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Abstract— Neural implicit surface representations are cur-
rently receiving a lot of interest as a means to achieve high-
fidelity surface reconstruction at a low memory cost, compared
to traditional explicit representations. However, state-of-the-
art methods still struggle with excessive memory usage and
non-smooth surfaces. This is particularly problematic in large-
scale applications with sparse inputs, as is common in robotics
use cases. To address these issues, we first introduce a sparse
structure, tri-quadtrees, which represents the environment using
learnable features stored in three planar quadtree projections.
Secondly, we concatenate the learnable features with a Fourier
feature positional encoding. The combined features are then
decoded into signed distance values through a small multi-
layer perceptron. We demonstrate that this approach facilitates
smoother reconstruction with a higher completion ratio with
fewer holes. Compared to two recent baselines, one implicit
and one explicit, our approach requires only 10%–50% as
much memory, while achieving competitive quality. The code
is released on https://github.com/ljjTYJR/3QFP.

I. INTRODUCTION

Most autonomous systems rely on an accurate model of
the environment, i.e. a map, for localization and planning.
Various methods have been designed to represent maps as
point clouds [1, 2], spatial voxels with normal distribu-
tions [3, 4, 5] or SDF values [6, 7, 8, 9], occupancy grids [10,
11], surfels [12], meshes [13], etc. However, these methods
often require substantial memory resources to maintain an
accurate and detailed environment representation, especially
in large-scale scenes. Limiting the available memory, on the
other hand, will decrease the map quality. In addition, these
methods encounter difficulties in accurately reconstructing
the environment in detail when the input data is sparse,
resulting in holes and non-smooth surfaces in the map (see
Fig. 4 in [12] and Fig. 1 in [13]).

Recent neural implicit representation techniques have
achieved notable success in shape representation [14, 15,
16] and scene representation [17]. These methods enable
the implicit storage of environmental information within
a neural network and/or within learnable feature volumes,
thereby enabling compact yet detailed reconstruction of such
environments. However, previous neural implicit reconstruc-
tion techniques primarily focus on objects or small scene
reconstruction [18], and the memory footprint does not scale
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Fig. 1: Qualitative reconstruction result on KITTI-Seq07.
Our method can achieve better reconstruction quality using
less memory compared to SHINE-Mapping [20] and VDB-
Fusion [22]. When given noisy and sparse lidar scans, our
method can achieve a more complete reconstruction (see red
circle and black zoomed-in square areas).

to large-scale environments. Recent research has explored
the use of sparse structures such as octrees [19, 20] for
better scalability. Furthermore, when inputs are sparse, these
methods can often lead to the generation of non-smooth sur-
faces [21], a phenomenon that remains a significant challenge
in the field.

Our first contribution is a novel feature representation
structure called tri-quadtrees. Instead of storing features in
3D voxel grids [20, 23, 24] or dense feature planes [21], we
use three planar quadtrees to represent surfaces. Our method
combines the sparsity of the octree and the efficiency of the
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feature planes, greatly reducing memory requirements while
still producing comparable results, as shown in fig. 1.

Our second contribution is a hybrid feature representation
method. Although learnable features can achieve detailed and
high-fidelity reconstruction, they tend to degenerate when
inputs are sparse [25, 26]. We combine the learnable features
with the Fourier feature positional encoding [27], which
can help fill holes and smoothen reconstruction when given
sparse inputs.

The concatenated features are fed into a small multi-
layer perceptron (MLP) for predicting a continuous signed
distance field of the scene. Features and MLP parameters
are optimized end-to-end under the supervision of the di-
rect range measurement. As our experiments demonstrate,
compared to the recent explicit SDF/TSDF representation
VDBFusion [22], our method achieves more complete re-
constructions; compared to the state-of-the-art neural implicit
reconstruction [20], our method requires significantly less
memory.

II. RELATED WORK

A. Explicit Representation

The most common representations used in current robot
mapping implementations are explicit representations, such
as point clouds [1, 2], NDTs [5, 4], occupancy grids [11,
10], surfels [12], meshes [13, 28], TSDF values [6, 22],
etc. VDBFusion [22] stores TSDF values in sparse voxels
explicitly; each voxel will be queried during reconstruction.
Unlike previous approaches that explicitly divide TSDF or
SDF maps into voxels, our method adopts a neural network
to store SDF values and allows queries of arbitrary coor-
dinates in a continuous manner. The use of neural networks
allows our method to achieve high reconstruction completion
ratios while maintaining the smoothness of the reconstructed
surface.

B. Neural Implicit Representation

1) Pretrained Encoder-Decoder: DeepSDF [14] and Oc-
cNet [15] propose to use a neural network to represent the
SDF and occupancy probability for the shape. CovONet [17]
maps 3D points to feature grids based on the PointNet
encoder [29], and then uses an MLP as a decoder for
predicting occupancy probability. The encoder and decoder
are trained in an end-to-end manner. When querying a
coordinate p, the feature value at p is interpolated by
the spatially adjacent grids and fed to the decoder. The
trained encoders and decoders can be used directly in other
environments for inference, which, however, often suffer
from the generalization problem [21].

2) Test-time optimization: The seminal work of
NeRF [30] on novel view synthesis has inspired a
surge of research activity in geometry reconstruction. For
example, iMAP [31] and iSDF [32] use an overfit large MLP
to store environment information, with the environment
representation stored within the network parameters. The
training of such large MLPs is, however, time-consuming,
prompting the development of various techniques aimed

at addressing this issue. One efficient manner is to move
the computational complexity from the neural network to
the scene feature volume, introducing dense feature voxel
grids [33, 34]. With learnable features, only a small MLP
can be used as a decoder, reducing computational load
and accelerating training. Accounting for the large memory
footprint when applying dense feature voxel grids, several
techniques have been proposed to reduce memory usage,
such as hash-tables [35], octree-trees [16]; these compact
data structures have been leveraged in recent robotic
applications [20, 18, 19, 26, 24, 23, 36]. However, these
voxel-based feature representations can still consume O(n3)
memory in the worst case. To further reduce memory usage,
recent works [37, 21, 38, 39, 40, 41] has proposed using
three orthogonal axis-aligned feature planes instead of 3d
voxel grids.

Motivated by the feature plane representation, we propose
a more compact representation called tri-quadtrees, which
can further reduce memory usage.

The work similar to ours is SHINE-Mapping [20]. How-
ever, we propose a novel feature representation method that
significantly reduces memory usage in large-scale scenes. In
addition, inspired by CO-SLAM [26], we combine Fourier
feature positional encoding with learnable features, resulting
in smoother and more complete reconstructions when input
data is sparse.

III. METHOD

Our method learns a continuous signed distance function
representation of the environment given lidar scans and
known poses. Specifically, the world coordinate pi ∈ R3

is mapped into a SDF value si ∈ R. As shown in fig. 2,
our neural implicit representation is composed of two com-
ponents: the learnable features stored in the quadtree nodes
and a globally shared MLP for predicting the SDF value. The
features and the network parameters are learned during test
time by using direct lidar measurement to supervise network
predictions.

Section III-A delves into how we use the novel tri-
quadtrees structure to compactly represent a given scene.
Section III-B elaborates on the application of Fourier fea-
tures positional encoding. Finally, section III-C introduces
the loss function and some training details. Based on the
proposed neural implicit representation, we extract the mesh
by Marching Cubes [42] for visualization and evaluation.

A. Tri-Quadtrees feature representation

Tri-Quadtrees: While storing learnable features in spatial
voxel grids [34] can lead to fast convergence rates, dense
3D grids suffer from a cubical growth rate of memory
usage as the environment size increases. To avoid storing
unnecessary features in free space, prior work [20, 23, 16,
24] employs octree to store features only within voxel grids
where surface points are located. Other research such as
Johari, Carta, and Fleuret [21] adopts feature planes, which
represent scene features by three orthogonal planes. In this
paper, we propose a novel data structure to represent spatial



Fig. 2: Overview of our method. We represent the scene with three planar quadtrees Mℓ
i , i ∈ {XZ, Y Z,XY } and ℓ

represents the quadtree depth. We store features in the deepest H levels of resolution of quadtrees. When querying for
a point p, we project it onto planar quadtrees to identify the node containing p at the level ℓ. The feature of p is then
calculated by bilinear interpolation based on the queried location and vertex features. We add features at the same level and
concatenate among different levels. Concatenated with the positional encoding γ(p), p’s feature (Φ(p)) is fed into a small
MLP (FΘ) to predict the SDF value. The learnable features stored in the quadtree nodes and the network parameters are
learned by test-time optimization using the loss function Lbce. The learnable feature vectors have length d and the positional
encoding feature vector has length 6m.

features—tri-quadtrees, which is more compact than previous
methods.

Specifically, given lidar scans and known poses, we first
project the 3D point clouds onto three axis-aligned orthog-
onal 2D planes and then construct quadtrees on each plane
with a maximum depth of Lmax and resolution of the leaf
nodes equal to r. Unlike the method in NGLoD [16], which
uses all levels of resolution in the octree to store features,
we only use the deepest H levels of quadtrees for feature
representation to balance the quality of the reconstruction
and memory footprint. That is, only the levels ℓ ∈ {Lmax −
H + 1, · · · , Lmax} in the quadtree are used to interpolate
features. By default, we set H = 3, which was empirically
sufficient to achieve good results.

Feature Computation: We denote the “feature plane
quadtree” as Mℓ

i where i ∈ {XY,XZ, Y Z} is the plane
index and ℓ ∈ {Lmax −H + 1, · · · , Lmax} is the depth level.
Each node in the depth ℓ holds a one-dimensional learnable
feature vector Vℓ,(j)

i at each of its four vertices (indexed by
j), where Vℓ,(j)

i ∈ Rd and d ∈ N is the length of the feature
vector. The features are initialized randomly when created
and optimized until convergence during training.

For quick queries, we store vertex features with hash
tables. Specifically, for each level ℓ ∈ {Lmax − H +
1, · · · , Lmax} of each quadtree, we maintain a hash table
(totally 3H) to store vertex features. The vertex Morton code
is used as hash table keys, which can map two-dimensional
vertex indices to one-dimensional scalars.

To get the feature for a query point p at the level ℓ, we
first project p to planes and get the 2D points px, py and
pz . Then we traverse the quadtree at level ℓ to find the node
containing the corresponding 2D point. The feature for the
2D point is bilinearly interpolated by the four vertex features
in the node. The feature Vℓ(p) of level ℓ for the point p
is calculated through summation for all 3 planes: Vℓ(p) =
Vℓ
XZ(py) + Vℓ

Y Z(px) + Vℓ
XY (pz), Vℓ(p) ∈ Rd.

The final feature V(p) will be collected and concatenated
across all H levels:

V(p) = [VLmax−H+1(p),VLmax−H+2(p), · · · ,VLmax(p)]⊤,

where [·, ·] denotes concatenation, V(p) ∈ RdH .

B. Fourier features positional encoding
Although the learnable features can contribute to a more

accurate reconstruction, they do not provide the necessary
hole filling and smoothness, as demonstrated by Wang,
Wang, and Agapito [26]. To improve the completion ratio
of the reconstruction, we combine the learnable features
and the positional encoding. We demonstrate through exper-
iments (section IV-D) that combining learnable features with
the positional encoding can boost the completion ratio with
only a marginal increase in computational cost.

In contrast to the setup in Wang, Wang, and Agapito
[26], we do not employ the one-blob encoding. Instead, we
found that Fourier feature positional encoding can achieve
a smoother result in our cases. Inspired by Tancik et al.
[27], we adopt Gaussian positional encoding which has been
shown to achieve a higher completion ratio than one-blob
and frequency encoding used in NeRF [30]. Specifically, the
positional encoding for the query point p would be

γ(p) = [ sin (2πs1p), cos (2πs1p),

. . . , sin (2πsmp), cos (2πsmp)]⊤

where si are coefficients (i ∈ {1, 2, . . . ,m}) sampled from
an isotropic Gaussian distribution, i.e., si ∼ N (0, σ2),
where σ2 is a tuned hyperparameter; m is a hyperparameter
controlling the length of the positional encoding feature. We
determine σ2 by doing a hyperparameter search based on the
training loss.

Finally, for the query point p, we concatenate the tri-
quadtrees feature V(p) ∈ RdH and Fourier positional en-
coding γ(p) ∈ R6m into the final feature vector Φ(p) =
[V(p), γ(p)]⊤ ∈ RdH+6m.



To query the SDF value, we feed the feature Φ(p) into a
small MLP FΘ to obtain the SDF value, where Θ represents
the network parameters. The whole process is differentiable,
we jointly optimize the quadtree features and the MLP
parameter Θ end-to-end during training.

C. Training and Optimization

1) Sampling: We take samples from both free-space and
points close to the surface. For each lidar ray, we randomly
select Ns points {pi}Ns

i=1 in a truncated area of the ray’s
endpoint pe; we also take Nf points {pj}

Nf

j=1 in free space
along the ray. For SDF supervision signals, we directly
calculate the distance between the sampled points ps and
the endpoint pe

1. The SDFs of the points located between
the sensor and the endpoint will have a negative value, while
those outside will be positive.

2) Loss Function: Our training only needs a simple SDF
loss function2. Following the configuration in [20, 25], we
adopt the Binary Cross Entropy (BCE) loss for faster conver-
gence. Specifically, we map both the ground truth SDFgt and
the predicted SDFpred to the range [0, 1] using the sigmoid
function (Sig). For one training pair, the BCE loss will be:

Lbce = ogt · log (opred) + (1− ogt) · log (1− opred), (1)

where ogt = Sig(SDFgt) and opred = Sig(SDFpred) are the
ground truth and predictions respecitvely.

IV. EXPERIMENTS

In this section, we first demonstrate through quantitative
experiments that tri-quadtrees is more memory efficient than
the current state-of-the-art implicit representation methods
(see section IV-C) while still achieving a higher completion
ratio than explicit representation methods, as shown in sec-
tion IV-B. Qualitative results demonstrate that our method is
capable of producing smoother reconstructions when inputs
are sparse. Finally, an ablation study reveals that the use
of positional encoding can significantly enhance smoothness
and hole-filling (section IV-D).

A. Experiment Setup

Baseline: We compare our approach to the state-of-the-
art explicit reconstruction method VDBFusion [22] and the
neural implicit reconstruction method SHINE-Mapping [20],
both of which have publicly available implementations and
are based on TSDF or SDF representations.

Evaluation Metric: Following the setup of the experiment
in [13, 20], we evaluate the geometry of the reconstruction
by indirectly examining the mesh constructed from the TSDF
output (created by marching cubes [42]). We uniformly
sample 107 points using open3d library from the generated
meshes and compare with the ground truth point cloud

1Other supervision signals such as the calculated gradients [43] and the
nearest distance [32] can also be used. Since lidar often provides accurate
range measurement compared to RGB-D cameras, we adopt such projected
distance directly [6, 20]

2We also attempted to include additional regularization losses such as
the Eikonal loss [33], however, it did not make a significant difference;
therefore, we decided to omit it for the sake of simplicity.

TABLE I: Parameter Setting: the table shows the important
hyperparameters appearing in section III.

Category Parameter Value Category Parameter Value

Quadtree H 3 Feature d 8
Lmax 12 m 16

MLP depth 2 Sampling Ns 3
hidden width 32 Nf 3

for evaluation. We report accuracy [cm], completion [cm],
completion ratio [%], and accuracy ratio [%]. Briefly, let P
be the point cloud sampled from the prediction mesh, while
G is the ground truth point cloud. For a point pi ∈ P , we
define the distance to G as

d(pi,G) = min
gi∈G

||pi − gi||.

Similarly, the distance between the point gi and P is
d(gi,P) = minpi∈P ||gi − pi||. We compute d(pi,G) as
accuracy and d(gi,P) as completion, the ratio of which less
than set threshold works as accuracy ratio and completion
ratio. In addition, we measure the memory usage of each
method.

Datasets: We evaluate our approach on two public li-
dar datasets. One is MaiCity3—a synthetic urban-like
outdoor scenario with 100 lidar frames. The other one is
NewerCollege [44], a real lidar dataset including 1500
frames captured in a college campus environment. The two
datasets provide registered dense point clouds as ground truth
reference for quantitative evaluation. Figure 1 includes a
qualitative comparison on the KITTI dataset, but since KITTI
does not provide accurate ground truth we do not compare
quantitative accuracy numbers on that dataset.

Implementation Details: In all experiments, our method
uses the parameters shown in table I (we use these parameters
to trade off efficiency and accuracy). We set σ2 = 50 by
parameter searching on MaiCity and apply it on both
datasets.

We employ the default or recommended configurations
for the baseline methods. Specifically, we use 0.1 m leaf
node resolution in the SHINE-Mapping octree and our tri-
quadtrees. Correspondingly, we use 0.1 m voxel size for
VDBFusion. In the experiment, we use marching cubes with
0.1 m voxel resolution to extract meshes for all methods.

B. Map Quality
In our first map quality evaluation experiment, we use

a dense input configuration: in MaiCity all frames are
used, while NewerCollege selects one frame out of every
three, to show that our method can achieve competitive
performance with a smaller memory footprint.

The evaluation results are shown in table II. While VDB-
Fusion achieves slightly better accuracy than the implicit
methods, the completion metric is much lower than the neural
implicit reconstruction methods. Our method and SHINE-
Mapping have a significantly higher completion ratio with
only a slight drop in accuracy.

3https://www.ipb.uni-bonn.de/data/mai-city-dataset/

https://www.ipb.uni-bonn.de/data/mai-city-dataset/


TABLE II: Quantitative evaluation of the reconstruction quality on the MaiCity and NewerCollege with dense inputs.
We report the Completion (Comp.), Accuracy (Acc.), Completion Ratio (Comp.Ratio) and Accuracy Ratio (Acc.Ratio) with
a threshold of 0.1 m for MaiCity and 0.2 m for NewerCollege. We also report the number of learnable parameters
for neural implicit representation methods. Bold fonts represent the best results. Our method achieves a significantly higher
completion ratio than VDBFusion with fewer parameters than SHINE-Mapping. (↓: lower better; ↑: higher better.)

Dataset Method #Param ↓ Comp.[cm] ↓ Acc.[cm] ↓ Comp.Ratio[%]↑ Acc.Ratio[%]↑

MaiCity
VDBFusion [22] \ 27.33 1.36 78.12 99.13

SHINE-Mapping [20] 4.53× 106 3.34 1.66 95.43 97.09
Ours 1.27× 106 2.68 1.52 97.27 97.60

NewerCollege
VDBFusion \ 13.20 5.50 91.51 98.10

SHINE-Mapping 1.14× 107 9.55 7.60 94.58 91.37
Ours 1.60× 106 9.68 6.72 94.10 93.69
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Fig. 3: Comparison of Completion Ratio[%] versus the input
frame numbers ns on two datasets. The threshold is 0.1 m
for MaiCity and 0.2 m for NewerCollege. As the
inputs get sparser, the completion ratio of VDBFusion drops
significantly, while our method maintains a high completion
ratio. Though with similar performance, our method uses
fewer parameters than SHINE-Mapping (see fig. 5).

Taking into account that many mapping pipelines use
sparse keyframes and not all input frames [45, 18], we further
evaluate the methods when given sparse input. We select one
frame for every ns frames for reconstruction. Compared to
accuracy, completion can better reveal reconstruction ability.
Focusing on completion-related metrics, one can see in fig. 3,
that the neural implicit representation methods maintain a
high completion ratio despite sparser inputs. A visualization
of the reconstructed result is shown in fig. 4, where we
highlight the ground truth points with errors larger than 10
cm in orange. We can clearly see that there are many “holes”
in the reconstructed mesh of VDBFusion, resulting in a low
completion ratio.

Although SHINE-Mapping has a similar completion ratio
to our approach, we show that thanks to our compact
and efficient data structure, our method needs substantially
fewer parameters and achieves a similar performance. As
demonstrated in fig. 5, our method needs about 25% and 10%
as many parameters as SHINE-Mapping on MaiCity and
NewerCollege respectively. We will discuss more about
the memory footprint in the following section (IV-C). Also,
in the second row of fig. 4, we show that when inputs are
sparse, our method can achieve a smoother reconstruction.

TABLE III: Ablation study on the different encoding meth-
ods. The evaluation is conducted on MaiCity. The full
model combining learnable features and positional encoding
achieves the best performance overall. Using positional en-
coding alone can result in an over-smooth result and generate
stripe artifacts (see Figure 7).

w/o Pos.enc. w/o Fea Full

Comp.[cm] ↓ 8.05 9.27 7.88
Comp.Ratio[%]↑ 90.95 89.44 91.10
Acc.[cm] ↓ 3.07 2.95 2.60
Acc.Ratio[%]↑ 94.71 96.30 96.25

C. Memory Footprint

In this section, we analyze the memory usage in the exper-
iment. For VDBFusion, we save its VDB structure as the map
representation, which stores TSDF values in grids. For neural
implicit representation methods, we can save the parameters
in the model and thus determine the footprint by the size of
the saved model, which consists of learned parameters and
the MLP decoder parameters. Fixing the voxel size, fig. 6
shows the memory consumption of the different methods for
the NewerCollege dataset. One can see that tri-quadtrees
is the most efficient method with respect to memory and the
number of input scans: the point cloud map stores dense 3D
points and uses the most memory, and tri-quadtrees requires
only 20% of SHINE-Mapping memory usage due to SHINE-
Mapping storing learned features in 3D voxels. Tri-quadtrees
can use less memory but achieve better reconstruction than
VDBFusion. Overall, tri-quadtrees achieves comparable map
quality to the state-of-art while being more memory efficient.

D. Ablation Study: Positional Encoding

We have performed an ablation study to demonstrate
the relative performance of our proposed combined feature
encoding vs. the tri-quadtrees features and Fourier feature
positional encoding separately.

Table III illustrates the quantitative evaluation with differ-
ent encodings on the MaiCity dataset. Combining both the
Fourier feature positional encoding and tri-quadtrees features
(namely, “Full” in table III) achieves the best performance
overall. Though using positional encoding alone can achieve
a slightly higher accuracy ratio quantitatively, fig. 7 depicts



(a) VDBFusion (b) SHINE-Mapping (c) Ours

Fig. 4: Qualitative visualization of the map quality on the MaiCity dataset using every 6th frame. The first row depicts the
difference between the dense ground truth point cloud and the reconstructed mesh; the ground truth points with an error of
more than 0.1 m are highlighted in orange. The second row shows zoomed-in images of the dashed areas (indicated in the
top-right image). When inputs are sparse (e.g., every 6th frame in this case), our method obtains visibly smoother results.
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Fig. 5: Number of learnable parameters versus subsampling
frequency given as ns, the number of frames after which
another frame was selected from the two datasets. Our
method only needs about 25% and 10% parameters of
SHINE-Mapping on MaiCity and the NewerCollege
dataset, respectively.
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Fig. 6: Memory consumption for different reconstruction
methods for the NewerCollege dataset. Storing pure point
clouds consumes the largest memory usage. Our method is
much more compact than SHINE-Mapping, requiring only
20% of the map size while still achieving comparable results.
Compared to VDBFusion, our method requires less memory
but produces a more accurate map; as can be seen in the
right column, there are some holes in the map generated by
VDBFusion.

(a) Positional encoding only (b) Full model

Fig. 7: A comparison of the map quality between using
positional-encoding only and the Full model. Using posi-
tional encoding alone will generate an over-smooth mesh
(see the wall in the red circle) and stripe artifacts (see the
car in the blue square).

that the generated mesh lacks details and is with stripe
artifacts.

V. DISCUSSION & CONCLUSION

In this paper, we introduce a novel feature representation
method, tri-quadtrees, for neural implicit representation. Our
method combines the advantages of octree sparsity and the
compactness of feature plane representation, which requires
substantially less memory but achieves better results on
completion and competitive results on accuracy. Thanks to
the Fourier feature positional encoding, our method can still
achieve a smooth result when the inputs are sparse.

The work in this paper focuses on mapping, which re-
quires given poses. For future research, we will combine
the proposed mapping method with tracking for a neural
simultaneous localization and mapping (SLAM) system. In
addition, though a small MLP can be optimized quickly,
it lacks enough capacity to fully represent a large-scale
environment. In the future, we will investigate the mapping
and fusion with multiple MLPs based on submaps.
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