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Tube Acceleration: Robust Dexterous Throwing
Against Release Uncertainty
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Abstract—In robotic throwing, the release phase involves com-
plex dynamic interactions due to object deformation and limited
gripper opening speed, often resulting in inaccurate and nonrepeat-
able throws. While data-driven methods can be employed to com-
pensate for the release uncertainty, the generalizability of learned
models to unseen objects is not guaranteed, and object-specific
fine-tuning with new data may be required. This fine-tuning process
raises concerns about the scalability of such methods for dexterous
throwing, where the robot needs to execute diverse motions for
throwing various objects. Instead of case-by-case fine-tuning, we
aim at designing throwing motion robust against release uncer-
tainty. We encapsulate all uncertainties resulting from complex
contact dynamics in a surrogate model of their resulting effect on
gripper opening delay. We introduce the notion of tube acceleration
to model the class of constant-acceleration motion in joint space
that guarantees a release within the set of valid throwing configu-
rations. We propose a convex relaxation of the primal optimization
problem with a tight error bound and evaluate its performance in
terms of reliability and efficiency. Results show that the approach
offers run-time performance to allow online computation of throws
on a 7-DoF robot arm. It achieves a high accuracy and success
rate (97% for planar throws) at throwing a variety of complex
objects, even when using a simple ballistic model for the object’s
flying dynamics.

Index Terms—Dexterous manipulation, dynamic manipulation,
manipulation planning, robust/adaptive control of robotic systems.

I. INTRODUCTION

ROBOTS equipped with throwing capabilities possess re-
markable potential to significantly enhance their skills in

object manipulation, achieving unprecedented levels of dexterity
and efficiency. By carefully transferring the appropriate momen-
tum from the robot to the object during the throwing motion and
letting gravity do the rest of the work, robots save themselves
from unnecessary movements of their heavy body, enabling a
small body motion footprint and lower energy consumption.
These two characteristics are particularly desirable for the next
generation of collaborative mobile manipulators, where robots
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Fig. 1. Robot throws a hard plastic ball and a deformable tennis ball. In each
figure, the motion commands and gripper opening times are identical when
throwing the two objects. (a) Illustration of release uncertainty. The tennis ball
escapes the gripper later than the plastic ball along the throwing trajectory due
to unmodeled micromechanical deformations, resulting in a smaller horizontal
velocity, hence failing to fall into the target box. (b) Thanks to the proposed
tube acceleration to compensate for release time uncertainty, the robot traverses
through the set of valid throwing configurations. Despite different escape
times and, hence, different flying trajectories, the two objects land in identical
locations.

will escape from confined cages in conventional industrial se-
tups and travel in cluttered environments, with capacity-limited
batteries.

In unstructured environments, the grasp configuration, target
position, and obstacles cannot be predetermined. As a result, it
becomes essential for the robot to adaptively generate throwing
motions in response to contextual information that becomes
available just prior to the throw. This leads us to advocate
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Fig. 2. Schematic for RTV. During the release phase, the robot end-effector
traverses a family of valid projectile trajectories encapsulated by tube accelera-
tion. As a result, the landing outcome is agnostic to the exact object release time
and, hence, robust to release dynamics.

dexterous throwing, where the robot can apply diverse configu-
rations for throwing. Much like a skilled basketball player who
can shoot the ball in various ways and is ready to adjust to un-
predictable ball-passing configurations and opponent positions,
the robot should have the ability to utilize diverse configurations
for throwing and maneuvering adaptively.

The goal of dexterous throwing presents a challenge to the
prevailing end-to-end learning approaches for throwing generic
objects, compared to the common regime of planar throwing
in the literature [1], [2], [3], [4], [5], [6], [7], [8], [9]. Generic
objects exhibit variations in deformation, restitution, and surface
friction, leading to diverse finger–object interactions and result-
ing in different landing positions under the same robot-throwing
motion command, as illustrated in Fig. 1(a). Rather than con-
structing a microscopic model of the release dynamics with
Newton–Euler mechanics, end-to-end learning approaches [8],
[9] directly regress the map from perceptual information to
motion commands using real-world data, hoping the learned
model can implicitly handle all the uncertainties. However, the
throwing configuration dependence of release dynamics raises
doubts about the scalability of these end-to-end learning ap-
proaches, considering the plethora of possible dexterous throw-
ing configurations.

In this regard, we posit that the errors induced on the object’s
initial velocity at release time, due to intricate gripper-object
dynamics, can be described with sufficient fidelity through a
surrogate model that accounts solely for the resulting delay
in throwing the object, to which we refer as gripper opening
delay. In this model, the differentiation among various objects
lies in their unknown release times, and this uncertainty can
be mitigated explicitly through a robustifying procedure, called
recursive task-validity (RTV).

As illustrated in Fig. 2, the proposed approach requires the
robot’s end-effector to remain within the tube of valid throwing
configurations during the release phase, ensuring that the throw-
ing outcome is independent of the precise object release time.
This principle is also observed in neurophysiology: Cohen and
Dagmar [10] show that humans learn to exploit the throwing-task
redundancy and change their throwing motion to increase the
duration of staying in the set of valid throwing configurations,
in order to reduce the sensitivity to timing.

In the ideal case, RTV is achieved when the robot’s end-
effector follows the same path and speed as the object’s flying

TABLE I
CLASSIFICATION OF PREVIOUS WORKS ON ROBOT THROWING

dynamics during the gripper opening. However, due to hardware
limitations, robots may not always replicate gravitational accel-
eration at the end-effector. Consequently, the challenge lies in
ensuring RTV while operating within the constraints imposed
by the robot’s capabilities.

Contributions: We formulate the problem of finding throwing
motions robust to unmodeled mechanical disturbances [11], [12]
at release time as an RTV optimization, meant to guarantee the
generation of valid projectile trajectories under robot dynamics’
feasibility constraints. The approach is based on the observation
that one can travel on a manifold of feasible joint configura-
tion and velocity leading to the same landing position through
constant acceleration.

II. RELATED WORKS

Over the past two decades, numerous approaches have been
offered to enable robots to throw objects [1], [2], [3], [4], [5], [6],
[7], [8], [9], [13], [14], [15], [16], [17]. Besides differing in the
common dichotomy of model-based methods versus model-free
methods, previous approaches to robot throwing differ in their
operational design domain (ODD), which we classify along
two criteria: 1) the variety of robot configurations and 2) the
diversity of thrown objects, see Table I. The two lenses of
ODDs are crucial to bringing elegant robot throwing solutions to
industrial applications. While previous works considered either
throwing various complex objects with simplified planar robot
configurations or throwing a single object with a variety of
complex configurations, our work aims at enabling throwing
of a variety of objects in a diverse set of configurations.

A. Robot Throwing

1) Planar Throwing Versus Dexterous Throwing: Most
works in robot throwing typically limit the robot motion to
planar throws with low degrees of freedom (≤ 3 joints). The
advantage of planar throwing lies in simplifying the problem
with a small number of design parameters, enabling planning
with comprehensive mathematical models [1] or end-to-end
learning with a single scalar output [8].1 However, as the main
attractive features of robot throwing are manipulation efficiency
and flexibility, limiting robot throwing motion to be planar
loses such features. In comparison, dexterous throwing, which
involves more complex and varied robot movements, offers
several distinct advantages:

a) Time efficiency: Dexterous throwing allows the robot to
adaptively select the most time-efficient throwing configuration
from multiple options, based on its current grasp configuration.
This adaptability is especially important for achieving time
optimality and enhancing the overall throughput of the system.

1In [8], the robot’s joint position upon throwing is fixed, and throwing to
different directions is achieved by changing the robot’s first joint, which is
perpendicular to the ground.
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In comparison, the constraint to planar configurations could
reduce these efficiencies.

b) Throwing in cluttered environments: Dexterous
throwing also provides the robot with alternative strategies for
operating in cluttered spaces. For example, in a scenario where
an obstacle obstructs the planar throwing motion, a throw from
the side can be executed without colliding with the obstacle,
demonstrating greater flexibility in complex environments.

Zhang et al. [14] demonstrate arguably the first work on
dexterous throwing with a 6-DoF industrial manipulator using
sampling-based motion planning methods. Bombile and Bil-
lard [15], [17] offer a framework for dual-arm grabbing and
tossing, enabling dynamic manipulation of heavy and bulky
objects with a 14-DoF arm pair. Thanks to the fast and reactive
motion generation, the system is able to toss objects to a moving
target [17]. In our previous work [16], we introduce the concept
of Velocity Hedgehog, a compact dictionary of robot throwing
configurations. It can be queried online in milliseconds, provid-
ing thousands of qualitatively different throwing configurations
for a 7-DoF manipulator. These dexterous throwing configura-
tions allow for fast and adaptive throwing. In these previous
works, the dynamic models used for robot throwing assume
that the object is released instantaneously. Neglecting to model
the gripper-object dynamics at release may lead to inaccurate
throws, as shown in Fig. 1(a). The instantaneous object release
assumption in [15], [16], and [17] is also invalid for deformable
objects, so is the zero-acceleration strategy proposed in [14] to
handle release uncertainty. In this work, we focus on addressing
the gripper–object interaction as our primary challenge.

2) Throw Specific Objects Versus Throw Generic Objects:
The majority of previous approaches to throwing were limited to
throwing one specific object type ([1]: a wooden block; [2], [3],
[4], [6], [13], [18], [19], [20]: a ball; [5]: a square plastic plate;
[15], [17]: heavy boxes). In contrast, two recent approaches
targeted throwing of a variety of generic objects [8], [9], we
review these next.

Zeng et al. [8] provide an end-to-end learning approach
for throwing various objects. The throwing configuration is
generated from the throwing velocity predicted by a trained
model given the target box position and object image. The
learned model can handle a large set of objects and multiple
target positions in the training set. However, its performance
degrades for unseen objects. While one could retrain the model
with new data, it is not clear how quickly the robot can learn to
throw new objects.

Monastirsky et al. [9] utilize decision transformer [21], a
framework that abstracts reinforcement learning (RL) as condi-
tional sequence modeling problems, to generate robot throwing
motion by conditioning the learned autoregressive model on
the desired landing position, past states (joint position history),
and past actions (joint velocity history). Although the direct
deployment of the model trained purely in simulation results
in very inaccurate throws, the model can throw accurately after
fine-tuning with a handful of real throwing experiments. By ap-
plying domain randomization2 on robot control error and gripper

2Adding noise during training in simulation, which encourages the policy to
be robust.

opening delay during training, the final policy generalizes well
to unseen and even deformable objects.

Both approaches take a learning approach to modeling the
complexity of the throwing behavior. Our approach differs from
the earlier reviewed two contributions in the following key
aspects.

1) While the works in [8] and [9] are designed for pla-
nar throwing, our framework can handle full throwing
configurations as input, hence enlarging the range and
complexity of throwing types.

2) While the author in[9] treats errors due to gripper-object
dynamics as a domain randomization issue, we explicitly
control for these uncertainties through the tube accelera-
tion and offer theoretical justification for the approach.

3) We explicitly ensure that the generated throws are dynam-
ically feasible.

We show that we achieve comparable throwing accuracies to
those documented in [8] and [9]. Our approach relies on con-
vex optimization and, hence, offers a computationally cheaper
alternative to learning methods that require a large number of
training examples.

B. Robust Throwing Against Uncertainties

Pekarovskiy and Buss [5] conduct a comprehensive analysis
of the set of valid throwing configurations (goal manifold),
for planar nonprehensile throwing. They formulate an optimal
control problem with the goal manifold as boundary conditions
and antislipping constraints to ensure dynamic grasping during
the throwing motion. In the presence of uncertainty due to
contact friction, the ratio between contact normal force and tan-
gential force is maximized to maintain antislipping constraints
as effectively as possible.

Following a similar planar approach to throwing as in [5],
the authors in [18], [19], and [20] perform sensitivity analysis
of the landing position w.r.t. the robot’s throwing configuration,
initial configuration, and joint friction. The sensitivity is rep-
resented as the gradient of landing position w.r.t. parameters
of interest. To design a robust throwing configuration, they
enumerate discretized valid configurations and select the one
with the minimum norm (or weighted norm, considering error
covariance [20]) of the sensitivity gradient.

The analysis of the goal manifold in [5] suggests the existence
of a “Nullspace” of throwing configurations that result in the
same object landing position. However, this property has not yet
been leveraged for robust motion design. In this work, we exploit
the slackness of the goal manifold as a buffer for uncertainty,
accounting for our lack of knowledge about release dynamics.

C. Strategies to Handle Release Uncertainty

Handling release uncertainty has been a challenging aspect of
robot throwing, and different strategies have been explored in
the literature. Some works ignore this uncertainty while others
attempt to minimize hand–object interaction. Senoo et al. [2]
develop a specialized high-speed gripper that opens instantly,
leading to quick and accurate object release during throwing. In
the context of nonprehensile throwing, Lynch and Mason [1]
design the arm motion to be maximally decelerated at the
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release instant, resulting in nearly instantaneous object release.
However, as noted in [22], if the object is firmly grasped before
the release phase to avoid unexpected slips, the gripper will grad-
ually loosen its grip around the object during the release phase,
causing it to enter free-flight after a certain amount of time.
While fixed release timing is adequate for accurate throws of
rigid objects, as demonstrated in TidyBot [23], the throwing of
generic deformable objects necessitates a more careful design
of the robot’s release motion. This is particularly important
given the diverse characteristics of deformable objects, such as
variations in contact geometry, surface material, and degree of
deformability. Zhang et al. [14] recognize the potential issue
of release uncertainty during the gripper opening delay and
compensate for this delay by designing the robot motion with
constant velocity (i.e., zero acceleration) during the gripper
opening. However, as we will demonstrate in our experiments,
this strategy is insufficient, as the landing positions of the initial
flying states on a zero-acceleration trajectory are not invariant
to the release time.

Compared to previous heuristic approaches for handling re-
lease uncertainty, our work addresses this problem systemat-
ically. Our framework is similar in spirit to the concept of
soft-catching proposed by Salehian et al. [24], where a dy-
namical system (DS)-based motion generator is used to fol-
low the flying object and reduce collisions between the object
and the finger. This soft-catching strategy significantly increases
the catching success rate compared to hard-catching without
object following. In this work, we use convex programming
to generate dynamically feasible tube acceleration to drive the
robot end-effector traversing the beam of virtual flying objects.

III. PRELIMNARIES

A. Release Dynamics in Robot Throwing

A simplified description of release dynamics, without consid-
ering hand-object collision, involves the following process (see
Fig. 3).

1) The gripper firmly grasps the object O to prevent unex-
pected slips before the release, causing object deformation
due to the applied force.

2) The robot executes the throwing motion q(·) under the
motor torque command sequence τ(·), which spans the
entire throwing process, including the after-release phase.

3) At a specific instant during the throwing motion, the
gripper receives the opening command u(·) and gradually
begins to open.

4) In reaction, the previously squeezed object gradually ex-
pands back to its original shape, leading to changing
normal force Fn, changing tangential friction limit Fmax

f ,
and changing torsional friction limit τmax

f .
5) As the gripper continues to open, it reaches a point where

it can no longer maintain static equilibrium between the
object and the gripper. At this stage, the object starts to
slide within the gripper, experiencing the effects of normal
force, friction force, and gravity.

Fig. 3. Snapshot of the release instant with the robot on the left and the thrown
object on the right. Black arrows consist of the reference frame of the object
O, located at its CoM and along its principle axis. Blue arrows denote motion
vectors and red arrows denote forces applied on O. Note that the directions of
friction forces Ff , τf indicate the relative motion of the gripper and the object.
The object is exaggerated to visualize the complex interaction during object
release.

TABLE II
NOTATIONS FOR GEOMETRIC MODELING IN FIG. 4

6) Finally, the object fully detaches from the gripper and
enters a free-flying state, moving toward the desired target
position.

This process is notoriously difficult to model, and its estima-
tion procedure would require complex and expensive hardware
setups, including tactile sensors and high-precision motion cap-
ture systems. In industrial setups, the diversity of object classes
and the variability of object instances within the same class
also hinder the availability of a detailed microscopic description
of release dynamics for each throwing task. In this regard, we
hypothesize that a kinematic model of gripper opening delay
could be a simple surrogate model to capture the macroscopic
effect on the momentum exchange between the robot and the
object during the release, which can be utilized to design motion
for robust throwing.

B. Geometric Modeling of Robot Throwing

The geometric modeling of the robot throwing problem is
adopted from our previous work in [16] and is illustrated in
Fig. 4, with notations introduced in Table II. We define the
object’s horizontal velocity direction as the positive horizontal
direction in the throwing plane.

In this model, we assume that the object is grasped at the
center of mass (CoM); hence, if the object is perfectly released
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Fig. 4. Geometry of 3-D throwing.

and commences free-flying at a given valid nominal throwing
state, it will land at point B. However, if the release dynamics
delays the object entering free-flying, the landing point might
not overlap with the target B.

C. Backward Reachable Tube

In the throwing plane, the object flying state is denoted as
ξ = [r, z, ṙ, ż]� ∈ R

4. The flying dynamics is described by a
first-order differential equation ξ̇ = ffly(ξ). The flying trajectory
offfly starting from state ξ0 is denoted as ζffly,ξ0(t) : [0,+∞] →
R

4. We assume that a user has provided the robot with a landing
target setX ⊂ R

4, which describes the allowed landing position
slack and the range of allowed landing velocities.

For a flying trajectory that enters the landing target set, any
state on this trajectory segment is a valid throwing configuration.
Therefore, by aggregating all the trajectories that eventually
enter the landing target set, we obtain the set of valid throw-
ing configurations, which we call the backward reachable tube
(BRT). Mathematically, the BRT is defined as

G (ffly,X ) =
{
ξ0 | ∃ t ≥ 0, ζffly,ξ0(t) ∈ X} .

Given a connected target set X ⊂ R
4, the BRT G associ-

ated with a smooth continuous flying dynamics ffly is also a
connected set in R

4 without any isolated regions (or ‘holes’)
(see [25], Th. 3.5). As a result, BRT G is defined in a topo-
logical space, with well-defined topological concepts such as
boundaries and interiors. Hence, the BRT can be represented
as a level-set function fBRT(ξ

0) : R4 → R, with the following
interpretations.

1) fBRT(ξ
0) > 0 ⇔ ξ0 �∈ G, indicating that the initial flying

state ξ0 is not a valid throwing configuration.
2) fBRT(ξ

0) < 0 ⇔ ξ0 ∈ IntG, implying that the initial fly-
ing state ξ0 is a valid throwing configuration.

3) fBRT(ξ
0) = 0 ⇔ ξ0 ∈ ∂G, indicating that the initial fly-

ing state ξ0 lies on the boundary of the BRT.
However, obtaining digital representations of BRT is gen-

erally computationally expensive [26], and the choice of rep-
resentation depends on the specific downstream tasks. In our

previous work on nominal throwing configuration planning [16],
BRT is represented as a 4-D point cloud of valid throwing
configurations. In the next section, we will introduce a neural
implicit representation of BRT, which is particularly suitable for
the robust throwing planning problem.

D. Flowmap and Neural ODE

We define flowmap Φ as the mapping from the initial con-
dition ξ0 to a scalar outcome driven by the flying dynamics.
The outcome of interest could be the function of the state at a
given time or the state upon a certain event happening. Using the
adjoint sensitivity method (see [27]), neural ODE [28] is able
to efficiently compute ∇ξ0Φ ∈ R

d, which is the gradient of the
scalar function Φ w.r.t. initial condition ξ0. The method scales
linearly with problem size, has low memory cost, and explicitly
controls numerical errors.

In the context of robotic throwing, we are interested in
the object’s flying flowmap that maps from the release state
ξ0 = (r0, z0, ṙ0, ż0) to the horizontal landing position in the
throwing plane EBE’, denoted as rland. However, in this scenario,
the landing time is implicitly defined by the release state, flying
dynamics, and landing height, making it difficult to determine
the termination criterion explicitly. To resolve this difficulty,
neural event ODE [29] models the event as a scalar function
h(ξ) of the state ξ, which is equal to zero if and only if the event
happens. The event function is integrated together with neural
ODE and differentiated through. In our setting, the landing event
function can be defined as

h(r, z, ṙ, ż) = z +max(ż, 0).

The condition on ż ensures that the vertical velocity is negative
upon landing. Therefore, if the object’s initial position is lower
than the landing height and the initial vertical velocity is positive,
the solver will continue integration when passing the landing
height during the upward flight and will terminate integration
only when flying downward.

As a result, we obtain the following flying flowmap of the
object’s flying dynamics:

rland = Φfly

(
r0, z0, ṙ0, ż0

)
. (flying flowmap)

Since we define the origin of the throwing plane EB at target
B, the outcome of interest rland should be as close to zero as
possible.

It is worth noting that although the analytical expression of
the flying flowmap is available for projectile motion—where the
object is solely influenced by gravitational force, such analytical
solutions are generally not available for nonlinear flying dynam-
ics. This holds true even for object flying dynamics with a simple
quadratic air drag model, as discussed in the review by Lubarda
and Lubarda [30]. On the other hand, the neural event ODE is an
efficient numerical method capable of handling arbitrary flying
dynamics models.

IV. PROBLEM DESCRIPTION

As shown in Fig 2, for a n-DoF manipulator given a nominal
throwing configuration (q0, q̇0) ∈ R

2n, where the corresponding
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TABLE III
EXPLANATION OF CONSTRAINTS IN PROBLEM RTV

end-effector’s state is inside the BRT of the target box position
p ∈ R

3, and known object flying dynamics ffly : R4 → R
4, the

goal is to find a motion sequence q(·) : [0, T ] → R
n such that

the following holds.
1) End-effector’s state remains inside the BRT for a time

window [0, T ].
2) Motion sequence q(·) is dynamically feasible.
Then, in the “gripper opening delay” model, the robot can

perform a valid throw regardless of the exact release time within
the release phase.

1) Spatial Algebra Notations: All spatial vectors are expressed
in the robot base frame. ApB ∈ R

3 denotes the vector from
point A to point B. v ∈ R

3 denotes the Cartesian velocity of
the robot end-effector. Subscripts of spatial vectors represent
their elements or collections of elements, e.g., ApBz denotes the
vertical component of ApB , ApBxy = [ApBx ,

A pBy ] denotes the
collection of the horizontal components of ApB .

The RTV problem can be formulated as follows:

Problem RTV

Find: {q(·), q̇(·), q̈(·)} (1a)

subject to: q(t) =
∫ t

0

q̇(τ)dτ + q0 ∀t ∈ [0, T ] (1b)

q̇(t) =

∫ t

0

q̈(τ)dτ + q̇0 ∀t ∈ [0, T ] (1c)

v(q, q̇) = J(q)q̇ (1d)

[vx, vy]
�[−EpBy (q),

EpBx (q)] = 0 (1e)

r(q) = − ∥∥EpBxy(q)∥∥2 (1f)

z(q) = −EpBz (q) (1g)

ṙ(q, q̇) = ‖vxy‖2 (1h)

ż(q, q̇) = vz (1i)

Φfly(r(q), z(q), ṙ(q, q̇), ż(q, q̇)) = 0 (1j)

qmin ≤ q(t) ≤ qmax ∀t ∈ [0, T ] (1k)

q̇min ≤ q̇(t) ≤ q̇max ∀t ∈ [0, T ] (1l)

q̈min ≤ q̈(t) ≤ q̈max ∀t ∈ [0, T ]. (1m)

Note that constraints (1d)–(1j) also have to be satisfied
throughout the release phase. Additionally, the problem formu-
lation could optimize certain metrics, e.g., maximize window
duration, maximize margin to the constraint boundary [31], etc.

V. APPROACH

Problem RTV is difficult to solve due to the functional de-
cision variables and the nonconvex constraints. In order to let

the robust throwing motion generator be ready to handle large
amounts of throwing configurations in dexterous throwing, we
choose to convexify Problem RTV and derive the error bound
introduced by the convex approximation. This approach allows
us to efficiently and reliably find a motion sequence that satisfies
the robustness constraints and provides a lower bound on the
suboptimality of the solution compared to the true nonconvex
problem.

A. Quasi-Static Approximation With Tube Acceleration

Our approach to convexifying the problem is as follows.
1) Constant tube acceleration: We restrict the decision space

of the release motion to constant acceleration. This choice
is driven by two design considerations.

a) Due to higher-order effects on robot dynamics, constant
acceleration is easier to track compared to changing
accelerations.

b) The integrator constraint (1c) is linearized under constant
acceleration.

2) Quasi-static approximation: We discretize the double in-
tegrator dynamics (1b)–(1c) with one time step of size
T , the duration of the tube acceleration. Additionally, we
ignore the effect of tube acceleration on joint positions.
As a result, the following statements hold.

a) Positional states, including q, r, z, become parameters of
the problem rather than decision variables.

b) The throwing direction constraint (1e) gets linearized.
c) Robot acceleration limits (1m) can be represented as con-

vex polytopes.
As a result, we obtain the following formulation Problem

Tube-CVX for the recursive validity problem, blue variables are
induced by constant tube acceleration q̈tube while black variables
can be viewed as parameters of the program and, hence, are
treated as fixed in the solver:

Problem Tube-CVX

Find: {q̈tube} (2a)

subject to: qT = q0 + T q̇0 (2b)

q̇T = q̇0 + T q̈tube (2c)

rT = − ∥∥EpBxy(qT )∥∥2 (2d)

zT = −EpBz (qT ) (2e)

vT (qT , q̇T ) = J(qT )q̇T (2f)

[vT,x, vT,y]
� [−EpBy (qT ),

EpBx (qT )
]
= 0

(2g)

ṙT = ‖vT,xy‖2 (2h)

żT = vT,z (2i)

Φfly (rT , zT , ṙT , żT ) = 0 (2j)

q̇min ≤ q̇T ≤ q̇max (2k)

q̈min ≤ q̈tube ≤ q̈max. (2l)

In the previous formulation, all the equality constraints except
for the BRT constraint (2j) are linear, and all the inequality
constraints are polytopic, resulting in a convex problem [32].
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Linearizing the BRT constraint (2j) is a key ingredient of our
method and will be explained in detail in Section V-C. With this
approximation, the torque limits on the robot can be formulated
as the following polytopic constraint:

τmin ≤ τ = M(q0)q̈tube + C (q0, q̇0) q̇0 +G (q0) ≤ τmax

(2m)
where τ ∈ R

n denotes the motor torque, M ∈ R
n×n denotes

the mass matrix, C(q, q̇)q̇ ∈ R
n denotes the Coriolis force, and

G(q) ∈ R
n denotes the gravity force.

Discussion on the previous approximation scheme is as
follows.

1) Potential error from ignored q̈tube in the integrator con-
straint (2c): With T = 100 ms and typical q̈max = 10
rad/s2, the corresponding maximum joint position error
will be around 1

2T
2q̈max = 0.05 rad = 2.86◦. For a robot

with a 1-m reach, this corresponds to a 5-cm error at the
end-effector.

2) Treatment of constraints (1d)–(1m): Only the constraints
at the end of the release motion (at T ) are imposed while,
in principle, they have to be satisfied all the time dur-
ing the gripper opening window. However, the following
statements hold.

a) For the throwing plane constraint (1e), we show in
Section V-B that the error in end-effector velocity direction
is of second-order in T , which is assumed to be small.

b) For the flying flowmap constraint (1j), we show in
Section V-C that due to the flatness of the ob-
ject flying flowmap, the constraint violation of (1j) is
small.

c) For robot limit constraints (1k)–(1m), they can be handled
by the safety margin of real hardware limits.

B. On Terminal Time-Only Throwing Plane Constraint

The imposed throwing direction constraint (2g) at time T
corrects the throwing direction error induced by the second-order
curvature of the robot forward kinematics at nominal throwing
configuration, and hence, the ignored throwing direction con-
straint for t ∈ (0, T ) is of second-order of T , which is assumed
to be small. To show this, we write the end-effector velocity
driven by the tube acceleration during the release window as
follows:

v (qt, q̇t) = J(qt)q̇t (3)

=
(
J(q0) + (qt − q0)

� H(q0) +O
(‖qt − q0‖2

))
q̇t (4)

=

(
J(q0) +

(
q0 + tq̇0 +

1

2
t2q̈tube − q0

)�
H(q0)

)

(q̇0 + tq̈tube) +O(t2) (5)

=
(
J(q0) + tq̇�0 H(q0)

)
(q̇0 + tq̈tube) +O(t2) (6)

≈ J(q0)q̇0 + t
(
J(q0)q̈tube + q̇�0 H(q0)q̇0

)
(7)

whereH ∈ R
3×n×n is the Hessian of the robot forward kinemat-

ics. Now we see that the end-effector velocity is approximately
affine in time t. Therefore, by only imposing the direction of the

Fig. 5. Robot motion with throwing plane constraint imposed only at terminal
timeT approximately keeps the correct velocity direction throughout the release
window.

velocity at the start t = 0 (valid nominal throwing configuration)
and at the end t = T (constraint (2g)), the throwing direction
is approximately constant throughout the release motion with
T � 1. This property is also shown in Fig. 5.

C. Flowmap Constraint via Neural Implicit Reachability

The flowmap constraint (1j) ensures that in the throwing
plane, the object can land at the target position. The given
nominal throwing configuration (q0, q̇0) is assumed to satisfy
this constraint, and hence, we have

Φfly(r(q0), z(q0), ṙ(q0, q̇0), ż(q0, q̇0)) = 0. (8)

Similarly, we can write the BRT constraint for the throwing
state at the end of the gripper opening window induced by tube
acceleration q̈tube as the following flowmap constraint:

Φfly(rT , zT , ṙ(q̈tube), ż(q̈tube)) = 0 (9)

note that with quasi-approximation, rT and zT are fixed pa-
rameters in Problem Tube-CVX, and hence, here we drop
the flying flowmap’s dependency on q. In the “gripper open-
ing delay” model, the initial free-flying state of the object is
assumed to be identical to the state of the robot end-effector at
an unknown time during the release phase. In general, with zero
tube acceleration q̈zero (constant joint velocity) during the release
phase after bypassing the nominal throwing configuration, the
end-effector state will not lead the object to land in the desired
box position, i.e.,

Φfly(rt, zt, ṙt(q̈zero), żt(q̈zero)) �= 0 ∀t ∈ (0, T ]. (10)

However, if one follows the local gradient around the isoline
of the flying flowmap at the end of the release window T
with nominal throwing velocity as shown in Fig. 6, one can
find a tube acceleration that corrects the release velocity at T
to ensure that the object lands on the target if the “gripper
opening delay” equals exactly T . Then, during the release phase
driven by the tube acceleration, at each infinitesimal timestep,
the change of landing position due to the change end-effector
position is compensated correctly by the change of end-effector
velocity, thanks to the flatness of the flying flowmap. In this
way, RTV is achieved.
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Fig. 6. Illustration of object flying flowmap of projectile dynamics and
retraction constraint.

Mathematically, let

Φfly(0) := Φfly (rT , zT , ṙT (q̈zero), żT (q̈zero)) (11)

which is the landing position if the object is released at time
T with robot motion driven by zero acceleration. We define
a retraction constraint as

− Φfly(0) =

[
∂Φfly

∂ṙT (q̈zero)
,

∂Φfly

∂żT (q̈zero)

]�
[
ṙT (q̈tube)− ṙT (q̈zero)
żT (q̈tube)− żT (q̈zero)

]
(retraction constraint)

this replaces the nonlinear inequality constraint (2k) with a linear
equality constraint in Problem CVX. Next, we study the error
induced on the true solution of the optimization through the
linearization of this constraint.

VI. ERROR ANALYSIS OF RETRACTION CONSTRAINT

A. Intuition: One-Step Newton’s Method for Root-Finding

The idea behind the retraction constraint and its error analysis
resembles applying Newton’s method for one-step for root find-
ing. For a generic 1-D nonlinear equation y = f(x) with root
x∗, we can find an approximate solution x̂ from an initial guess
x0 using the following formula:

x̂ = x0 −∇f−1 (x0) f (x0) . (12)

In particular, the following statements hold.
1) If f(x) is linear ⇒ one-step Newton is exact.
2) If f(x) has small curvature and |x̂− x0| is small⇒ |f(x̂)|

is small.
The technical difficulty in analyzing the retraction constraint

lies in the following two aspects.
1) The object flying flowmap is a multivariate function,

which makes the analysis more complex compared to the
above 1-D analysis.

2) The values of (ṙT , żT ) obtained from the convex program
do not admit a closed-form solution. As shown in Fig. 7,

Fig. 7. Retraction constraint is a 1-D subspace constraint, any solution on the
red dashed line satisfies the retraction constraint.

the exact solution on the retraction constraint subspace
selected by the convex program is unknown a priori.

B. Flatness of Object Flying Flowmap

From Fig. 7, we observe that the object flying flowmap of pro-
jectile dynamics is “quasi-flat.” To capture this flatness and relate
it to the approximation error of the retraction constraint, we
compute the spectral radius of the Hessian of the object flying
flowmap using finite difference.

For a multivariate function f(x) : Rn → R, the spectral ra-
dius of its Hessian matrix is the maximum absolute value of the
eigenvalues of the HessianH(x) ∈ R

n×n, whereHij =
∂2f(x)
∂xi∂xj

.
In our case, we consider the error function induced by the
linearization of the BRT constraint

e (ṙT , żT ) = Φfly (rT , zT , ṙT , żT ) . (13)

We analyze the spectral decomposition of the Hessian for two
planar flying dynamics: 1) gravity-only flying dynamics and
2) flying dynamics with quadratic Newton air drag. The gravity-
only flying dynamics are described by

ξ̇ =
d

dt

⎡
⎢⎢⎣
r
z
ṙ
ż

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ṙ
ż
0
−g

⎤
⎥⎥⎦ (14)

where g is the gravitational constant. The flying dynamics with
quadratic Newton air drag are described by

ξ̇ =
d

dt

⎡
⎢⎢⎣
r
z
ṙ
ż

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ṙ
ż

−μṙ
√
ṙ2 + ż2

−μż
√
ṙ2 + ż2 − g

⎤
⎥⎥⎦ (15)

where μ = Amρ, with A being the cross-sectional area in the
motion direction, m being the object weight, and ρ being the air
density. In this analysis, we set A = 0.2π,m = 0.5, and ρ =
1.29.

Fig. 8 shows the spectral radius of the flowmap Hessian at
different throwing velocities for the two flying dynamics. Over a
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Fig. 8. Spectral radius of the object flying flowmap with different flying
dynamics. (a) Gravity-only flying dynamics. (b) Flying dynamics with Newton
airdrag.

large region of throwing velocities, the maximum spectral radius
of the gravity-only dynamics is approximately 0.16, and for the
flying dynamics with Newton air drag, it is approximately 0.13.
We will use these values to compute the parametric error bound
of the retraction constraint.

C. Error Bound

Lemma 1: For a multivariate function f : Rn → R, if the
spectral radius of the Hessian is bounded by L, then the gradient
of f is L-Lipschitz continuous.

Proof: Let x, y ∈ R
n be any two points. Using the mean value

theorem for vector-valued functions, we have

|∇f(x)−∇f(y)| =
∣∣∣∣
∫ 1

0

∇2f(y + t(x− y))(x− y)dt

∣∣∣∣
(16)

≤
∫ 1

0

|∇2f(y + t(x− y))| · |x− y|dt.
(17)

Since the spectral radius of the Hessian is bounded by L, we
have |∇2f(y + t(x− y))| ≤ L for all t ∈ [0, 1]. Therefore

|∇f(x)−∇f(y)| ≤ L

∫ 1

0

|x− y|dt = L|x− y|. (18)

Thus, we have shown that |∇f(x)−∇f(y)| ≤ L|x− y|, which
means the gradient of f is L-Lipschitz continuous. �

Lemma 2: For a multivariate function f : Rn → R with L-
Lipschitz continuous gradient, the following inequality holds
for all x, y ∈ R

n:

∣∣f(y)− f(x)−∇f(x)T(y − x)
∣∣ ≤ L

2
‖y − x‖2 (19)

where L is the Lipschitz constant of the gradient.
In general, the norms on R

n in Lemma 2 can be arbitrary, and
the Lipschitz constant L will depend on the choice of the norm.
This is a classical result in convex analysis, and its proof can be
found in [33], Th. 2.1.5.

Now, we present our main result.
Theorem 1: For a robot with maximum Cartesian acceleration

p̈max ∈ R
3 throwing an object whose flying flowmap Φfly is

with L-bounded spectral radius of the Hessian, the landing error
in the throwing plane induced by q̈cvx, the tube acceleration
obtained from Problem Tube-CVX with release window T ,
denoted as |Φfly(q̈cvx)|, is upper bounded

|Φfly(q̈cvx)| ≤
L

2
‖T p̈max‖2 . (20)

Proof: We rewrite retraction constraint in the following
form:

0− Φfly(0)

= ∇Φfly(ṙT (q̈zero), żT (q̈zero))
�
[
ṙT (q̈cvx)− ṙT (q̈zero)
żT (q̈cvx)− żT (q̈zero)

]
(21)

Then, we apply Lemma 2 with x = [ṙT (q̈zero), żT (q̈zero)]
�, y =

[ṙT (q̈cvx), żT (q̈cvx)]
�, f = Φfly, we have∣∣∣∣Φfly(q̈cvx)− Φfly(0)

−∇Φfly(ṙT (q̈zero), żT (q̈zero))
�
[
ṙT (q̈cvx)− ṙT (q̈zero)
żT (q̈cvx)− żT (q̈zero)

]∣∣∣∣
(22)

= |Φfly(q̈cvx)| ≤ L

2

∥∥∥∥
[
ṙT (q̈cvx)− ṙT (q̈zero)
żT (q̈cvx)− żT (q̈zero)

]∥∥∥∥
2

(23)

≤ L

2
‖T p̈max‖2 . (24)

�
Discussion on the earlier result is as follows.
1) If we set the contraction constraint violation as the mini-

mization objective in Problem Tube-CVX, the error bound
effectively serves as a suboptimality certificate. In other
words, if the minimal feasible contraction constraint vi-
olation is large, there is a high chance that the original
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Fig. 9. Typical installation: GripperZ-axis is aligned with the last (wrist) joint
of the manipulator.

Problem RTV is also not feasible, implying a nonrobusti-
fiable nominal throwing configuration.

2) The bound is still conservative, as one can minimize the
norm of tube acceleration as an objective to shrink p̈max.

3) The use of Hessian is due to lower computational
complexity.

a) In Fig. 8, each Hessian map is computed fromm = 100×
100 different throwing velocities in 1 h on a Laptop with
an 8-core 1.8 GHz CPU (Intel i7-10510 U).

b) Direct estimation of the Lipschitz constant is expensive
with O(m2) complexity.

4) Lipschitz constant estimation of black-box func-
tions/neural networks is an active field of research [34].

D. Practical Robust Throwing Motion Generation

In this section, we address several practical issues when using
tube acceleration to robustify throwing.

1) Infeasible Problem Tube-CVX: Due to the constraints
stemming from a particular robot’s kinematics and motors
(bounds on achievable velocity/acceleration/torques), a throw-
ing configuration may not admit a feasible solution for Prob-
lem Tube-CVX. One possibility is to relax the constraints by
assuming a tolerance with radius ε on the target box. The
following relaxed linear inequality constraints can then replace
the retraction constraint:∣∣∣Φfly(0)

+

[
∂Φfly

∂ṙT (q̈zero)
,

∂Φfly

∂żT (q̈zero)

]� [
ṙT (q̈tube)− ṙT (q̈zero)
żT (q̈tube)− żT (q̈zero)

] ∣∣∣
≤ ε.

2) Finger-Object Collision Avoidance: Once the object has
detached, the robot motion still needs to be carefully designed
such that the object does not collide with the gripper or robot arm
as it falls. While this could be resolved by designing a separate
finger-object collision avoidance planning problem, a simple
heuristic, which we describe next, can work well in practice.

On typical robot manipulators, the Z-axis of the gripper is
aligned with the rotational axis of the last joint, as illustrated in
Fig. 9. In this case, the state of the last joint does not affect the

translational state of the end-effector, but only the rotational
state. This separation allows us to utilize this extra DoF of
the last joint for finger-object collision avoidance. The method
is straightforward: Move the last joint such that the Cartesian
velocity of the end-effector frame E always lies in the Y − Z
plane of the gripper.

VII. EXPERIMENT

To validate the effectiveness of tube acceleration, we conduct
four sets of experiments:

1) batch experiments in simulation;
2) case study in simulation;
3) quantitative experiment on the real robot;
4) qualitative experiment on the real robot.

A. Suboptimality and Computational Efficiency of
Convexified Problem

The main objective of this experiment is to focus solely on
the recursive validity of tube acceleration obtained from Problem
Tube-CVX by comparing it to the solution of a generic noncon-
vex problem. To achieve this, we isolate other uncertainties and
set up the simulation with the following conditions.

1) Projectile Flying-Dynamics: Only gravity force is applied
to the object during free-flying.

2) No Finger–Object Interaction: The object’s initial flying
state (position and velocity) is set to match the end-effector
state along the trajectory during the release time window.

Let C be the landing point of the object at the target height,
which may not overlap with target box B. We formulate the
nonconvex problem as follows, where the maximum landing
error BpC along the release motion is minimized:

Problem Tube-NCP

min
q̈tube

max
k

∥∥ApCk − ApB
∥∥
2

(25a)

subject to: tk =
k

K
T ∀k ∈ [1, 2, . . .,K] (25b)

qk = qd + q̇ktk + q̈tubet
2
k (25c)

q̇k = q̇d + q̈tubetk (25d)

zk = −EpBz (qk) (25e)

vk = J(qk)q̇k (25f)

ṙk = ‖vk,xy‖ (25g)

żk = vk,z, (25h)

rland,k = Φfly (0, zk, ṙk, żk) (25i)

ApCk = ApEk + rland,k
vk,xy

‖vk,xy‖2 (25j)

q̇min ≤ q̇k ≤ q̇max (25k)

q̈min ≤ q̈tube ≤ q̈max. (25l)

Table III summarizes the interpretation of the constraints in
Problem RTV. Note that constraints (25c)–(25l) have to be
satisfied for all K discretization steps. Constraint (25i) actually
computes the flying distance before landing and the Cartesian
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TABLE IV
PERFORMANCE STATISTICS AMONG 16 THROWING CONFIGURATIONS

Fig. 10. Performance efficiency tradeoff of different problem formulations.

coordinate of landing point C is obtained by constraint (25j).
We set tube acceleration as the decision variable so that the
nonconvex problem has the same decision space as Problem
Tube-CVX for a fair comparison. It is worth mentioning that the
formulation detail of Problem Tube-NCP is optimized through
trial-and-error to ensure good solving performance.

The convex problem in Problem Tube-CVX is implemented
using CVXPY [35] while the nonconvex problem in Problem
Tube-NCP is implemented using SciPy [36] and is solved by
the sequential least squares programming solver. The compu-
tational performance is evaluated on a Laptop with an 8-core
1.8-GHz CPU (Intel i7-10510U) for timing performance. For
both problems, the release phase duration T is set to 100 ms
based on empirical observations of hard-coded hand-tuned grip-
per opening delays3 for various objects, which typically range
from 40 to 140 ms. In practical scenarios, we can consistently
implement a minimal gripper opening delay of 40 ms and apply
tube acceleration for 100 ms, ensuring the system’s robustness
against uncertainties in releasing various objects.

To understand the tradeoff between solution quality and solver
efficiency for dexterous throwing, we compare the two prob-
lem formulations for 16 nominal throwing configurations. The
nominal throwing configurations are obtained through velocity
hedgehog matching proposed in our previous work [16]. The
results are summarized in Table IV and depicted in Fig. 10, where
experiments of Problem Tube-NCP with K discretization steps
are labeled as “tube-ncp-K.”

Discussion:

3The gripper opening command is given in advance along the trajectory toward
the nominal throwing configuration.

Fig. 11. Visualization of the examined throwing configuration. (a) Top view.
(b) Side view.

1) By varying the discretization steps K, we speculate that
“tube-ncp-100” with the smallest average worst-case error
obtains global-optimal solutions.

2) “tube-ncp-1” exhibits negligible difference compared to
“tube-ncp-100.”

3) Compared to “tube-ncp-1,” “tube-cvx” trades 2-cm aver-
age worst-case error for 50× speedup, entering millisec-
ond regime.

The fast and stable solving speed has even greater implications
for today’s data-driven methods in robotics. Machine learning
methods acknowledge the inadequacy of physical models and
aim to improve task performance from real-world data. Since
the typical duration of a throwing trajectory is between 1–1.5 s,
when new information from proprietary modules arrives, e.g.,
updating the object flying dynamics during throwing, a robot
with nonconvex formulation would have to abort the executing
throwing motion, replan, and try again. In this scenario, the
30-ms computation time of “tube-cvx” opens up the potential
for on-trajectory adjustment of the robustifying release motion.
This capability could greatly enhance the overall agility and
adaptability of the throwing robot.

Finally, the tube acceleration obtained from Problem Tube-
CVX essentially lies in the intersection between a 5-D subspace
and a 7-D polytope, which is a nontrivial solution. This could
serve as a strong initial guess for the nonconvex problem.
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TABLE V
SUMMARY OF THE EXAMINED THROWING CONFIGURATION IN SIMULATION

Fig. 12. Comparison of landing errors of different release motions.

B. Case Study in Simulation

We proceed with the examination of a specific throwing con-
figuration to demonstrate the consequences of gripper opening
delay and the effectiveness of tube acceleration in mitigating
its effects. Fig. 11 visualizes the nominal throwing configura-
tion, and its characteristics are summarized in Table V. The
impact of gripper opening delay on different release motions and
their resulting landing errors are depicted in Figs. 12 and 13,
respectively.

Discussion
1) Zero acceleration during the release window can lead to a

significant landing error (>20 cm).
2) Resolved acceleration of gravity at the nominal robot

throwing state violates the joint acceleration limit of
Franka Emika Panda, rendering it dynamically infeasible
for this specific configuration. However, the tube acceler-
ations remain within the allowable limits, showcasing its
advantage of safety and feasibility.

3) Tube acceleration from the convex formulation is subop-
timal and with a larger worst-case error compared to the
solution from the nonconvex formulation (2.94 cm versus
1.33 cm).

It is worth noting that the computational efficiency of the two
problem formulations differs significantly. The convex problem
is 8900× faster to solve than the nonconvex problem (41 ms
versus 365 s) for this specific throwing configuration.

Fig. 13. Release motions driven by different accelerations and their resulting
landing positions. (a) Zero acceleration. (b) Tube acceleration from convexified
problem. (c) Tube acceleration from the nonconvex problem.

C. Quantitative Experiment on Real Robot Throwing

For the real-robot throwing experiments, we use 7-DoF
Franka Emika Panda manipulator mounted with Robotiq 2f-85
parallel gripper. We compare two strategies of motion design
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TABLE VI
THROWN OBJECTS IN THE QUANTITATIVE EXPERIMENT

TABLE VII
LANDING POSITION ERROR STATISTICS OF THE TWO ROBOT MOTION

STRATEGIES (TUBE AND ZERO) AFTER THE NOMINAL RELEASE STATE

during the release phase: 1) zero acceleration and 2) tube accel-
eration. To showcase its potential for real-time adaptation, the
tube acceleration is computed from Problem Tube-CVX.

In this quantitative experiment, three objects are selected to
be thrown: a 3-D-printed plastic ball (“grey _ ball”), a cardboard
box (“small_box_heavy”), and a tennis ball (“tennis_ball”). The
photos and properties of each object are listed in Table VI. To
accurately track the landing positions, each object is equipped
with markers, which are monitored using an OptiTrack motion
capture system. The markers’ positions are recorded at 240 Hz
with a spatial accuracy of 0.2 mm. The nominal throwing con-
figuration is the same one examined in the case study of Sec-
tion VII-A. For each strategy-object combination, we perform
5–6 throws. The results of the experiment are summarized in
Fig. 14 and Table VII.

Discussion on Fig. 14(a): Based on the end-effector motion
during the release phase (100 ms after the nominal throwing
configuration), we observe that, on average, the objects’ release
delay follows the order: “tennis _ ball”> “small _ box_heavy”>
“grey_ball”, which corresponds to the order of their deformabil-
ity. This suggests that objects with higher deformability tend to
experience a longer delay before being released from the gripper.
Additionally, the landing positions of the “small _ box_heavy”
object are more spread out compared to the other two objects.
This spread indicates that the dynamic interaction between the
gripper fingers and the box is less predictable.

Discussion on Fig. 14(b): A remarkable fact of the tube
acceleration is that the landing positions among the three objects
are much more condensed, compared to the zero-acceleration
strategy. However, the landing positions in the tube acceleration
strategy exhibit a constant offset. This offset primarily stems
from the larger trajectory tracking error, as depicted in Fig. 14(b).

Fig. 14. Landing positions of the throws with the three objects. The black
arrows show the end-effector motion driven by the planned release motion in
joint space while the blue arrows show the real end-effector’s release motion in
one throwing experiment. The red box resembles a virtual target box with a size
of 15 cm × 15 cm. (a) Throwing with zero acceleration. (b) Throwing with tube
acceleration.

A practical remedy to mitigate this offset is to employ robot
dynamics learning techniques, as demonstrated in [37] and [38],
to achieve more accurate motion command tracking. In the case
of mobile manipulator throwing [16], the offset can be easily
eliminated by moving the base aside.

Discussion on Table VII:
1) grey_ball: Tube acceleration results in an enlarged mean

landing error due to a large trajectory tracking error.
2) small_box_heavy: Tube acceleration reduces 83% of the

standard deviation of the landing error, whereas zero accel-
eration suffers from a large variance due to unpredictable
gripper– object interaction.

3) tennis_ball: Tube acceleration reduces 50% of the mean
landing error while zero acceleration experiences a large
landing error due to a significant “gripper opening delay.”

4) Overall: Tube acceleration reduces the mean landing error
by 14% and the standard deviation of the landing error by
70% across all the throws.
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Fig. 15. Four dexterous throwing configurations in the qualitative experiment.

Fig. 16. 18 thrown objects in the qualitative experiment.

D. Qualitative Experiment on Real Robot Throwing

In the qualitative experiment, we demonstrate the robusti-
fying capability of tube acceleration for dexterous throwing
configurations. We conduct throwing experiments for one planar
throwing configuration and four distinct nonplanar throwing
configurations, as shown in Fig. 15. The set of 18 thrown objects
used in the experiment is shown in Fig. 16. The properties
of the 18 objects are summarized in Table VIII. It is worth
noting that the set of objects is arguably the most diverse in the

Fig. 17. Target box with two levels of error tolerance. Inner small box: 15 ×
15 cm. Outer large box: 37 × 33 cm.

literature to date: TossingBot [8] has a collection of more than
80 different objects, including toy blocks, fake fruits, decorative
items, and office objects, but it lacks deformable objects; the
work by Monastirsky et al. [9] has seven objects, including two
deformable (a sand ball and a squeeze ball), but this selection
does not encompass deformable objects with varying contact
geometries and material. In contrast, our object set includes
not only items from these previous studies but also a folded
T-shirt, towels, a plush toy, and various rubber and foam ob-
jects, enhancing the diversity of deformability, contact surface,
and geometry. To assess the throwing accuracy w.r.t. different
target sizes, we design the target box with two levels of error
tolerance, represented by the inner small box with dimensions
15 × 15 cm and the outer large box with dimensions 37 ×
33 cm, as shown in Fig. 17. This design emulates the concept of
Top-1 classification accuracy and Top-5 classification accuracy
used in ImageNet [39]. Considering the stochasticity among
different throws of the same object, we throw each object 5–8
times. In total, we conduct 1114 real throwing experiments. The
summary of the qualitative throwing experiments is available in
this Google Drive folder: https://rb.gy/30rord.

The experiment results are presented in Table IX, demon-
strating the significant improvement in throwing accuracy
achieved through tube acceleration for all five throwing con-
figurations.

Compared to the two previous works on planar throwing of
different objects [8], [9], our small box measures 15 × 15 cm,
aligning with the target dimensions in Monastirsky et al. [9]
and more compact than the 15 × 25 cm box in TossingBot [8].
With a fair setup in target size, our planar throwing driven
by tube acceleration achieved a throwing accuracy of 97.3%,
surpassing the best-reported accuracy of 85% in TossingBot [8].
While Monastirsky et al. [9] report a 100% accuracy rate, it
is worth noting that the objects that failed in our experiments
are the squash ball and the wrapped foam tape, both of which
are significantly softer than those tested in their study. This
difference in object properties could account for the variance
in performance.

https://rb.gy/30rord
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TABLE VIII
SUMMARY OF OBJECT PROPERTIES IN THE QUALITATIVE EXPERIMENT

TABLE IX
SUMMARY OF THROWING SUCCESS RATES IN THE QUALITATIVE EXPERIMENT

Moreover, certain throwing configurations, such as the one
depicted in Fig. 15(b), may exhibit more variability in release
uncertainty, resulting in the lowest throwing accuracy among
the five throwing configurations. A comprehensive study of
configuration-dependent release uncertainties would be valuable
future work to gain deeper insights into the throwing system’s
fundamental limits.

VIII. UNCERTAINTIES IN ROBOT THROWING AND ROBUSTNESS

OF TUBE ACCELERATION

With a limited number of throwing experiments, it is chal-
lenging to fully assess the throwing accuracy under various
uncertainty sources beyond release dynamics. In this section, we
present a framework to model and simulate uncertainties beyond
release uncertainty, aiding in the study and synthesis of robust
throwing motions. Through this carefully designed stochastic
throwing model, we demonstrate that tube acceleration has a
great robustifying potential in the presence of other uncertainty
sources.

A. Uncertainty Sources in Robot Throwing

Based on our robot-throwing experiments, we have observed
that several uncertainty sources have a detrimental effect on the
final throwing outcome when a grasped object is thrown. These
sources of uncertainty are as follows.

1) Robot dynamics: The unavailability of an accurate rigid-
body dynamics model for the robot manipulator, coupled
with the unmodeled effects of robot dynamics (such as
elastic actuators and friction), leads to deviations between
the intended motion command and the actual robot motion.

2) Release dynamics: During the release phase, the object’s
dynamics transition from forced motion to free-flying.
Consequently, the object’s release state may not align
perfectly with the end-effector state.

3) Object flying dynamics: Modeling air drag with generic
object shapes can be challenging, introducing uncertain-
ties in the object’s flight trajectory.

Addressing these sources of uncertainty is crucial for im-
proving throwing accuracy and ensuring the robustness of the
throwing process.

B. Mathematical Modeling of Throwing Uncertainty

Consider a robot motion segment (q(·), q̇(·)) during the re-
lease phase, we can model robot dynamics uncertainty and
release dynamics uncertainty by defining tubes around the joint
motion sequence and the end-effector motion sequence, respec-
tively. Within these tubes, any state can represent a possible
object release state ξ0, which is the instant when the object starts
its free-flying trajectory.

Mathematically, for a given robot motion segment (q(·), q̇(·))
and uncertainty set Σ, there exists a set (tube) of possible object
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release states M with a probability measure P induced by Σ.
Due to the influence of gravity, the set of plausible release states
M is then “push forwarded” onto the landing plane, resulting
in a probability measure of landing positions PL in R

2. Ideally,
the landing positions’ probability distribution PL induced by
tube acceleration should concentrate around the nominal landing
position p∗. In the perfect case when PL is a Dirac measure δp∗

at the nominal landing position p∗, the objects will consistently
land at the same spot after repetitive throws, resembling a pile
or mountainlike formation.

C. Simulating Throwing Uncertainty

To visualize the effect of throwing uncertainty, we employ
Monte Carlo simulation to sample random throwing configu-
rations and collect their corresponding landing positions. For
the motion segment (q(·), q̇(·)) with a duration of 100 ms, we
discretize the segment into a sequence of 11 joint states with a
10-ms interval, denoted as Ξ = {(qk, q̇k)}10k=0. Since Panda has
seven joints, the space of uncertainty set Σ can be quite large.
To manage this, we make the following design choices for the
uncertainty set around each throwing configuration (qk, q̇k).

1) The axis of Panda’s 1st joint is perpendicular to the ground
and typically experiences low payload. In practice, we
observe high command tracking accuracy on the 1st joint;
therefore, we set no uncertainty on the 1st joint.

2) The state of the last (7th) joint of Panda does not af-
fect the translational state of the end-effector, but only
the end-effector’s orientational state. Since we assume
point-mass objects in this work, we set no uncertainty on
the 7th joint.

3) For the five joints in the middle of the kinematic chain
(2nd–6th joints), we sample joint state disturbances
from the following sets: δqi ∈ {0.0, 0.02, 0.05}, δq̇i ∈
{0.0, 0.03, 0.08}, for all i ∈ {2, 3, 4, 5, 6}. This results in
a total of (3× 3)5 = 59 049 possible joint state distur-
bances. The choice of three different error levels for joint
position and joint velocity is based on our observation of
typical error values on the real robot.

1) Discussion on Release Dynamics Uncertainty: On one
hand, the uncertainty in robot dynamics designed earlier might
already incorporate the release dynamics uncertainty. On the
other hand, one can consider adding directional-dependent un-
certainty in the object release state based on the gripper orien-
tation.

2) Discussion on Object Flying Dynamics Uncertainty:
In [40], accurate prediction of object landing position is achieved
by explicitly modeling air-drag and the Magnus effect with
calibrated model parameters. Their model can also be used to
study object flying dynamics uncertainty by adjusting model
parameters.

We acknowledge these aspects as potential future work for
further exploration.

D. Robustness of Tube Acceleration

Interestingly, tube acceleration also demonstrates an im-
provement in landing accuracy in the stochastic setting. In

Fig. 18. Monte Carlo simulation of landing positions with two different
robot motions. The nominal throwing configuration is the one examined in
Sections VII-B and VII-C. The random seeds are identical in the two plots. The
robot base is at the origin, and the target is at (1.1, 0.0, 0.0) in the robot frame
(the same height as the table that mounts the robot). The black circle resembles
a target bin with a radius of 10 cm. (a) Throwing without tube acceleration.
(b) Throwing with tube acceleration.

the Monte Carlo simulation shown in Fig. 18, each throwing
configuration (qk, q̇k) on the discretized throwing motion seg-
ment Ξ = (qk, q̇k)

10
k=0 is repeated 100 times and disturbed by

100 sampled joint state disturbances out of the 59 049 possible
disturbances, as designed in Section VIII-C. Therefore, each
plot in Fig. 18 comprises a total of 11× 100 = 1100 random
throwing simulations.

Fig. 18(a) illustrates the population of landing positions un-
der the robot motion without tube acceleration (constant joint
velocity). As the release time progresses, the landing positions
gradually deviate farther away from the target position. In com-
parison, the population of landing positions under the robot mo-
tion with tube acceleration is much more concentrated around
the target position, as shown in Fig. 18(b). This indicates the
ability of tube acceleration to reduce the variabilities and uncer-
tainties from various sources, resulting in improved accuracy.

IX. LIMITATIONS OF KINEMATIC RELEASE MODEL FOR

OFF-COM GRASPS

In this work, the RTV problem is based on the assumption that
the intricate release dynamics can be effectively approximated
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Fig. 19. 3-D-printed bar to study the effect of grasp CoM offset on throwing.
The two designed grasp points, the CoM and one end, are covered with paper
tape to maintain consistent contact properties.

Fig. 20. Comparison of throws with different grasps. (a) Accurate throw with
CoM grasp. (b) Large throwing error with CoM offset.

by a kinematic “gripper opening delay” model, so that the release
motion, designed to be robust against the unknown time delay in
the kinematic model, can robustify the true uncertainties in the
release dynamics. The experimental results in Sections VII-C
and VII-D validate the fidelity of the kinematic release model
when objects are grasped at their CoM. However, this model
fails to capture the release dynamics when objects are grasped
with CoM offset.

To account for grasp offset without modifying our algorithm,
we translate the gripper frame from the original finger frame E
to a virtual frame G, attached to the gripper and overlapping
with the object’s CoM upon grasping. This is a straightforward
adjustment based on the kinematic release model.

To evaluate how the location of the grasp influences the
accuracy of the throws, we 3-D-printed an object with known

Fig. 21. Horizontal acceleration of the virtual frame G is negative throughout
the 100-ms release window.

mass distribution, as shown in Fig. 19, which we throw using
two different grasps in the same planar throwing configuration.
The corresponding release motions are generated by Problem
Tube-CVX, assuming projectile flying dynamics at the object’s
CoM. Snapshots of the throws are shown in Fig. 20.

As shown in Fig. 20(a), when grasped at CoM, the nominal
landing position is 1.21 m, and the landing position of the object
CoM is almost identical to the nominal landing position. How-
ever, when grasped with a 0.14-m CoM offset, the object lands
0.3 m further away from the model prediction (1.67 m versus
1.37 m, shown in Fig. 20(b)). The larger flying distance indicates
that the CoM is accelerated drastically during the release while
the computed tube acceleration generates a negative horizontal
acceleration at the virtual frame G (shown in Fig. 21). This
finding confirms that our kinematic release model is not just
quantitatively, but also qualitatively, inaccurate for off-CoM
grasps.

X. CONCLUSION

In the realm of robot dexterous throwing, a stringent challenge
is to suppress the release uncertainty to throw various objects
with various robot-throwing motions. Conventional end-to-end
learning methods for robot throwing would require training
data for each nominal throwing motion and, hence, exhibit
limited scalability. This work proposes tube acceleration, a novel
solution concept to robustify against release uncertainty, given
robot geometry, actuator limits, and nominal throwing configu-
ration. Although based on a simple kinematic model of gripper
opening delay, strong empirical performance demonstrates the
descriptive power of the macroscopic model in capturing mi-
croscopic release dynamics. To fully utilize the simplicity of
the surrogate model, we design a convexification scheme to
obtain tube acceleration under 50 ms with bounded approx-
imation errors. As a result, the online-generated robustifying
motion drives the robot to throw diverse objects with a similar
accuracy compared to end-to-end learning approaches, without
relying on any experimental data. We hope this plug-and-play
robust throwing algorithm could pave the way toward ubiquitous
throwing robots.
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This framework has a notable limitation: It assumes that the
object is grasped at its CoM, making the kinematic gripper
opening delay an effective surrogate model. However, empirical
observations have revealed that when the object is grasped with a
significant CoM offset, a simple kinematic model fails to capture
the actual release dynamics accurately. Consequently, a crucial
aspect of our future work involves synthesizing robust motion for
objects grasped with a CoM offset while maintaining a similar
level of solving efficiency and reliability.
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