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Abstract— Human motion prediction is essential for the safe
and smooth operation of mobile service robots and intelligent
vehicles around people. Commonly used neural network-based
approaches often require large amounts of complete trajecto-
ries to represent motion dynamics in complex semantically-
rich spaces. This requirement may complicate deployment of
physical systems in new environments, especially when the data
is being collected online from onboard sensors. In this paper
we explore a data-efficient alternative using maps of dynamics
(MoD) to represent place-dependent multi-modal spatial motion
patterns, learned from prior observations. Our approach can
perform efficient human motion prediction in the long-term
perspective of up to 60 seconds. We quantitatively evaluate its
accuracy with limited amount of training data in comparison
to an LSTM-based baseline, and qualitatively show that the
predicted trajectories reflect the natural semantic properties
of the environment, e.g. the locations of short- and long-term
goals, navigation in narrow passages, around obstacles, etc.

I. INTRODUCTION

Long-term human motion prediction (LHMP) is important
for autonomous robots and vehicles to operate safely in
populated environments [1]. Accurately predicting the future
trajectories of people in their surroundings over extended
time periods is essential for enhancing motion planning,
tracking, automated driving, human-robot interaction, intel-
ligent safety monitoring and surveillance.

Human motion is complex and may be influenced by
several hard-to-model factors, including social rules and
norms, personal preferences, and subtle cues in the envi-
ronment that are not represented in geometric maps. To
address these challenges, popular neural network approaches
learn motion dynamics directly from data, with many recent
studies developing models based on LSTMs [2], GANs
[3], CNNs [4], CVAEs [5] and transformers [6]. Most of
these approaches focus on learning to predict stochastic
interactions between diverse moving agents in the short-term
perspective in scenarios where the effect of the environment
topology and semantics is minimal.

When predicting long-term human motion in complex,
large-scale environments, the influence of the surrounding
space (e.g. passages, stairs, entrances, various objects and
semantically-meaningful areas) on human motion goes be-
yond what is contained in the current state of the moving
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Fig. 1. Maps of dynamics provide an efficient and lightweight encoding
of sparse and incomplete velocity data to characterize the motion flows
in the environment. We propose a method to predict long-term multi-modal
human motion using data-efficient CLiFF maps [11]. Left: trajectories from
the ATC dataset used for training. Right: CLiFF map.

person or the observed interactions. This impact of the
environment has to be modelled explicitly, for instance by
informing the prediction method with a semantic map [7,
8, 9]. Another effective approach to address this challenge
is to use maps of dynamics (MoDs). MoDs [10] are maps
that encode spatial or spatio-temporal motion patterns as a
feature of the environment. MoD-informed long-term human
motion prediction (MoD-LHMP) approaches are particularly
suited to predict motion in the long-term perspective, where
the environment effects become critical for making accurate
predictions. MoDs efficiently encode the stochastic local
motion patterns over the entire map, informing the predictor
in areas which may have no influence on the immediate
decisions of the walking people, but become critical in the
long-term perspective.

As a proof of concept for MoD-LHMP, we propose to
build CLiFF MoDs [11] from training data and use them to
bias a constant velocity motion prediction method, generating
stochastic trajectory predictions for up to 60 s into the future.

One crucial advantage of the MoD-LHMP approach is its
data efficiency. Prior art neural network-based approaches
often require large amounts of data for training, and their
performance can significantly degrade in absence thereof.
Typically, these approaches also need complete sequences
of tracked positions for training. The proposed MoD-LHMP
approach, on the other hand, allows encoding human motion
from sparse and incomplete data, requiring only observed
velocities in discrete locations and interpolating the missing
motion in between. This property is relevant, for instance,
when the deployed robot collects the data in an online fashion
from on-board sensors and with a limited field of view.

In this work, we evaluate the efficiency of MoD-based
motion encoding for making accurate long-term predictions.
In our experiments we sample few trajectories from the ATC
dataset and use them to build a CLiFF map and train LSTM-
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based baselines. We then compare these methods using
the ADE/FDE prediction accuracy metrics. Furthermore, we
qualitatively demonstrate that the CLiFF-LHMP approach
has the ability to predict human motion in complex envi-
ronments over very long time horizons, implicitly inferring
common goal points and correctly predicting trajectories
that follow the complex topology of the environment, e.g.
navigating around corners or obstacles or passing through
narrow passages such as doors.

II. METHOD

A. Maps of Dynamics

In the proposed approach for human motion prediction,
we exploit Maps of Dynamics (MoD) which encode hu-
man dynamics as a feature of the environment. By using
velocity observations, human dynamics can be represented
through flow models. In this work, we employ Circular-
Linear Flow Field map (CLiFF-map) [11] to represent the
flow of human motion. CLiFF-map represents local flow
patterns as a multi-modal, continuous joint distribution of
speed and orientation. As the orientation of velocity is
a circular variable, and magnitude of velocity is a linear
variable, CLiFF-map associates a semi-wrapped Gaussian
mixture model (SWGMM) with each location, describing
flow patterns around the given location, see Fig. 1. By
using SWGMM, CLiFF-map is able to properly address
multimodality in the data, thereby enhancing its capability
to predict uncertain long-term human motion. A CLiFF-
map represents motion patterns based on local observations
and estimates the likelihood of motion at a given query
location. As it can be built from incomplete or spatially
sparse data, CLiFF-map efficiently captures human motion
patterns without requiring large amounts of data or complete
trajectories. This characteristic makes CLiFF-LHMP a data-
efficient approach for predicting human motion.

B. Motion Prediction

We frame the task of predicting a person’s future trajectory
as using a short observed trajectory to infer a sequence of
future states. The length of the observation history is Os ∈
R+ s, equivalent to an integer Op > 0 observation time steps.
With the current time-step denoted as the integer t0 ≥ 0,
the sequence of observed states is H = ⟨st0−1, ..., st0−Op

⟩,
where st is the state of a person at time-step t. A state is
represented by 2D Cartesian coordinates (x, y), speed ρ and
orientation θ: s = (x, y, ρ, θ).

From the observed sequence H, we derive the observed
speed ρobs and orientation θobs at time-step t0. Then the
current state becomes st0 = (xt0 , yt0 , ρobs, θobs). The values
of ρobs and θobs are calculated as a weighted sum of the finite
differences in the observed states, as in the recent ATLAS
benchmark [12], such that ρobs =

∑Op

t=1 vt0−tg(t) and
θobs =

∑Op

t=1 θt0−tg(t), where g(t) = (σ
√
2πe

1
2 (

t
σ )2)−1.

Given the current state st0 , the goal is to estimate a
sequence of future states. Future states are predicted for a
given horizon Ts ∈ R+ s. Ts is equivalent to Tp > 0
prediction time steps assuming the constant time interval

Algorithm 1: CLiFF-LHMP
Input: H, xt0 , yt0
Output: T

1 T = {}
2 ρobs, θobs ← getObservedVelocity(H)
3 st0 = (xt0 , yt0 , ρobs, θobs)
4 for t = t0 + 1, ..., t0 + Tp do
5 xt, yt ← getNewPosition(st–1)
6 θs ← sampleVelocityFromCLiFFmap(xt, yt)
7 (ρt, θt) ← predictVelocity(θs, ρt–1, θt–1)
8 st ← (xt, yt, ρt, θt)
9 T ← T ∪ st

10 return T

∆t between two predictions. Thus, the prediction horizon
is Ts = Tp∆t. The future sequence is then denoted as
T = ⟨st0+1, st0+2, ..., st0+Tp⟩.

The CLiFF-LHMP algorithm is presented in Alg. 1. With
the input of a CLiFF-map and past states of a person, the
algorithm predicts a sequence of future states. To estimate
T , for each prediction time step, we sample a velocity from
the CLiFF-map at the current position (xt, yt) to bias the
prediction with the learned motion patterns represented by
the CLiFF-map. To sample a velocity at a given location
(x, y), we first get the SWGMMs Ξnear whose distances to
(x, y) are less than rs, where rs is the sampling radius. After
getting the sampled velocity, the velocity (ρt, θt) is predicted
by assuming that a person will continue walking with the
same speed as in the last time step, ρt = ρt−1, and biasing
the direction of motion with the sampled orientation θs as:

θt = θt−1 + (θs − θt−1) ·K(θs − θt−1), (1)

where K(·) is a kernel function that defines the degree of
impact of the CLiFF-map. We use a Gaussian kernel with a
parameter β that represents the kernel width:

K(x) = e−β∥x∥2

. (2)

With kernel K, we scale the CLiFF-map term by the
difference between the velocity sampled from the CLiFF-
map and the current velocity according to a constant velocity
model (CVM). The sampled velocity is trusted less if it
deviates more from the current velocity. A larger β value
makes the method behave more like a CVM, and a smaller
β makes it more closely follow the CLiFF-map.

III. EVALUATION

In this section, we evaluate the data efficiency and accu-
racy of the proposed CLiFF-LHMP approach and compare
it to the LSTM-based human motion prediction methods.
Vanilla LSTM [13] is used as the baseline representative of
LSTM-based methods.

A. Implementation Details

We evaluate the prediction performance using the ATC
dataset [14], which contains trajectories recorded in a shop-
ping mall in Japan. The dataset covers a large indoor



environment with a total area of around 900m2. The ATC
dataset consists of 92 days in total. Given the immense length
of the ATC dataset for each recording day, a subset covering
the first four days can be considered representative. We use
the subset in the experiments, with the first day (Oct.24)
for training, and the remaining 3 days for testing. Both
the LSTM and CLiFF-LHMP approaches are trained with
same data and evaluated with same data to ensure a fair
comparison.

In ATC dataset, the original detection rate is 30Hz. We
downsample the data to 2.5Hz to align with 0.4 s observation
time interval, as commonly used in human motion prediction.
For each trajectory, we take 3.2 s (the first 8 positions)
as the observation history and use the remaining trajectory
(up to the maximum prediction horizon) as the prediction
ground truth. Instead of using a fixed prediction horizon,
we explore a wider range of values Ts up to a maximum
value in our evaluation. The maximum prediction horizon is
determined based on the tracking duration distribution of the
dataset. We use the 90th percentile value, which is 60 s, as
maximum prediction horizon for experiments of ATC dataset.
As LSTM-based approaches require complete trajectories for
training, we use for all compared approaches trajectories
equal or longer than 60 s for both training and testing.

Given the area and tracking duration in the ATC dataset,
when evaluating CLiFF-LHMP, we set prediction time step
∆t to 1 s, CLiFF-map resolution to 1m, sampling radius
rs to 1m and kernel parameter β to 1. For training vanilla
LSTM model, we set the dimension of hidden state of the
LSTM model set to 128 and the learning rate set to 0.003.

For the evaluation of the predictive performance we use
the Average and Final Displacement Errors (ADE and FDE)
metrics. ADE describes the error between points on the
predicted trajectories and the respective ground truth at the
same time step. FDE describes the error at the last prediction
time step.

We stop predicting when the sample reaches an area
outside of the MoD, in case of the CLiFF map, i.e. when
no SWGMMs are available within the radius rs around the
sampled location. Predicted trajectories that end before Ts

will only be included in the ADE/FDE evaluation up to the
last predicted point. When predicting for each ground truth
trajectory, the prediction horizon Ts is set either equal to its
length or 60 s for longer trajectories.

B. Experiments and Results

1) Efficiency of motion prediction with limited data: To
evaluate the data efficiency of the CLiFF-LHMP method, we
ran a series of experiments with varying amount of training
data [100, 200, ..., 1000 trajectories]. The training data were
randomly selected multiple times. Once selected, we fed the
same data to train the CLiFF-map and the LSTM model, and
the evaluation metrics were averaged from all the runs.

Figure 2 shows the ADE and FDE results for CLiFF-
LHMP and vanilla LSTM for prediction horizon of 60 s,
with the number of training trajectories ranging from 100 to
1000. CLiFF-LHMP consistently outperforms LSTM when
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Fig. 2. ADE/FDE of CLiFF-LHMP and LSTM in the ATC dataset, using
different amounts of trajectories (100–1000) as training data. The prediction
horizon is 60 s. The shade represents one std. dev.
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Fig. 3. ADE/FDE of CLiFF-LHMP in the ATC dataset with training dataset
of 200, 600, 1000 trajectories and with prediction horizon 10–60 s, and 12 s.

predicting long-term human motion in these cases. When
more than 200 training trajectories are used, the standard
deviation of ADE and FDE of CLiFF-LHMP is also lower
than for LSTM. While the performance of LSTM drops
substantially for smaller training data sets, especially when
training with fewer than 200 trajectories, CLiFF-LHMP has
a stable performance even with as few as 100 training
trajectories. When decreasing the training dataset size from
1000 to 100 trajectories, the error merely increases 4% in
ADE and 1% in FDE for CLiFF-LHMP, while for LSTM
the ADE increases by 35% and the FDE by 27%. Figure 3
shows a comparison on different prediction horizons from
10 s to 60 s for three sizes of the training dataset (200, 600,
1000 trajectories). When the prediction horizon increases,
CLiFF-LHMP becomes slightly more sensitive to the amount
of training data.

2) Efficiency of motion representation: To compare the
quality of the underlying CLiFF-map itself, trained with
different amounts of data, we compute the Kullback-Leibler
(KL) divergence [15] between the distributions represented
in the CLiFF-maps. The KL divergence results are shown
as heatmaps in Figure 4. CLiFF-map associates a Gaus-
sian Mixture Model to each location, and we use a KL
divergence heatmap to visualize the changes between two
different CLiFF-maps. The first image in Figure 4 shows the
changes of CLiFF-maps built with 100 and 1000 trajectories,
respectively. It is evident that as the number of training
trajectories increases, the primary alterations in the CLiFF-
map occur predominantly along the boundary regions. More-
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Fig. 4. Heatmap of KL divergence of three pairs of CLiFF-map snapshots built with different amount of training data. Left: KL divergence of between
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Fig. 5. Predictions in ATC with Ts = 60 s. Red lines show the
ground truth trajectory and green line show the observed tracklet. Prediction
trajectories of CLiFF-LHMP and LSTM approaches are shown in blue and
orange, respectively. When the trajectory predicted by LSTM is unfeasible
by crossing the walls, CLiFF-LHMP make predictions along the corridor.

over, in highly constrained environments, such as the eastern
corridor of the ATC map, the velocity distributions exhibit
comparatively minimal variations. The other three figures in
Figure 4 shows the sensitivity of CLiFF-map to the input
data. When the number of training data increases from 900
to 1000 (see the fourth image in Figure 4), the CLiFF-map
changes less than when the number of training data increases
from 100 to 200 (see the second image in Figure 4). This
shows that the CLiFF-map can capture major human motion
patterns already with small amounts of training data.

3) Descriptive power of compact motion representation
models: Figure 5 shows qualitative examples of predicted
trajectories using Maps of Dynamics in the long-term per-
spective. As no explicit knowledge is given about obstacle
layout, LSTM predicts unfeasible trajectory which crosses
the walls. In contrast, by exploiting learned motion patterns

encoded in the CLiFF-map, our method predicts realistic
trajectories that follow the complex topology of the environ-
ment e.g. navigating around corners or obstacles or passing
through narrow passages such as doors, stairs (in the top part
of the map) and exits (in the left part).

IV. CONCLUSIONS

In this paper, we present the idea to exploit Maps of
Dynamics (MoDs) for long-term human motion prediction.
As a proof of concept for MoD-LHMP, we propose CLiFF-
LHMP. Our method uses the CLiFF-map, a specific MoD that
probabilistically represents human motion patterns within a
velocity field. Our approach involves sampling velocities
from the CLiFF-map to bias constant velocity predictions,
generating stochastic trajectory predictions for up to 60 s
into the future. We evaluate CLiFF-LHMP using the ATC
dataset, with a vanilla LSTM as the baseline approach. The
experiments highlight the data efficiency advantage of our
method. CLiFF-LHMP accuracy is only affected to a minor
degree when using less than 200 trajectories as training data,
while LSTM requires about three times as many trajecto-
ries to approach its optimal performance. The results also
demonstrate that our approach consistently outperforms the
LSTM method at the long prediction horizon of 60 s. By
exploiting learned motion patterns encoded in the CLiFF-
map, our method implicitly accounts for the obstacle layouts
and predicts trajectories that follow the complex topology of
the environment.

The current implementation of MoD-LHMP uses spatial
motion patterns that are built offline based on past obser-
vations. In the future we plan to extend the approach to
online life-long learning, enabling live updates based on the
motion observations. One future direction is the evaluation
of additional types of MoDs for long-term human motion
prediction, including those capturing temporally-conditioned
motion patterns. Another future direction is to learn MoDs
online for life-long learning enabling updates based on live
motion observations. Additionally, in future work, we aim to
formally describe and analyze the MoD-LHMP methodology,
include further datasets [16, 17] in the evaluation.
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