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Abstract—With the goal of creating efficient human-aware robot
navigation systems, we present a Context-aware Model Predictive
Control (MPC) formulation designed specifically for dynamic and
crowded environments. State-of-the-art approaches use mainly ge-
ometric information and predictions of human motion, thus being
proactive about human positions and intents but less aware of
high-level behaviors encoded in contextual cues of human activities.
In contrast to that, we propose a holistic planning solution that con-
siders additional contextual information such as 3D human body
poses with their velocities and recognized activities. We carefully
design the MPC formulation to facilitate the integration of modern
perception systems and the usage of fast solvers for embedded robot
motion optimization. Compared to a set of baselines, our proposed
system not only ensures safety but also significantly improves task
and computational efficiency. Through extensive simulations and
real-life experiments, our planner demonstrates reliable operation
in terms of smooth and efficient navigation in human-populated
areas.

Index Terms—Human-aware motion planning, motion and path
planning, autonomous agents.

I. INTRODUCTION

IN DYNAMIC and densely populated environments, robots
need to recognize and adapt to human presence and activ-

ities, prioritizing safety, legibility, and social norms in their
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Fig. 1. Context-aware collision avoidance of a mobile robot, considering
(1) full-body 3D human skeleton poses projected as red ellipses, (2) detected
activities, and (3) 2D motion predictions. The mobile robot proactively clears
the path of a walking human, while preparing to bypass a standing person.

navigation systems [1], [2], [3]. Understanding human motion
and anticipating their future actions is essential for improving
human-aware robot navigation [4]. In turn, advanced perception
systems are developed for robots to detect, track, predict, and
recognize human intentions, enabling them to anticipate human
actions for harmonious coexistence [5].

Model Predictive Control (MPC) is a key technology for
human-aware planning, allowing robots to anticipate future
events and adjust paths while considering multiple con-
straints [6], [7], and multi-modal 2D human motion predic-
tion [4].

Historically, research often focused on 2D trajectory predic-
tions, but recent studies emphasize the importance of integrating
3D data and contextual cues for improved robot navigation in
human-shared spaces [8], [9].

This work explores the complexities and evolving dynamics
of human-robot interaction in such environments. We present
a novel Context-aware MPC approach formulation, which in-
tegrates not only geometric information about human positions
but also additional cues to enhance robot navigation in densely
populated areas. Starting with the premise that incorporating
human motion prediction into the planner results in efficient
and smooth navigation with active and reliable collision avoid-
ance [4], [10], we propose an MPC formulation that considers
additional contexts such as human activities and 3D human
body poses provided by state-of-the-art 3D human perception
systems. The proposed formulation allows us to use state-of-the-
art fast solvers for embedded optimization [11], thus achieving
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high computational efficiency even with high dimensional social
cues.

The proposed system is rigorously tested against a set of
baselines in various human avoidance scenarios in crowded
areas. Results of our evaluation show the effectiveness of our
planner in ensuring safe, efficient and human-aware robot mo-
tion: our approach improves significantly against the state of the
art in terms of task and computational efficiency while keeping
a comfortable distance from humans. Finally, we deploy the
planner on the DARKO1 robot platform and demonstrate reliable
operation in terms of smooth and efficient navigation across
several real-world experiments.

II. RELATED WORK

Traditional MPC approaches achieve collision avoidance by
considering online human motion detection [12], [13], incorpo-
rating collision avoidance constraints, considering both robot-
forbidden areas and social proximity rules for human com-
fort [14], or by integrating human motion prediction into the
MPC optimization objective [15]. Deep Reinforcement Learn-
ing (DRL) methods such as GA3C-CADRL or SA-CADRL are
also employed for navigation in dynamic settings [16], [17], but
they may not comprehensively tackle the complexities of robot
and environment dynamics. We show in our previous work [4]
that DRL-based approaches are outperformed by model-based
techniques.

Predicting human motion is crucial for ensuring smooth
navigation and safety [1]. Predictive planning approaches al-
low robots to make informed real-time decisions by adjusting
trajectory and behavior based on predicted human motion [4],
[7], [10], [18]. In our previous work HuMAN-MPC [10], we
use fast-embedded optimization methods with 2D human mo-
tion prediction to achieve superior computational efficiency.
However, a significant shortcoming in the field is the limited
consideration of 3D human data, which is crucial for accurately
capturing complex human dynamics. Existing research often
relies on 2D projections even when utilizing 3D sensors, po-
tentially compromising a natural and safe interaction [13].

Advancements in 3D perception technologies, including pose
estimation and activity recognition, are necessary for interpret-
ing human intentions. Human pose estimation provides detailed
body structure insights by predicting skeletons with accurate
body joint locations from sensor input data. A vast amount
of methods exists [19], for instance, based on CNNs [20] or
Transformers [21]. In [22], authors introduced DLow, a model
that uses diversifying latent flows for more varied and realistic
human motion predictions, while [23] proposed DMMGAN,
an attention-based generative adversarial network that predicts
diverse multi-modal trajectories for 3D human joints. Most
relevant to our research are single-view approaches that output
skeletons in absolute, metric-scale 3D coordinates and can run in
real time, e.g. [24]. They are often combined with a human detec-
tor such as [25] in a top-down fashion. The outputs of the detector
and pose estimator can further be temporally associated and
filtered with a temporal tracking module [26], [27], e. g. based on
Kalman filters, RNNs, or Transformers. Finally, human activity
recognition can enhance decision-making during navigation and
interaction. It can be performed directly on raw sensor data, such
as images [28], or on lower-dimensional skeletal features [19].

1EU Project DARKO, https://darko-project.eu/

We opt for the 3D skeleton-based approaches, which require
less training data due to the abstraction provided by human pose
estimation.

However, the integration of 3D perception methods into
MPC remains limited despite the benefits they offer in terms
of enhancing interaction and safety in robotic navigation. Our
contribution addresses this gap by introducing a context-aware
MPC that integrates comprehensive 3D and contextual human
cues, significantly enhancing the robot’s navigation capabilities
in populated environments.

III. METHOD

In this section, we describe the preliminaries to our method in
Section III-A, processing and representation of the 3D human
motion data in Section III-B, human activities in Section III-C,
the novel MPC formulation in Section III-D and the system
integration aspects in Section III-E.

A. Preliminaries

Our context-aware MPC method depends on several 3D per-
ception components to infer and predict the contextual cues
of nearby people, and on third-party components to solve the
optimal control problem.

In particular, we assume access to the 2D positions hi(t) for
each human i ∈ [1, Nh] in the environment at time t up to the
prediction horizonTp. Predictions are represented as discrete tra-
jectories Ti,1:Tp

= {hi(1),hi(2), . . .,hi(Tp)}. Moreover, we
assume access to the 2D linear velocity estimations [vhxi

, vhyi
],

3D skeleton positions of all Ns joints si,j(t) = [xi,j , yi,j , zi,j ]
for each human i ∈ [1, Nh] and joint j ∈ [1, Ns] at time t, along
with the associated activity labels, such as walking, standing,
and sitting.

Finally, in our method, we employ the acados framework [11].
In particular, we utilize the SQP Real-Time Iteration (RTI)
scheme [29] and the HPIPM solver with partial condensing [30],
which addresses nonlinearly constrained optimization problems
by transforming them into a series of quadratic problems.

B. 3D Human Skeletons Poses and Velocity

Inspired by the recent approaches to using ellipses for obsta-
cle representation [31], [32], we construct ellipses around 3D
skeleton joints to encapsulate the human pose and movement.
These dynamically adjusted ellipses maintain an accurate 3D
representation in 2D space and are enlarged proactively based
on human velocity for safety, giving the robot more time to
avoid collisions, particularly with fast-moving humans. To avoid
introducing non-linear distance constraints in MPC due to the
inherent non-linearity of ellipse equations, we select the pointh∗

e
on the ellipse’s perimeter closest to the robot’s pose. This ensures
linear distance constraints while adapting to changes in the
ellipse’s size and orientation increasing minimum human-robot
distance during navigation. For computational efficiency, we opt
for the deterministic formulation of the constraint.

For each human i ∈ [1, Nh], given the Ns 3D skeleton joint
coordinates si,j = [xi,j , yi,j , zi,j ], j ∈ [1, Ns] (Fig. 2(1)), the
minimum 2D ellipse is computed using the CGAL Library [33]
based on the projection of the 3D joint Cartesian coordinates
onto the XY plane (zi,j = 0), as depicted in Fig. 2(2)). This
minimum ellipse is defined as the unique ellipse with the smallest
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Fig. 2. Given the 3D human joints coordinates (1), the ellipse is computed by projecting the coordinates onto the XY plane (2). Then, the ellipse is enlarged
based on the estimated human velocity (3). Finally, the ellipse point closest to the robot is computed (4).

area capable of enclosing a finite set of points in two-dimensional
Euclidean space. Formally, the resulting ellipse satisfies the con-
dition that all points si,j = [xi,j , yi,j , 0]; j ∈ [1, Ns], i ∈ [1, Nh]
meet:

ax2
i,j + bxi,jyi,j + cy2i,j + dxi,j + eyi,j + f ≤ 0 (1)

wherea, b, c, d, e, f are the coefficients of the ellipse. From these
coefficients, we derive the canonical ellipse parameters for each
human i, i.e. its center coordinates cxi

, cyi
, orientation cθi , major

and minor semi-axes ai, bi, achieved through the general ellipse
geometric formulation [34].

Once computed, the next step involves enlarging the ellipse
based on estimated human velocities vhxi

and vhyi
as shown in

Fig. 2(3). Given the linear human velocity vhi
=

√
v2hxi

+ v2hyi
,

the enlargement ei of both semi-axes ai = ai + ei and bi = bi +
ei is determined using the hyperbolic tangent (tanh) function
ei = | tanh(1.5vhi

)|.
This enlarges the ellipse while keeping the orientation con-

stant and maintaining the ratio between major and minor axes.
As human velocity increases, the ellipse enlarges significantly to
enhance safety, enabling effective human avoidance by the robot.
However, to prevent overly restrictive planning constraints, the
enlargement is limited to one meter when human velocity ex-
ceeds 1.8 m/s [35], ensuring the planner can still find feasible
solutions even in dynamic scenes.

Newton’s method [36] is employed to compute the point h∗
ei

.
This technique optimizes the squared distance D2 between a
point hei on the ellipse’s perimeter and the robot’s pose pr, as
shown in Fig. 2(4):

D2 = (hei − pr) · (hei − pr) (2)

Upon convergence, the ellipse point h∗
ei

closest to the robot,
is identified. This point, determined for each human i, is then
integrated as a constraint in the MPC (see Section III-D).

C. Human Activities

Based on detected human activities, we dynamically adjust the
robot’s speed accordingly, i.e. slowing down in response to more
dynamic movements for safety and predictability in interactions.
This adjustment is crucial not only in dynamic scenarios but
also around static activities like standing or sitting to ensure
comfortable and safe interactions [37], [38].

We assume that a list of human activities, Activity =
{walking, standing, sitting}, is provided, each mapped to an
activity factor α using a mapping function hα. An aggregate
factor A is computed for all Np < Nh nearby humans within

TABLE I
ACTIVITY FACTOR α AND ROBOT DESIRED VELOCITY vdes VALUES

ACCORDING TO THE HUMAN ACTIVITY

4m radius, as speed control is only necessary when humans are
close (otherwise the cost term is not included):

A =
1

Np

Np∑
i=1

hαi
(Activityi), (3)

The choice to use the average of activity factors was made
to avoid creating a bias towards a single activity, ensuring a
balanced response to the overall environment.

Utilizing the socially acceptable maximum velocity (vsm =
0.5 m/s) [37], the desired robot velocity (vdes) is calculated
based on A, subsequently used in the formulation of a new cost
functional term (see Section III-D):

vdes = vsm · A (4)

Table I lists activity factors and corresponding robot velocities
for single-human scenarios, determined via (4) after informal
validation. For other activities, the system defaults to the walking
scenario to determine the desired velocity.

D. Context-MPC Formulation

The motion planner is designed as a model predictive con-
troller that addresses a discretized optimal control problem
(OCP) in every iteration [11]. The OCP is defined as follows:

arg minx(·),u(·) JT (x(Tp),p(Tp))+

Tp−1∑
t=0

JS(x(t),u(t),p(t))

(5a)

subject to x(t) ∈ X t ∈ [0, Tp] (5b)

u(t) ∈ U t ∈ [0, Tp − 1] (5c)

x(t+1)=f(x(t),u(t)) t ∈ [0, Tp − 1] (5d)

d(pr(t),h
∗
ei(0)

) � dh i ∈ [1, Nh], t ∈ [0, Tp−1]

(5e)

d(pr(t),os(0)) � ds t ∈ [0, Tp − 1] (5f)
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wherex(t) andu(t) denote respectively the state and the control
at a specific time step n on the horizon which is split into Tp

shooting nodes, withX andU being the allowed state and control
spaces. Equation (5d) represents the dynamic constraint of the
system, wherein we employ a differential drive model to describe
the robot’s dynamics. The additional parameterp(t) includes the
goal g(t), the desired trajectory, the predicted human position
hi(t) over the horizon, the computed point h∗

ei(0)
on the ellipse

at the minimum distance from the robot’s pose, the activity
factor hαi(0) for all Nh considered humans, and the position
of the nearest static obstacle os(0). Moreover, h∗

ei(0)
, hαi(0),

and os(0) are only given for the initial state of the robot and
considered constant for the entire prediction horizon. The two
distance functions, d(pr(t),h

∗
ei(0)

) and d(pr(t),os(0)), calculate
the Euclidean distance between the robot’s positionpr(t) ∈ x(t)
and the given positions h∗

ei(0)
,os(0), where dh represents the

minimum safe distance from a human, andds denotes the general
collision avoidance distance.

The objective function is split into terms for the stage cost JS

and the terminal costJT . The cumulative stage cost is composed
of four terms:

JS(x(t),u(t),p(t)) = Jg(x(t),p(t)) + Ju(u(t))

+ Jvel(x(t),p(t)) + Jcol(x(n),p(t)). (6)

Penalizing the distance to the given goal is achieved with the
goal cost term:

Jg(x(t),p(t)) = ||x(t)− p(t)||2Wg
t ∈ [0, Tp] (7)

weighted by the diagonal matrix Wg .
The control is penalized with the control cost term:

Ju(u(t)) = ||u(t)||2Wu
t ∈ [0, Tp − 1] (8)

weighted by the diagonal matrix Wu.
The new velocity cost term to control the robot velocity vr is

formulated as:

Jvel(x(t),p(t)) = wvel||vr − vdes||2 (9)

weighted by a coefficient wvel and using vdes as reference
velocity.

The collision cost term Jcol(x(t),p(t)) is formulated by
taking into account the motion prediction trajectories of the
humans hi, i ∈ [1, Nh], i.e. Ti,1:Tp

:

Jcol(x(t),p(t)) =

Nh∑
i=1

fh(d(px(t),hi(t))) (10)

where d(pr(t),hi(t) is the Euclidean distance between the
robot’s pose and the human’s predicted position hi(t) and
fh(d(pr(t),hi(t))) is a function defined as:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
−κq

4

)
d(pr(t),hi(t))

+
(q
2
+

κq

4
rth

) if d(pr(t),hi(t)) ≤ rth

q

1 + eκ(d(pr(t),hi(t)−rth)
if d(pr(t),hi(t)) > rth

(11)

where k and q are positive non-zero tuning parameters and rth
is a threshold distance where the returned cost is q

2 . Moreover,
rth accounts for shifting the distance on which fh is computed,
q adjusts cost amplitude and k affects cost steepness at the
threshold distance.

The collision cost term formulation, adapted from [39], where
it is formulated as the equation in the d(pr(t),hi(t)) > rth
condition in (11), was modified to meet acados requirements

in our previous work [10], addressing the original term’s lack
of twice continuity differentiability and positive semi-definite
Hessian, unsuitable for efficient SQP-RTI use due to potential
unfeasibility issues from a negative definite Hessian in rapid
embedded optimization [39].

The optimization includes several inequality constraints.
Equation (5f) is used as a soft constraint for general collision
avoidance, while a hard constraint, (5e), is added to ensure
human safety by constraining the state space based on the
distance between the robot and the current point h∗

e on the
human-representing ellipse for nearby humans. Due to space
constraints, we have omitted the details of the slack variable.
For further information, please refer to [4], [10]. Moreover,
we chose to integrate human motion predictions solely into the
objective function to enhance overall performance, as observed
in [4], where using predictions as a cost rather than a constraint
led to smoother movements and decreased computational load.
Finally, uncertainties in the threshold value of dh are considered
to compensate for potential inaccuracies in human perception
and fluctuations in the robot’s localization system, as suggested
in [40].

In conclusion, the terminal cost for the final shooting node is:

JT (x(Tp),u(Tp),p(Tp)) = Jg(x(Tp),p(Tp))

+ Jvel(x(Tp),p(Tp)) + Jcol(x(Tp),p(Tp)). (12)

E. System Integration

The context-aware navigation planning system integrates the
MPC as local planner plugin within the ROS 1 navigation stack.
A context information module connects the plugin with humans
data in the environment, including 3D human poses, velocities,
activities, and trajectory predictions.

3D Perception of Humans: In this work, we utilize a 3D
perception system developed in the EU project DARKO for
real-time 3D human detection, pose estimation, tracking, and
trajectory prediction. To detect 3D human centroids, we use
a TensorRT-accelerated variant of RGB-D YOLO [25]. Cen-
troids are fed into a Kalman filter-based trajectory tracker [26],
while associated 2D bounding boxes are passed into a top-
down absolute 3D human pose estimator based upon volumet-
ric heatmaps [24]. The resulting per-frame 3D skeletons are
temporally associated and assigned to the same identities as
used by the trajectory tracker. Both trajectories and temporally
associated 3D skeletons are fed into a human activity classifier,
implemented using an RBF kernel SVM trained on skeletal
features (pairwise joint angles, angles between skeletal bones,
and ground plane [41]). We use a one-vs-one approach for
multi-class classification, and train on 2–3 short video sequences
(1–3 minutes each) per activity using class weight balancing.
Predicted activity classes are integrated over time via fixed-lag,
mode-based filtering. Trajectory predictions for the optimization
horizon are generated using a social force model. All compo-
nents are integrated via ROS and with RViz for visualization.

IV. EXPERIMENTAL VALIDATION

We validate our proposed approach in three key stages: assess-
ing the robot’s behavior (Section IV-B1), conducting statistical
analysis (Section IV-B2) and performing real-world experiments
(Section IV-B3).

Video of the behavior evaluation and real-world experiments
are available in the multimedia material.
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A. Setup

1) Baselines: Across several experiments we compare our
Context-MPC against the HuMAN-MPC [10] and Timed Elas-
tic Band (TEB) planner [42]. HuMAN-MPC implements a
fast-embedded MPC formulation that uses 2D human motion
predictions and Euclidean distance constraints.

2) Simulation: The simulation experiments were performed
on a laptop with Intel Core i7-10850H 6x2.7 GHz, Nvidia
Quadro RTX3000, 32 Gb RAM, and Ubuntu 20.04. The en-
vironment and the robot were simulated with Gazebo and the
Robotnik XL-Steel platform2.

Human motion in simulated experiments is realized through
mixed reality, using ROS bag files to record the outputs of the 3D
perception system running on the real DARKO robot. Trajectory
predictions were generated during simulation using this real-
world human data: i.e., in all simulation scenarios, people are
unable to react to the robot since it is invisible to them, simulating
uncooperative behavior.

3) Metrics: Assessing our proposed approach involves com-
bining navigation efficiency and safety metrics. Efficiency is
measured as the time the robot takes to reach its goal, denoted
as tg [s]. Safety metrics focus on human-related aspects, such as
the minimum distance between the robot and any human during
navigation (dmin [m]) and the average distance to the closest
human (davg [m]).

In behavior evaluation, we present these metrics alongside
the robot’s velocity profiles, including both average values and
standard deviations (σ) for statistical analysis.

4) Methods’ Parameters and Robot Model: In the experi-
ments, we use the same parameters for both Context-Aware
and HuMAN-MPCs by setting the following values: prediction
horizon 5.0 s, number of shooting nodes 50, stage goal cost
weights [1, 1, 0, 250], terminal goal cost weights [40, 40,
20, 0], control cost weights [0, 0], velocity cost weight 400,
collision cost: q = 2.0, k = 5.0, vsm = 0.5 m/s, objects distance
constraint ds = 0.5 m, and human distance constraint dh = 0.5
m. The model is a differential drive robot [43], whose state x
is represented by 2D Cartesian positions, heading, and velocity;
controls u are translational acceleration and angular velocity.
For the Timed Elastic Band, we informally set the parameters
to achieve the best possible behavior across scenarios, namely
minimizing the amount of cost map inflation while still achieving
reliable navigation toward the goal.

B. Experiments

We perform the following experiments:
1) Behaviour Evaluation: To evaluate performance in basic

encounters, we begin with an ablation study of our approach.
We use three scenarios: the robot avoids a single human who is
either sitting, standing, or walking, testing four variations of the
Context-MPC:

1) HuMAN-MPC: MPC with 2D human motion predictions
and Euclidean distance constraints.

2) HuMAN-MPC + Ells: Incorporates ellipses for distance
constraints as detailed in Section III-B.

3) HuMAN-MPC +Jvel: HuMAN-MPC augmented with the
velocity cost term based on human activities as described
in Section III-C.

2Robotnik xl-steel simulator, https://github.com/RobotnikAutomation/
summit_xl_sim

Fig. 3. Behavior Evaluation in the Walking Scenario: (a) Trajectories com-
puted by each MPC variant, showing both the human and robot starting and
ending poses; (b) Linear Robot Velocity profile for each variant together with
vsm and vdes for Walking activity.

4) Context-MPC: our approach that extends HuMAN-MPC
by including Jvel, and Ells formulations.

Each variant undergoes testing in the same simulation setup,
starting from the same initial poses and reaching the same goals.
Due to space limitations, only the walking scenario is presented
here, as similar results were obtained across scenarios. Multi-
media materials showcase simulations of each MPC variant in
each scenario.

2) Statistical Validation: To validate our proposed planner,
we conducted a statistical performance analysis in three complex
scenarios with increased difficulty compared to Section IV-B1:
two humans engaged in different activities (one walking, the
other standing), three people standing, and three people walking.
For each scenario and planner (HuMAN-MPC, Context-MPC,
and TEB controller), we ran 50 simulations. The robot started
from the same initial point in each simulation, but the goal
changed. We used the same set of 50 distinct goals for all con-
trollers in each scenario to ensure effective comparison. These
goals were designed with a constant Y -coordinate, increasing
the X -coordinate by 5 cm in each iteration.

3) Real World Experiments: We conducted real-world exper-
iments on the DARKO robot platform at the research campus
ARENA2036in Stuttgart, Germany.

V. RESULTS AND DISCUSSION

A. Behaviour Evaluation

Fig. 1 illustrates human avoidance in Context-MPC scenarios
testing, featuring relevant human-related information such as a
3D skeleton with activity labels, 2D projections and probability

Authorized licensed use limited to: Orebro University. Downloaded on June 14,2025 at 12:57:23 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Statistical Analysis Scenarios: (a) Two Different Activities, (b) Three Standing Humans, and (c) Three Walking Humans. Each scenario shows the initial
position of the robot, the target position with red circles, the view from the onboard camera, and the RViz view.

TABLE II
BEHAVIOR EVALUATION METRICS RESULTS: COMPARISON OF tg AND HUMAN

DISTANCE METRICS BETWEEN HUMAN-MPC, HUMAN-MPC + ELLS,
HUMAN-MPC + Jvel, AND CONTEXT-MPC.

cost maps. The two red ellipses are used to obtain the local plan
(red line) concerning the global path (green line). Fig. 3 displays
the results of the MPC variants in the human walking scenario.
Fig. 3(a) shows the robot’s trajectories, starting from the black
circle and ending at the black square, to avoid a human who
starts walking from the blue circle and ends at the blue square,
in the walking scenario for each variant. All trajectories show
significant robot deviation due to integrating human motion
predictions, allowing earlier avoidance for safer, more efficient
navigation. Context-MPC by incorporating context information
reduces the excessive deviation seen in HuMAN-MPC, resulting
in less conservative trajectories. Fig. 3(b) presents the robot’s lin-
ear velocity profiles for each scenario, indicating the maximum
socially accepted velocity vsm = 0.5 m/s (red dot line) and the
desired velocity vdes (black dot line) based on human activity
(Table I).

Table II provides the ablation results revealing improvements
in task efficiency (lower goal-reaching time) with each added
contextual component. Considering 3D human body poses (via
ellipses) increases the minimum human-robot distance, yet it
does not affect the robot velocity during human avoidance, as
illustrated in Fig. 3(b). Therefore, the introduction of the new ve-
locity cost term is justified, achieving the desired and socially ac-
ceptable velocity levels (i.e., the HuMAN-MPC + Jvel variant).
The latter approach treats humans as 2D entities with uniform
distance constraints thus penalizing collision avoidance metrics.
The mean distance to the closest human decreases with the
Context-MPC, reinforcing efficiency with its less conservative
behavior. Overall, the Context-MPC strikes a balance, enhancing
task efficiency, maintaining greater distance from humans, and
ensuring safety by slowing down during human encounters.

B. Statistical Validation

Fig. 4 depicts these experiments, with the initial position of
the robot and the achieved goals marked by a red circle. Table III
presents the results, including the average time to reach the goal,
average minimum distance from humans, average mean human

TABLE III
STATISTICAL ANALYSIS OF tg AND HUMAN DISTANCE METRICS BETWEEN

TEB, HUMAN-MPC, AND CONTEXT-MPC.

Fig. 5. Two Activities Scenario: Context-MPC proactively avoids collisions
using motion prediction of the incoming person. Instead, TEB slows down and
stops shortly before the imminent collision, forcing the person to change path.

distances, and their standard deviations. Finally, Figs. 5, 6, and
7 show qualitative performance comparison of Context-MPC
against TEB.

Results in Table III show the advantages of Context-MPC,
with a minimum increase in task efficiency of 8.78% and a
35.49% improvement in safety metrics in the most dynamic
situations. Moreover, even if the TEB planner achieved the goal
faster in the Two Activities Scenario (Table III, tg = 26.57±
2.62 s), it is not sufficient to ensure safety in human avoidance.
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Fig. 6. Standing Humans Scenario: Using Context-MPC the robot plans, in advance, an evasive maneuver before approaching the group, which prevents getting
stuck into a standing person or in the middle of the group, as it happens with the Timed Elastic Band.

Fig. 7. Three People Walking Scenario: Context-MPC planner slows down when close to people with detected “walking” activity. On the contrary, TEB planner
in a similar situation maintains speed, attempting to overtake in front of the walking group, but never manages to execute its maneuver around the continuously
moving people.

Fig. 8. Each figure is an instance in a real-life experiment on the robot, showing the Rviz visualization, the onboard camera image, and an image captured by an
external camera.

Indeed, Fig. 5 depicts the situation when the TEB planner has
to stop in front of the walking person, (dmin = 0.45± 0.24
m) before continuing the navigation, while the Context-MPC
proactively avoids the human.

Similarly, in the Standing Humans scenario, the TEB is fre-
quently not able to avoid the group of people, while our planner
efficiently considers the activities and avoids the standing group
with a reasonable decrease in velocity. The same behaviors are
visible in the Walking Humans case (Fig. 7), where the TEB
planner attempts to maintain speed and overtake the walking
people, which may result in collisions and intrusive behavior,
while our method benefits from slowing down in front of the
group, allowing the robot to pass behind, see Fig. 6.

Finally, adding contextual information does not affect the
computational behavior or scalability of Context-MPC com-
pared to HuMAN-MPC. It remains linear with agents, and com-
putation time is under 5 milliseconds per iteration, as detailed
in our previous work [10].

C. Real World Experiments

The system was tested in three different dynamic scenarios:
two walking people, three humans engaged in various
activities (walking and standing), two humans talking,
and at one point, one human lying down (an unknown
activity). Specific instances for each scenario are illustrated
in Fig. 8 with RViz views, the onboard camera images, and
external camera images. For a detailed visualization, see the
multimedia materials. In the following video we replicated
scenarios discussed in Section IV-B1 in a real environment:
https://www.dropbox.com/scl/fi/si1ox69k2l7ekdsuk4h8o/
Video.mp4?rlkey=3w0xsuypkau7625632mf3jl2m&dl=0

These experiments validate Context-MPC running in real-
time on ROS-based robots, demonstrating efficient predictive
navigation around humans, as seen in Fig. 8(a) and (b). In
addition, precise identification of the space occupied by a person
using ellipses is shown in Fig. 8(c).
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VI. CONCLUSION

We propose a novel MPC formulation and system that in-
cludes not only geometric information but also context that
better explains fine-grained human behaviors. Differently from
the prior art, our formulation explicitly considers articulated 3D
human poses and semantic activity labels together with 2D mo-
tion predictions. Tested extensively in various human-avoidance
scenarios and implemented on the DARKO ROS-based plat-
form, the system demonstrated effective real-time operation in
dynamic human environments, highlighting the value of 3D hu-
man context information for enhanced navigation. The approach
is significantly more efficient and safer than the baselines that
use only 2D predictions, thus proving our hypothesis that using
contextual information can improve the overall robot navigation
performance.

Future research will focus on assessing the planner’s effec-
tiveness in more diverse human scenarios and gathering data on
human comfort during navigation.
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