visibility, and having participants
focus on its center. To ensure accurate recordings of the Pupil
Invisible Glasses, we followed the best calibration practices
outlined by and validated the calibrations with the dedicated
software of Pupil Labs AB Accessed: 2024-02-02(b).

To ensure the data accuracy of the motion capture
system, rigorous daily calibration routines were per-
formed before the start of each recording session. We
used the standard calibration kit with a 502.2 mm carbon
fiber wand to fine-tune the system. These calibrations
allowed us to define precise rigid bodies that enabled
6DoF tracking. This approach ensured the accurate
capture of spatial dimensions (X, Y, Z) and rotational
elements (roll, pitch, yaw) of objects within the 3D
environment, resulting in an average residual tracking
error of 2 mm. Rigid bodies of helmets and objects, such
as the large objects for the carriers or the DARKO robot,
were strategically designed to enable simultaneous and
highly accurate capture of all object poses and locations.

4.6 Post processing

Multi-modal data synchronization was necessary in our data
collection. We used ROS and custom Python scripts to align the
data streams while maintaining temporal integrity. To achieve
synchronicity between the motion capture and eye-tracking data,
we strategically placed custom events associated with precise
timestamps in the two data streams using the respective software
of the eye-tracking devices such as Tobii Pro Lab (Tobii AB
Accessed: 2024-02-02[c]) and Pupil Player (Pupil Labs AB
Accessed: 2024-02-02[a]) aswell as theQualisysTrackManager
(QTM) (Qualisys AB Accessed: 2024-02-02) for the motion
capture system. This procedure resulted in CSV files where all
modalities’ timestamps are synchronized on the motion capture
system’s timestamp. Within these files, eye-tracking data is
available for frames where the motion capture system tracks all
rigid body markers, as it is a prerequisite to determine the 3D
gaze vector using a correct head orientation. The frame numbers
for each respective eye tracker’s scene recording are indexed in
the column named “SceneFNr” in the corresponding CSV file.

To facilitate a thorough analysis of the eye-tracking data in
our study, we offer access to the raw data from the Tobii glasses,
along with essential synchronization details. The scene record-
ings are provided in a blurred format to ensure data protection
and removed audio data. Access to the raw data from the Pupil
Invisible glasses can be granted upon individual request, pro-
viding careful and ethical distribution of sensitive data.

An extensive post-processing stage followed the data
acquisitions, including synchronization and alignment. It
aimed to refine and validate the collected data and ensure the
protection of sensitive data. This stage involved several vital
procedures, such as eliminating artifacts and noise caused
by marker occlusion, lighting variations, and camera dis-
ruptions. We also rectified misidentified trajectories through

spatial and temporal consistency evaluations, applying
manual adjustments when needed.

5. Working with the THÖR-MAGNI dataset

5.1 Data formats

For dissemination, the dataset has been categorized into five
recording scenarios (see Section 4 for a detailed description),
aligning with the respective days of data collection. Each
scenario’s data is organized into separate folders. Multiple
acquisitions conducted over the 5 days of recording are stored
within each folder. The folders corresponding to the first three
scenarios (1–3) contain acquisitions from 4 days (in May
2022), while the folders representing the last two scenarios (4
and 5) encompass recordings from 1 day (in September 2022).
We record multiple runs for each scenario and condition to
enhance the diversity of motion data in the recordings and
mitigate random artifacts. It is essential to note that all files are
intended to be extracted into a common directory. In this way,
the arrangement preserves the temporal structure of the
recorded data.

Each run’s data includes a CSV file and up to two .mp4
videos representing the recordings from the scene cameras of the
Tobii eye trackers and if the robot was in motion during the
Scenarios 3–5 continuous 3D point clouds from the Ouster lidar
as well as the RGBvideos from one of the fish-eye cameras. The
structure of the recorded data is shown in the Tables 3, 4, and 5 in
the Appendix. In the following subsections, we will provide
more specific details on the usage and processing of the indi-
vidual files.

5.1.1 Comma-separated value files. Each CSV file contains
a header with critical metadata, including the number of
frames for the recording, rigid body and marker details,
units of measurement, role labels, and eye-tracking specifics
(see Table 6 in the Appendix). The rest of the CSV files
contain the merged data from the motion capture system and
the eye-tracking devices, organized based on the rigid
bodies of the participants’ helmets. Thus, the data of each
rigid body is organized into columns containing the XYZ
coordinates of all markers (e.g., “Helmet_1 – 2 X” indi-
cating the data for helmet one, marker two, and axis X),
XYZ coordinates of the centroid of all markers, the 6DOF
orientation of the rigid body’s local coordinate frame, and, if
available, eye-tracking data including 2D gaze coordinates,
3D gaze vectors, the frame number of scene recording, eye
movement types (such as saccades or fixations), and IMU
data (accelerometer, gyroscope, and magnetometer).

Missing data is indicated by either “N/A” (not available) or an
empty cell. The temporal indexing in these files is provided by
the “Time”or “Frame” column,which indicates the timestampor
frame number of the motion capture system, respectively.

5.1.2 Robot sensor data. The sensor data from the robot
includes lidar data and videos captured by the Azure Kinect
camera and the Basler camera. Lidar 3D point clouds are
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provided in the Point Cloud Data (PCD) file format, corre-
sponding to each timestamp. The lidar data for each run is
supplied in a zip file, which is labeled with the same File ID as
referenced in the Tables 3, 4, and 5 in the Appendix. Regarding
video data, the RGB-D and fish-eye camera video streams are
unrectified, providing raw visual data, and are only available
upon request to ensure suitable data protection.

5.1.3 Additional data. In addition to the CSV files con-
taining information about the recorded data from the eye
trackers and the motion capture system, we provide the scene
recordings frommost of the Tobii eye-tracking devices as .mp4
videos. The videos of the scene recordings were carefully post-
processed, as we blurred all the faces of the participants using
dedicated video-redaction software (“Caseguard”) to ensure
data protection. The raw camera video from the Pupil Invisible
Glasses scene has distortions that must be corrected. For this
purpose, we provide JSON files with the necessary intrinsic
camera parameters to compensate. All data from the Pupil
Invisible eye-tracking devices and the remaining data from the
Tobii devices are available upon request.

5.2 Development tools

Most existing datasets in the field lack a dedicated toolbox for
streamlined visualization and preprocessing. Addressing this
gap, we contribute a set of data visualization tools, including a
dashboard, and introduce a specialized Python package named
thor-magni-tools. This package facilitates the filtering and
preprocessing of raw trajectory data, enhancing the accessibility
and usability of the THÖR-MAGNI dataset. By making
available these resources, we aim to provide researchers with
versatile and fast means to navigate, analyze, and extract
valuable insights from the dataset.

5.2.1 Data visualization. To provide researchers and users
with an intuitive interface for the exploration of human
movement, gaze patterns, and environmental perception of the
THÖR-MAGNI dataset, we made a set of visualization tools
publicly available.4 Our visualization dashboard provides a
user-friendly interface with multiple interactive components.
The dashboard includes the following key features:

1. Trajectory visualization: Users can visualize agents’
trajectories in 2D or 3D space. The trajectories are
color-coded to represent different agents, allowing the
user to identify patterns and variations.

2. Velocity profiles: The dashboard also displays velocity
profiles corresponding to each trajectory, allowing users
to analyze speed variations during different movement
phases. This feature helps to understand the dynamics of
human movement under different conditions.

3. Eye-tracking data alignment: Gaze data is overlaid
on the 3D trajectories. This provides insight into
visual attention during different phases of motion.
Researchers can explore how gaze patterns align
with specific trajectory segments, promoting the

study of the cognitive processes underlying human
actions.

4. Lidar data visualization: Lidar sensor data is pre-
sented in a 3D format to show the environmental
context of human motion. This information is critical
for studying lidar-based human detectors onboard
mobile robots, especially in complex environments like
in THÖR-MAGNI.

In addition to data visualization, our dashboard contains
concise scenario descriptions. Each scenario represents a
unique context in which human motion data was captured
(described in Section 4.3). These descriptions include in-
formation such as the physical environment, task objectives,
social interactions, and specific conditions imposed on the
participants (e.g., transporting objects between two goal
points). Understanding these scenarios is vital for accurately
interpreting the data and ensures that researchers can
contextualize their analyses effectively.

5.2.2 Data filtering and preprocessing with thor-magni-
tools. To facilitate the use of the agents’ trajectories in our
dataset, we employed the thor-magni-tools Python package,5 a
tool designed specifically for filtering, preprocessing, and
visualizing trajectory data. This tool focuses on mitigating
tracking issues arising from the motion capture system, en-
hancing the data quality for downstream tasks, and studying
novel trajectory prediction methods. To filter 3D trajectory
data, we provide two methods: (1) using the most reliable
marker, that is, the marker of each helmet with the highest
number of tracking locations and (2) restoring the helmet
tracking based on the average of the tracking locations of each
marker. Both approaches offer a trade-off between tracking
quantity and quality. The method utilizing the best marker
exclusively produces smoother trajectories due to its reliance
on a single marker. Conversely, the method averaging the
positions of all visible markers generates longer trajectories but
with increased jerkiness, as it incorporates data from multiple
markers, which can vary. However, this jerkiness can be al-
leviated by applying a moving average filter in subsequent
processing stages. Figure 12 shows an example of the two
methods applied on THÖR-MAGNI trajectory data.

Figure 12. Filtering methods in a 4-minute recording from
Scenario 1. Left: Trajectories filtered using the most reliable
marker. Right: Trajectories filtered using the average of the
tracking locations of each marker. Although the average tracking
markers method provides longer tracks, it induces jerkier
trajectories, especially near the boundaries of the motion capture
volume (e.g., bottom left and top right).
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For both 3D and 6D tracks (X, Y, Z, and 3D orientation), we
provide an interpolation method based on a predefined max-
imum number of positions in the absence of tracking. This
method is used to fill in the missing data points while main-
taining the integrity of the motion patterns and ensuring
continuity in the trajectories. An example of the interpolation of
a trajectory based on thor-magni-tools is depicted in Figure 13.
Finally, this tool offers optional preprocessing steps, including
downsampling and signal smoothing through a moving av-
erage filter, further refining the processed trajectories.

6. Analysis and comparison to existing human
motion datasets

This section presents a comparison with popular human
trajectory datasets, specifically the ETH/UCY benchmark
and THÖR, with our THÖR-MAGNI dataset. Our analysis
encompasses a multidimensional evaluation, covering
various facets of the data recordings. These include tra-
jectory continuity, social proxemics delineating interper-
sonal interactions, and motion characteristics such as
velocity profiles and trajectory linearity. Through this
comparison, we aim to situate THÖR-MAGNI among its
predecessors, showing its potential for advancing human
motion analysis and human–robot interaction research.

6.1 Metrics for trajectory data comparison

To evaluate the trajectory data of our dataset in comparison
to previous data collections, we employ metrics proposed
by Rudenko et al., 2020a; Amirian et al., 2021:

· Tracking duration (s): This metric represents the average
duration of continuous tracking for all human agents. A
higher value indicates longer tracking, which is favorable
for long-term human motion prediction methods.

· Minimal distance between people (m): This metric
measures the minimum distance observed between in-
dividuals in the dataset. It provides insights into the
proximity of human agents during their interactions,
offering valuable data for studies related to personal
space (proxemics) and social dynamics.

· Number of 8-second tracklets: This metric counts the
non-overlapping tracklets of 8-second duration after

downsampling to 0.4 s and applying a moving average
filter. These choices align with current trajectory pre-
diction benchmarks such as those outlined in Kothari
et al., 2022. These tracklets offer discrete temporal
segments for analysis, ensuring compatibility with ex-
isting evaluation standards in trajectory prediction.

· Motion speed (m/s): Motion speed represents the velocity
of all human agents. A higher standard deviation in motion
speed indicates a diverse range of behaviors within the
dataset. This diversity is essential for capturing various
movement patterns and for robustness in trajectory predic-
tion models. This metric is computed in the 8-second
tracklets.

· Path Efficiency: Path efficiency quantifies the linearity
of trajectories in the dataset, ranging between 0 and 1
(Amirian et al., 2021). It is calculated by dividing the
distance between the first and last points by the cu-
mulative distance traveled. A lower coefficient suggests
more complex and nonlinear trajectories, providing
valuable insights into intricate human movement pat-
terns. This metric is computed in the 8-second tracklets.

6.2 Trajectory data comparison

We compare our dataset with the THÖR dataset and the
ETH/UCY trajectory prediction benchmark. The THÖR
dataset encompasses three distinct scenarios, each featuring
participants performing different tasks such as individual
and group movement, box transportation, different amounts
of obstacles, and a mobile robot in the environment. In
THÖR Scenario 1 (THÖR-S1), participants navigate the
environment with one static obstacle. THÖR Scenario 2
(THÖR-S2) introduces a mobile robot navigating around
the static obstacle while participants continue their tasks.
Finally, in THÖR Scenario 3 (THÖR-S3), the mobile robot
becomes a static obstacle, and an additional obstacle is
added to the scene. The ETH/UCY trajectory prediction
benchmark consists of five scenes: ETH, HOTEL, UNIV,
ZARA1, and ZARA2. These scenes represent five outdoor
public spaces that capture natural human motion patterns,
resulting in a benchmark widely used by the human tra-
jectory prediction community (Almeida and Mozos, 2023;
Dendorfer et al., 2021; Salzmann et al., 2020; Yue et al.,
2022).

First, we show the tracking durations in Figure 14. THÖR
presents consistent average tracking durations around 15.5 to
17.6 seconds across the three scenarios. In contrast, THÖR-
MAGNI shows wider variations. For instance, Scenario 4
features longer tracking durations (averaging 41.3 seconds),
whereas Scenario 2 has the shortest durations (averaging 17.1
seconds). This variability can be attributed to participants’
density; Scenarios 4–5, involving fewer human agents in a
smaller space, may contribute to higher quality tracking.
Nevertheless, THÖR-MAGNI has comparable or higher
tracking time than THÖR. Furthermore, compared to the ETH/
UCY benchmark (i.e., ETH, HOTEL, UNIV, ZARA1, and
ZARA2 scenes), THÖR-MAGNI offers comparable or

Figure 13. Example of a 4-minute Helmet trajectory in Scenario 1.
Left:Raw trajectory data depicting gaps, especially around extreme
environmental locations. Right: Post-processed tracing with 100
maximum positions without tracking (1 s) interpolation, showcasing
enhanced continuity and completeness in the trajectory.
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significantly longer tracking durations. This makes our dataset
more valuable than its predecessors for tasks such as long-term
human motion prediction and human–robot interactions.

Second, we compare the minimal distance between people
in Figure 15. Again, human density plays an important role:
THÖR-MAGNI Scenarios 1–3 show low values comparable to
those in ZARA1/ZARA2, while Scenario 4 and 5 reach values
similar to THÖR, ETH, and HOTEL. The higher participant
density in THÖR-MAGNI Scenarios 1–3 results in reduced
spatial navigational freedom, leading to increased interactions
and decreased social distances between individuals.

Third, the motion speed statistics are shown in
Figure 16. Despite the higher participant density in
Scenarios 1–3 of THÖR-MAGNI, these datasets feature
faster human agent navigation than THÖR and akin to
those in ETH, HOTEL, and ZARA1 scenes, possibly
influenced by the task of object transportation, im-
pacting their velocity profiles. Participants in Scenarios
4–5 of THÖR-MAGNI have an average velocity similar
to those in THÖR, UNIV, and ZARA2. Also, generally,
THÖR-MAGNI shows comparable standard deviations
in motion speeds, indicating diverse and varied move-
ment patterns among human agents. The similarity of the
velocity profiles to previous datasets suggests that our
dataset is also natural and diverse.

Finally, we compare path efficiency and the number of
tracklets in Figure 17. Regarding trajectory linearity, Scenarios 1–
3 are aligned with the THÖR and HOTEL datasets, while the
other datasets from the ETH/UCY benchmark contain more
linear and less complex trajectories. It is also worth noting that
THÖR-MAGNI Scenario 4 and 5 display the lowest average

metrics (0.78 and 0.75, respectively). The presence of a moving
robotmight influence these scenarios, prompting human agents to
navigate cautiously and align theirmotionwith the robot’smotion
profile. Furthermore, THÖR-MAGNI presents a much higher
number of non-overlapping tracklets than the other datasets.

These distinctive features make our dataset uniquely
challenging, diverse, and valuable as a benchmark for
evaluating human trajectory prediction methods. The
heightened complexity and diverse range of trajectories in
THÖR-MAGNI can provide a robust platform for assessing
the effectiveness of trajectory prediction methods, thereby
increasing the breadth and depth of research in this area.

7. Conclusions

In this paper, we present THÖR-MAGNI, a comprehensive
human and robot navigation and interaction dataset, extending
THÖR (Rudenko et al., 2020a) with 3.5 timesmoremotion data,
novel interactive scenarios, and rich contextual annotations. Both
datasets are accessible online at https://thor.oru.se/. To further
support researchers, THÖR-MAGNI comes with a dedicated set
of user-friendly tools—a dashboard and a specialized Python
package called thor-magni-tools—specifically designed to
streamline the visualization, filtering, and preprocessing of raw
data. These resources aim to improve the accessibility and us-
ability of the THÖR-MAGNI dataset.

THÖR-MAGNI was created to fill a gap in human motion
analysis datasets, limiting HRI research: a lack of compre-
hensive inclusion of exogenous factors and essential target
agent cues, which hinders holistic studies of human motion

Figure 14. Tracking durations (mean ± one standard deviation)
across datasets in seconds. Scenarios 1–3 of THÖR-MAGNI
provide comparable tracking durations to previous datasets, while
Scenarios 4 and 5 provide longer tracks.

Figure 15. Minimal distance between people (mean ± one
standard deviation) across datasets in meters. Lower spatial
navigational freedom in Scenarios 1–3 of THÖR-MAGNI
potentiates reduced social distances between participants. These
results are more consistent with the ZARA1 and ZARA2 scenes,
while Scenario 4 and 5 (with more spatial freedom) show similar
results to THÖR, ETH, and HOTEL datasets.

Figure 16. Motion speed (mean ± one standard deviation) for 8-
second tracklets across datasets in meters per second.

Figure 17. Top: Path efficiency (mean ± one standard deviation)
across datasets where lower results mean more linear
trajectories. Bottom: Number of non-overlapping 8-second
tracklets per dataset. THÖR-MAGNI provides the highest amount
of nonlinear trajectories.
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dynamics. Unlike existing datasets, THÖR-MAGNI includes a
broader set of contextual features and offers multiple variations
to facilitate factor isolation. Our dataset integrates different
modalities, such as walking trajectories, eye-tracking data, and
environmental sensory inputs captured by a mobile robot.

THÖR-MAGNI comprehensively representsmobile robots’
and humans’ diverse navigation styles in shared environments
using multi-modal data. Our dataset contributes to the evolving
landscape of human motion research through a comparative
analysis with state-of-the-art datasets. Furthermore, we discuss
the features of our dataset in the context of human motion and
robot interaction, highlighting their importance in addressing
gaps in the existing literature. The THÖR-MAGNI dataset has
already been used in research papers, demonstrating its use-
fulness for training role-conditioned motion prediction models
(Almeida et al., 2023) and investigating visual attention during
human–robot interaction and navigation in shared environ-
ments with robots (Schreiter et al., 2023, 2024).

In the future, we intend to propose a benchmark for multi-
modal indoor trajectory predictionmethods that leverage the rich
contextual cues in THÖR-MAGNI. This work aims to advance
the field by facilitating the development of more precise models
of human motion. Future data acquisitions should encompass a
broader range of environments, increase the size of individual
scenario acquisitions, and include extensive coverage of vital
modalities such as eye tracking to measure situational awareness
and mutual intention of all participants. These efforts will en-
hance the generalizability of future generations of datasets.
Additionally, transitioning data acquisitions from fixed labora-
tory environments to real-world settings under varying condi-
tions will improve the collected data’s ecological validity and
robustness.
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Appendix

Table 3. Assignment of Visitors and eye trackers to helmet IDs in Scenarios 1 and 4. Each row relates the file ID to the assignment of
Visitors roles (alone and groups), eye trackers, and corresponding helmets IDs (1-10). The file ID contains “date of the recording” + ”_” +
“SC“ + “scenario number“ + “condition” + ”_” + “run number.”

File ID Visitors Helmet ID 1-10 Eye trackers Helmet ID 1-10

120522_SC1A_1 1,7,10 + 2,6 + 5 + 4 + 3 + 8 4 + 6 + 10
120522_SC1A_2 8,4,3 + 10,5 + 1 + 2 + 6 + 7 4 + 6 + 10
130522_SC1A_1 1,5,10 + 4,8 + 6 + 3 4 + 6 + 10
130522_SC1A_2 5,6,8 + 3,10 + 1 + 4 4 + 6 + 10
170522_SC1A_1 5,8 + 2,6 + 1 + 4 + 10 5 + 6
170522_SC1A_2 1,4 + 5,10 + 2 + 6+ 8 5 + 6
180522_SC1A_1 5,6 + 2,10 + 1 + 4+ 7 4 + 5 + 10
180522_SC1A_2 1,4 + 6,10 + 2 + 5 + 7 4 + 5 + 10
120522_SC1B_1 2,5,10 + 4,7 + 1 + 3 + 6 + 8 4 + 6 + 10
120522_SC1B_2 3,6,7 + 1,8 + 2 +4+ 5 + 10 4 + 6 + 10
130522_SC1B_1 1,5,10 + 4,8 + 3 + 6 4 + 6 + 10
130522_SC1B_2 5,6,8 + 3,10 + 1 + 4 4 + 6 + 10
170522_SC1B_1 1,6 + 2,5 + 4 + 8 + 10 5 + 6
170522_SC1B_2 1,5 + 6,8 + 2 + 4 + 10 5 + 6
180522_SC1B_1 2,6 + 7,10 + 1 + 4 +5 4 + 5 + 10
180522_SC1B_2 1,6 + 4,5 + 2 + 7 + 10 4 + 5 + 10
300922_SC4A_1 3 + 8 + 9 + 10 9 + 10
300922_SC4A_2 3 + 8 + 9 + 10 9 + 10
300922_SC4A_3 3,10 + 1 + 6 + 8 8 + 10
300922_SC4A_4 3,10 + 1 + 6 + 8 8 + 10
300922_SC4B_3 1,6 + 3 + 8 + 10 8 + 10
300922_SC4B_4 1,6 + 3 + 8 + 10 8 + 10
300922_SC4B_1 3 + 8 + 9 + 10 9 + 10
300922_SC4B_2 3 + 8 + 9 + 10 9 + 10
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Table 4. Assignment of Visitors and Carriers and eye trackers to helmet ID in Scenarios 2 and 3. Each row relates the file ID to the
assignment of the roles in Scenarios 2 and 3: Visitors–Alone, Visitors–Groups 2, Visitors–Groups 3, Carrier–Box, Carrier–Bucket, and
Carrier–Large Object. The file ID contains “date of the recording” + ”_” + “SC“ + “scenario number“ + “condition” + ”_” + “run
number.”

File ID Visitors ID 1-10 Carrier Box + Bucket Large Object Leader + Follower Eye tracker ID 1-10

120522_SC2_1 2,4,5 + 3 + 8 7 + 6 10 + 1 4 + 6 + 10
120522_SC2_2 4,8 + 2 + 3+5 6 + 7 1 + 10 4 + 6 + 10
130522_SC2_1 1,6 + 3 8 + 10 5 + 4 4 + 6 + 10
130522_SC2_2 1 + 3 + 4 10 + 8 6 + 5 4 + 6 + 10
170522_SC2_1 2 + 5 + 8 4 + 10 6 + 1 4 + 5 + 6
170522_SC2_2 2,8 + 5 4 + 10 1 + 6 4 + 5 + 6
180522_SC2_1 1 + 5 + 6 10 + 2 7 + 4 4 + 5 + 10
180522_SC2_2 1,6 + 5 2 + 10 4 + 7 4 + 5 + 10
120522_SC3A_1 3,6,7 + 4 + 5 10 + 1 2 + 8 4 + 6 + 10
120522_SC3A_2 2,4,5 + 3 + 7 1 + 10 8 + 6 4 + 6 + 10
130522_SC3A_1 3,8 + 4 5 + 6 10 + 1 4 + 6 + 10
130522_SC3A_2 3,4 + 8 6 + 5 1 + 10 4 + 6 + 10
170522_SC3A_1 1,4 + 10 6 + 2 8 + 5 4 + 5 + 6
170522_SC3A_2 4,10 + 1 2 + 6 5 + 8 4 + 5 + 6
180522_SC3A_1 2 + 4 + 7 5 + 6 10 + 1 4 + 6 + 10
180522_SC3A_2 4,6 + 2 7 + 5 1 + 10 4 + 6 + 10
120522_SC3B_1 3,4,8 + 2 + 5 10 + 1 6 + 7 4 + 6 + 10
120522_SC3B_2 3,6,8 + 1 + 2 4 + 5 10 + 7 4 + 6 + 10
130522_SC3B_1 3,6 + 1 10 + 8 4 + 5 4 + 6 + 10
130522_SC3B_2 1,8 + 10 6 + 5 3 + 4 4 + 6 + 10
170522_SC3B_1 6,10 + 8 1 + 5 2 + 4 4 + 5 + 6
170522_SC3B_2 8,10 + 6 5 + 1 4 + 2 4 + 5 + 6
180522_SC3B_1 2,10 + 4 6 + 1 5 + 7 4 + 5 + 10
180522_SC3B_2 2,4,6 10 + 1 7 + 5 4 + 5 + 10

Table 5. Assignment of human roles and eye trackers to helmet
IDs in Scenario 5. Each row relates the file ID to the assignment of
Visitors roles (alone and groups of 2), Carrier–Storage Bin HRI
role, eye trackers, and corresponding helmet IDs (1-10). The file ID
contains “date of the recording” + ”_” + “SC“ + “scenario number“
+ “condition” + ”_” + “run number.”

File ID
Visitors
ID 1–10

Carrier
Storage Bin

Eye tracker
ID 1–10

300922_SC5_1 3 + 8 + 9 10 9 + 10
300922_SC5_2 3 + 8 + 10 9 9 + 10
300922_SC5_3 1,8 + 3 + 10 6 8 + 10
300922_SC5_4 1 + 3 + 6 + 8 10 8 + 10
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Table 6. Overview of the metadata in the headers of the CSV files. It includes recording information such as the file ID, date, scenario,
condition, and run. It also details data quantities, including the number of frames recorded, rigid bodies present, and markers used.
Moreover, it includes information about the order of rotation matrices, measured variables with units, specified measurement units, and a
list of eye trackers utilized in each recording. Furthermore, it outlines the frequencies of eye-tracker sensors and scene cameras and the
presence of eye-tracking data. Finally, it covers details about rigid bodies, including their names, roles, and the number of associated
markers.

Line of the header Description

FILE_ID Name of the file
N_FRAMES_QTM Amount of frames recorded at 100 Hz
N_BODIES Amount of rigid bodies present
N_MARKERS Total amount of markers present
CONTIGUOUS_ROTATION_MATRIX Order of a 3x3 rotation matrix
MODALITIES_WITH_UNITS List of measured variables
MODALITIES_UNITS_SPECIFIED Measurement units specified
EYETRACKING_DEVICES List of eye trackers in this recording (Not all devices are used in all files)
EYETRACKING_FREQUENCY_IR Frequency of eye trackers infrared sensor
EYETRACKING_FREQUECNY_SCENE_CAMER Frequency of scene cameras video
EYETRACKING_DATA_INCLUDED Data included from the eye tracker
EYETRACKING_DATA_N_FRAMES The total amount of frames with this data
BODY_NAMES Name of each rigid body
BODY_ROLES Role label of each rigid body
BODY_NR_MARKERS Amount of markers for each rigid body
MARKER_NAMES The names of all markers used in this file (Unaligned with the previous rows)
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