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Abstract

Autonomous systems, that need to operate in human en-
vironments and interact with the users, rely on understand-
ing and anticipating human activity and motion. Among
the many factors which influence human motion, semantic
attributes, such as the roles and ongoing activities of the
detected people, provide a powerful cue on their future mo-
tion, actions, and intentions. In this work we adapt sev-
eral popular deep learning models for trajectory prediction
with labels corresponding to the roles of the people. To this
end we use the novel THÖR-Magni dataset, which captures
human activity in industrial settings and includes the rele-
vant semantic labels for people who navigate complex envi-
ronments, interact with objects and robots, work alone and
in groups. In qualitative and quantitative experiments we
show that the role-conditioned LSTM, Transformer, GAN
and VAE methods can effectively incorporate the semantic
categories, better capture the underlying input distribution
and therefore produce more accurate motion predictions in
terms of Top-K ADE/FDE and log-likelihood metrics.

1. Introduction
Human motion understanding is a critical component in

various domains, such as robotics, automated driving, au-
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Figure 1: Example trajectories in the THÖR-Magni dataset.

Participants undertake tasks according to their roles, tai-

lored for industrial settings: visitors navigate individually

and in groups between the various goals in the environment

and workers carry boxes, buckets and large objects.

tonomous surveillance and security applications [22]. This

is a challenging task since human motion is highly non-

deterministic, uncertain, multimodal and influenced by var-

ious factors in the static and dynamic environment. To

build more accurate models of human motion, modern

methods attempt to move beyond the basic geometric in-

put, such as position and velocity of the target agent, and

incorporate more advanced cues, such as head orienta-

tions [9], full-body poses [27], emotions [16], and semantic

attributes [14]. Among those, classes of agents are particu-

larly useful in situations where diverse agents navigate in an

interactive environment, such as an urban scene with mixed

traffic. Defining and estimating classes of moving agents

and making class-conditioned predictions is still an under-

explored problem [4].

In the context of autonomous driving, integrating se-

mantic attributes pertaining to road users (e.g., cars, trucks,

pedestrians, or cyclists) yields safer planning and decision-

making systems [10]. Similarly, in collaborative industrial
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or healthcare settings, mobile robots are expected to possess

the capability to interact with human counterparts. Hence-

forth, incorporating semantic attributes within these con-

texts can engender personalized human-robot interactions

and facilitate social navigation [3, 16].

Training and evaluating advanced prediction methods re-

quire appropriate datasets, which contain the trajectories of

moving agents and, as well as the relevant semantic infor-

mation. Among the well-established outdoor datasets for

pedestrian motion prediction, such as ETH/UCY [17, 13],

Edinburgh [15] and the Stanford Drone Dataset (SDD) [19],

only SDD incorporates a diverse environment with vari-

ous classes of agents, such as pedestrians, bicyclists, skate-

boarders, carts, cars, and buses. In the indoor context, the

THÖR [21] and the follow-up THÖR-Magni datasets [24]

include novel attributes (activity-related roles) assigned to

people, such as visitors, workers, and inspectors, specif-

ically tailored for industrial and service robotics applica-

tions. These roles are chosen to reflect semantically mean-

ingful tasks and schedules in an industrial environment1, in

which people navigate complex environments, interact with

objects and robots, work alone and in groups. The type of

activity people are engaged in according to their role pro-

vides a strong hint on the future motion, actions, and goals.

In this paper, we aim to investigate the impact of consid-

ering role information on the accuracy of several popular

classes of motion prediction algorithms.

To that end, we introduce and evaluate several role-

conditioned motion prediction methods, based on gener-

ative, recurrent and attention deep learning models, and

compare them to the corresponding role-agnostic meth-

ods. As the baseline trajectory predictor [1], we assess

a Long Short-Term Memory (LSTM)-based model (RED)

and introduce its conditioned variant (cRED), where the

assigned roles serve as additional input features to the

decoder network. Similarly, we propose a Transformer-

based [26] trajectory predictor (TFb) and its conditioned

counterpart (cTFb). Furthermore, we study two categories

of deep generative trajectory predictors: Variational Au-

toencoders (VAEs) and Generative Adversarial Networks

(GANs), which are able to generate multiple predictions.

For these generative models, we propose their respective

conditional counterparts, in which the role and the observed

trajectory jointly contribute to the prediction. In our experi-

ments, we compare all methods using the Top-K ADE/FDE

scores, and additionally evaluate the deep generative mod-

els with negative conditional log-likelihood. We also qual-

itatively demonstrate the stronger conditioning signal im-

pact on GAN-based models compared to RED variants. In

summary, this work concludes that considering the roles im-

proves the accuracy of trajectory prediction, biasing the dy-

namics to the motion patterns of the corresponding role.

1https://darko-project.eu/

2. Related Work

2.1. Human Motion Datasets

Human motion is complex and diverse, influenced by a

variety of factors such as goals, intentions, interactions and

environment. Creating accurate and realistic models of hu-

man motion is a challenge, especially in the long-term per-

spective, considering the intentions, complex activity pat-

terns, interactions with the static and dynamic environment

elements. Addressing this challenge requires large and di-

verse human motion datasets that capture the richness and

variability of natural human behavior in different scenar-

ios and contexts. Many of the existing datasets [22] suf-

fer from limitations such as uniform motion patterns [18],

missing and incorrect detections [15], rough position esti-

mations with bounding boxes, and imbalanced distribution

of the agents’ classes [19].

The recent THÖR dataset [21] is a high-quality and di-

verse human motion dataset that aims to address these is-

sues by providing accurate motion capture data in crowded

social spaces among the static obstacles and featuring a

moving robot. The THÖR dataset also includes additional

inputs such as maps of the environment and gaze directions

of the participants. In the THÖR recording, participants

navigate the industrial environment and perform tasks ac-

cording to their role, such as inspector, visitor, utility and

lab worker. Recording these semantic attributes of mov-

ing people is a key property, enabling the development of

activity detection algorithms and class-conditioned motion

prediction methods. However, as THÖR provides a limited

amount of data (about 60 minutes of motion of the 9 par-

ticipants), its applicability to training and generalizing the

data-hungry learning-based approaches is reduced [20].

The follow-up THÖR-Magni dataset [24], which in-

cludes over 3.5 hours of motion with 30 participants, ad-

dresses this main limitation of THÖR. Furthermore, THÖR-

Magni, in addition to basic navigation, includes diverse

interaction scenarios with people working alone and in

groups, interacting with the robot and transporting various

objects (boxed, buckets and poster stands). Similarly to

THÖR, the new recording features diverse roles for the par-

ticipants, such as box carriers, bucket carriers, large object

carriers, and visitors (navigating individually or in groups).

2.2. Class-conditioned Trajectory Predictors

In the context of trajectory prediction, semantic at-

tributes of the moving agents can be any useful additional

information that constraints the motion dynamics to the typ-

ical pattern of the underlying class, or biases the predic-

tor towards the corresponding class-related motion distribu-

tion. The use of classes (or roles) is paramount in domains

like Autonomous Driving [10] and Human-Robot Interac-

tion [16], where the differentiating between classes has a
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significant impact on the performance of the downstream

decision-making systems.

To cope with Autonomous Driving safety requirements,

Djuric et al. [4] propose MultiXNet, a framework that con-

siders the heterogeneity of road agents to predict multi-

modal trajectories. In the same line of research, Ivanovic

et al. [10] present HAICU, a method that also leverages

agents’ class uncertainty in an end-to-end perception mod-

ule for autonomous vehicles. Finally, in [8], the authors

propose a contrastive learning approach that improves tra-

jectory prediction by grouping together embeddings that be-

long to the same class (i.e. walking, looking, standing, and

crossing).

In Human-Robot Interaction, Narayanan et al. [16] in-

troduce a Transformer-based network that incorporates hu-

man intention and affect to enhance the efficacy of social

robot navigation. Furthermore, T. Rodrigues de Almeida et

al. [20] use THÖR to compare supervised and unsupervised

deep conditional generative models for class-conditioned

trajectory prediction. The authors demonstrate that the un-

supervised class labeling enhances the accuracy of uncon-

ditional methods, while the supervised class labels from

THÖR do not. This limitation may arise from various fac-

tors, such as imbalanced or limited data availability. Our

objective in this study is to overcome these issues by gath-

ering additional data with a more semantically enriched role

assignment. Further, we compare conditional and uncondi-

tional trajectory predictors to prove the usefulness of the

roles in THÖR-Magni.

3. Methods
3.1. The THÖR-Magni Dataset

In this work we aim to study diverse, natural, and goal-

driven human motion in crowded social spaces with static

obstacles and a moving robot. To this end, we use the novel

THÖR-Magni [24] dataset, an extension of THÖR [21],

which applies the THÖR data collection process with en-

riched and heterogeneous semantic attributes of the partic-

ipants. THÖR-Magni is collected in a weakly-controlled

laboratory environment using motion capture2 to track the

head position and orientation of every participant. THÖR-

Magni includes five scenarios, each concentrating on var-

ious aspects of human motion, such as navigating in pres-

ence of static obstacles and a moving robot, interacting with

the robot, and fulfilling various tasks according to the as-

signed roles. With the objective of investigating the im-

pact of semantic attributes on human motion prediction, in

this paper we concentrate on Scenarios 2 and 3, in which

the roles and tasks assigned to the participants are featured

prominently. These specific scenarios include 30 partici-

pants and entail a total motion duration of 1.5 hours.

2www.qualisys.com

In both scenarios, the participants fulfill two primary

roles: visitors and industrial workers, while co-navigating

with a mobile robot in the environment. Specifically, in

Scenario 2, the robot serves as a static obstacle in the

shared space, while in Scenario 3, the robot moves along

with the participants, controlled by an operator. The par-

ticipants are assigned to various tasks, including transport-

ing different-sized objects between designated goal points.

These tasks involve one participant transporting a small ob-

ject (a bucket) between two specific points, another partic-

ipant moving a medium-sized object (a box) between two

distinct goal points in the room, and a two-person team

collaboratively transporting a large object (a poster stand).

One member of the two-person team responsible for moving

the large object receives instructions over Discord (i.e., plat-

form that enables voice calls), which facilitates the dynamic

allocation of new goal points. Additionally, the remaining

participants assume the roles of visitors who either move in-

dividually or in groups between pre-defined goals positions,

assigned automatically through a system of cards (see [24]

for more details). Therefore, importantly for this paper, in

both scenarios we observe the emergence of five distinct

agent roles: Carrier–Bucket, Carrier–Box, Carrier–Large
Object, Visitors–Alone, and Visitors–Group.

The objective of Scenario 2 is to capture the diverse mo-

tion patterns exhibited by the participants while undertaking

their respective tasks (see left Fig. 2). In the scope of this

study, we intend to leverage the inherent advantage derived

from the fact that individuals performing the five different

roles display dissimilar movement patterns.

Scenario 3 introduces a mobile robot as an active agent

in the environment. The mobile robot is teleoperated and

navigates the room, while the participants engage in the

same tasks as in Scenario 2 (see right Fig. 2). The pres-

ence and behavior of the robot in Scenario 3 affects the par-

ticipants’ motion and interaction. Therefore, this scenario

has two variations: 3A, where the robot moves as a regu-

lar differential drive robot, meaning that it can only move

forward, backward in an arc trajectory; and 3B, where the

robot moves in an omnidirectional way, meaning that it can

also move sideways and diagonally.

We prepare the data from Scenario 2 and 3 as described

below in Sec. 4.1. This data is used for training trajectory

prediction methods, presented in the next section.

3.2. Role-conditioned Trajectory Prediction

In this work we show that information about the role of

the agent can be used to improve the accuracy of trajectory

prediction. To achieve this we are reformulating the stan-

dard mapping:

f : (Xi) → Yi, (1)

where Xi denotes the sequence of observed states for trajec-

tory i, and Yi is the correspondent sequence of future states
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Figure 2: Summary of the trajectories in Scenario 2 (left) and 3B (right) in the respective 4-minute recordings. Scenario

2 contains three static obstacles, while Scenario 3B has two. Each trajectory is color-coded according to the role of the

participant. Visitors–Group and Visitors–Alone navigate freely between the various goal points in the environment. The

Carrier–Large Object role involves a pair of individuals transporting a poster stand between designated goals. The Carrier–
Box and Carrier–Bucket roles entail the transportation of a stack of objects (a box and bucket, respectively) between two

fixed points. In Scenario 3B (right), trajectories are more dispersed across the width of the free space compared to Scenario

2 (left), due to the presence of the mobile robot in the scene.

to be predicted, to:

f : (Xi, ri) → Yi, (2)

where ri encodes one of the recognized activity cate-

gories (Carrier–Bucket, Carrier–Box, Carrier–Large Ob-
ject, Visitors–Group, and Visitors–Alone), assigned to the

pair (Xi, Yi). Each observed state in Xi, denoted as so,

is represented by the 2D Cartesian coordinates (xo, yo) and

the corresponding velocity vector (vox, v
o
y). The primary aim

of this study is to determine the function f that maps the pair

(Xi, ri) to a sequence of future velocity vectors, Ŷi. Then,

we transform each estimated velocity vector v̂ = (v̂fx , v̂
f
y )

into the corresponding 2D position p̂ = (x̂f , ŷf ), which

compose the predicted positions, Ŝi. To this end, we uti-

lize well-established trajectory prediction methods, namely

RED [1], TFb [26], GAN, and VAE. Finally, we conduct a

comparative analysis between these unconditional models

and their respective conditional counterparts, namely con-

ditional RED (cRED), conditional TFb (cTFb), conditional

GAN (cGAN), and conditional VAE (cVAE).

3.2.1 Single Output Trajectory Predictors

In this section we study single output trajectory predictors,

which produce one prediction per observed tracklet. In this

setting, we explore two compelling methods in the research

community for motion prediction: LSTM (i.e., RED [1])

and Transformer-based networks denoted by TFb.

Firstly, we evaluate RED and propose its conditional

counterpart, cRED. The latter concatenates the features

Xi

Embedding
MLP

Encoder
LSTM

Decoder
MLP

Ŷi

Xi

Embedding
MLP

Encoder
LSTM

Decoder
MLP

⊕ ri

Ŷi

Figure 3: LSTM-based models: unconditional RED (left)

and cRED (right).

from the encoder to the embeddings of the role and passes

the summary vector to the Multilayer Perceptron (MLP) de-

coder. Fig. 3 depicts both networks. Lastly, we propose

TFb (see Fig. 4), which leverages attention mechanisms en-

closed in a Transformer-encoder network to encode the ob-

served trajectory and decodes the memory vector as RED

(via MLP). Similarly to cRED, cTFb concatenates the role

label’s embeddings to the memory vector and processes the

summary vector through the decoder.

We train single output networks with the Mean Squared

Error (MSE) loss, given by:

LT (Si, Ŝi) =
1

Tp

Tp∑

j

‖pj − p̂j‖2, (3)
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Xi

Embedding
MLP

Positional Encod.

Encoder (TF)
Pre-LN & MHA
Pre-LN & MLP

Decoder
MLP

Ŷi

Xi

Embedding
MLP

Positional Encod.

Encoder (TF)
Pre-LN & MHA
Pre-LN & MLP

Decoder
MLP

⊕ ri

Ŷi

Figure 4: Transformer-based models: unconditional TFb

(left) and cTFb (right). We first aggregate the input em-

beddings with the positional encoding employed in [6] and

pass it to the encoder. The encoder includes two blocks:

the initial block consists of pre-layer normalization (Pre-

LN) succeeded by multi-head attention layers (MHA) with

a skip connection, while the second block comprises Pre-

LN followed by an MLP with a skip connection.

being Tp = |Si| = |Ŝi| the prediction horizon, pj the

ground truth position at time step j, p̂j the predicted po-

sition at time step j, and Si the ground truth sequence of

positions.

3.2.2 GAN-based Trajectory Predictors

Following the network design choices of GAN-based

encoder-decoder networks described in [12], we compare

the GAN-based models depicted in Fig. 5. Both GAN-

based methods rely on a generator (G) and a discrimina-

tor (D) network. The goal of the former is to generate

samples that resemble the training data, whereas the lat-

ter aims to distinguish between real and generated samples.

These two networks are trained together in an adversar-

ial manner. Therefore, the generator is trained to fool the

discriminator until both networks reach the Nash equilib-

rium, where each network can not decrease its loss without

changing the other’s parameters. In the trajectory predic-

tion problem, the canonical GAN’s generator aims to learn

fG : (Xi, zG) → Yi, where zG is a white noise vector while

the discriminator’s goal is to learn fD : W → s, where

W = Yi ∪ Ŷi and s ∈ [0, 1] is a scalar value representing

the likelihood that the input sample (from W ) comes from

the original set of samples, Y , rather than from the gener-

ator’s space of outputs, Ŷ . In contrast, a cGAN adds extra

information to both networks. Therefore, in this case, fG
and fD take one more input, the role, ri. The key insight

is that by conditioning the GAN framework on the role, we

control the generation process by forcing the networks to

Xi

G D

Embed.
MLP

Encoder
LSTM

Decoder
MLP

LSTM
MLP

Ŷi

z

⊕

Y or Ŷ

Class.
MLP

s

Xi ⊕ ri

cG cD

Embed.
MLP

Encoder
LSTM

Decoder
MLP

LSTM
MLP

Ŷ

z

⊕

ri
⊕Y or Ŷ

Class.
MLP

s

Figure 5: GAN-based models: unconditional GAN (left)

and cGAN (right).

distinguish and generate the behaviors underlying each role

in THÖR-Magni. We optimize GAN and cGAN discrimi-

nators with the binary cross entropy loss and the generator

with a weighted sum given by:

LG = λ LT + (1− λ) (
1

2
E[(D(Yi)− 1)2]

+
1

2
E[D(Ŷi)

2]),

(4)

being LT given by Eq. 3, and λ the weight applied to the

MSE term for a single training example. To train the con-

ditional variant (cGAN), we also pass the role class as an

input to the generator and discriminator.

3.2.3 VAE-based Trajectory Predictors

A different type of deep generative models we evaluate is

VAE-based methods (see Fig. 6). These models also con-

tain an encoder-decoder branch to perform the prediction

task [2]. The encoder’s objective is to map each observed

trajectory (Xi) to a feature vector, which is later concate-

nated to the latent variable zV and reconstructed to produce

the prediction (Ŷi). Additionally, VAE-based models have a

recognition network that aims to learn fqφ : Yi → (μ, σ2).
That is, the mapping from the ground truth to two proba-

bilistic entities that define a lower dimensional latent space

representation. During training, we employ the reparame-

terization trick to sample the latent variable zV , which is

generated by the recognition network. Additionally, we

incorporate the Kullback-Liebler divergence to effectively

regularize the learned distribution, aligning it with the prior

standard normal Gaussian distribution. Thus, the variational

loss function is as follows:

LV =λ LT

− (1− λ)β DKL[qφ(zV |Yi)‖p(zV |Xi)],
(5)
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Embed.
MLP

Encoder
LSTM

Decoder
MLP

LSTM
MLP

Ŷi

Y

Embed.
MLP

Encoder
LSTM

Output
Linear

z

⊕

Xi ⊕ ri

qφ

Embed.
MLP

Encoder
LSTM

Decoder
MLP

LSTM
MLP

Ŷ

Y ⊕ ri

Embed.
MLP

Encoder
LSTM

Output
Linear

z

⊕

Figure 6: VAE-based models: unconditional VAE (left) and

cVAE (right). The recognition networks (qφ, enclosed with

dashed border) are only available during training.

where β is the weight applied to the regularization loss. To

train the conditional variant (cVAE), we also pass the role

class as an input to the encoder-decoder and recognition net-

works.

4. Experiments and Results
In this section, we conduct a series of experiments to

showcase the significant impact of the semantic attributes

present in THÖR-Magni on the accuracy of trajectory pre-

diction. We begin by outlining the experimental setup, in-

cluding data preprocessing and analysis. We then describe

the implementation details of these experiments, along with

the evaluation metrics used to assess predictors perfor-

mance. Finally, we present and analyze the results obtained

in this investigation.

4.1. Dataset Preprocessing and Analysis

We first preprocess the raw trajectory data to form the

training and validation sets for the trajectory predictors, sep-

arately for the THÖR-Magni Scenario 2, 3A and 3B, as de-

scribed in Sec. 3.1. As the motion capture system relies

on helmets equipped with reflective markers, in the end, we

have multiple tracks (one per marker) per helmet. To min-

imize the number of discontinued trajectories, we identify

the marker of each helmet with the highest tracking dura-

tion. Then, we single out these markers and preprocess the

respective signal by applying the following steps: (1) linear

interpolation of tracking discontinuities of 0.5 s at most; (2)

resample the signal to 0.4 s; (3) smooth the signal with a

moving average filter.

Following the existing trajectory prediction bench-

mark [12], we split each trajectory into tracks of 20-time

steps (8 s). Table 1 shows a summary of the data compris-

ing the number and percentage of 20-time steps tracklets
and agents’ velocity statistics per role in each scenario. A

Role Magni-S2 Magni-S3A Magni-S3B

Carrier–
Box

223 (14.13%)

1.12m
s ± 0.21

224 (13.74%)

1.15m
s ± 0.27

220 (13.70%)

1.08m
s ± 0.26

Carrier–
Bucket

224 (14.20%)

1.21m
s ± 0.24

226 (13.87%)

1.21m
s ± 0.20

227 (14.13%)

1.13m
s ± 0.18

Carrier–
Large Object

394 (24.97%)

0.72m
s ± 0.27

440 (26.99%)

0.68m
s ± 0.32

405 (25.22%)

0.76m
s ± 0.36

Visitors–
Alone

452 (28.64%)

0.95m
s ± 0.20

318 (19.51%)

0.92m
s ± 0.29

322 (20.05%)

0.87m
s ± 0.32

Visitors–
Group

285 (18.06%)

0.92m
s ± 0.31

422 (25.89%)

0.87m
s ± 0.26

432 (26.90%)

0.84m
s ± 0.31

Global 1578 (100%)

0.95m
s ± 0.51

1630 (100%)

0.91m
s ± 0.48

1606 (100%)

0.90m
s ± 0.48

Table 1: Data summary per role in our experiments: number

and ratio of 20-time steps tracklets, velocities average and

standard deviation.

broad view of this table shows that the same role moved

with similar velocity across the different scenarios. How-

ever, if we compare the roles within each scenario, we can

observe that the Carrier–Bucket (small object) moved the

fastest, followed by the Carrier–Box. On the opposite side

of the spectrum, Carrier–Large Object was the slowest role.

This is expected as transporting a small object implies less

effort than moving a bigger object like a box. Moreover, a

group of two people moved the poster stand (large object),

which entails a team effort and, therefore, a slower pace.

Finally, it is worth highlighting that, on average, Visitors–
Group moved slower than Visitors–Alone.

4.2. Implementation Details

As in the prior art [12], from the 20-time steps track-

lets, we observe 8 (3.2 s) and estimate the next 12 (4.8 s).
To evaluate the unconditional and conditional methods, we

conducted k-fold cross-validation within each Scenario (we

set k to 10). That is, we train with k-1 folds and leave the

remaining for validation. We used the same hyperparame-

ters (i.e., optimizer, batch size, type of networks and activa-

tion functions) in all deep learning-based models. Also, we

stopped the training when no improvement was observed

after 20 epochs for a maximum of 100 epochs per fold. Fi-

nally, to study the generative process of GAN and VAE-

based models, we used the k-variety loss proposed in [7].

For metrics reporting, we show the average and stan-

dard deviations for the k-fold cross validation. To com-

pare the trajectory predictors, we use the Top-K Average
and Final Displacement Errors (Top-K ADE and Top-K

FDE, in meters), as in [23, 11]. ADE measures the root

mean squared error between the ground truth track and the

closest prediction (out of K samples). FDE measures the
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Euclidean distance between the last ground truth position

and the closest predicted counterpart (out of K samples).

Furthermore, following [2], we use the negative conditional

log-likelihood metric (CLL) to compare generative models.

Finally, besides the models described in Section 3.2, we also

report the metrics obtained by the Constant Velocity Model

(CVM) [25].

4.3. Results

This section presents the quantitative results and analysis

of the trajectory predictors applied in Scenarios 2, 3A and

3B. Throughout the quantitative experiments, bold scores

indicate the superior performance of conditional models

compared to their canonical counterparts (e.g., cGAN ver-

sus GAN). Table 2 reports the Top-1 ADE/FDE values for

the three datasets. A comprehensive examination of the ta-

ble shows that deep learning models consistently outper-

form the CVM. However, in addition to considering the ob-

served velocity vector (vox, v
o
y), deep learning models also

take into account the spatial layout information provided by

the observed positions (xo, yo), which contributes to their

improved performance. Moreover, even when solely us-

ing the velocity vector as inputs (which renders the models

spatial layout agnostic), simple models such as RED, TFb,

cTFb, cGAN, VAE, and cVAE still outperform CVM. While

CVM may serve as a relevant baseline in ETH/UCY bench-

marks [17, 13], the THÖR-Magni dataset presents signifi-

cantly more challenging and complex data, where simplistic

baselines like CVM face substantial limitations.

In the three datasets, cRED and cTFb outperform the

other baselines (underlined results), furthermore, all condi-

tional models attain better or similar scores to the uncondi-

tional counterparts. Specifically, in Magni-S2, cGAN pro-

vides a 8.2% and 10.6% of ADE and FDE improvements,

respectively. Also, in these datasets, the improvement given

by the role is plainer on GAN-based models than VAE-

based models. In fact, in Magni-S3B, surprisingly, VAE

outperforms cVAE, which might be because VAE-based

models learn a rather flexible latent representation. Consec-

utively, the condition may not include any extra information

to lead to lower ADE/FDE scores.

Table 3 shows the Top-3 ADE/FDE and CLL scores ob-

tained by deep generative models. Analogously to Top-1

ADE/FDE, in general, Top-3 ADE/FDE is also positively

affected by conditioning roles. Further, CLL is lower in

conditioned models, which means these models fit better

the input data distribution than the respective counterparts.

In Fig. 7, we present qualitative results from RED,

cRED, GAN, and cGAN applied to two test samples

extracted from Magni-S3A. These outcomes are consis-

tent with the quantitative evaluation metrics, ADE/FDE,

where the conditional setting induces a greater improve-

ment in GAN-based predictors compared to LSTM-based

Models Scores Magni-S2 Magni-S3A Magni-S3B

CVM
ADE

FDE

1.19± 0.05
2.58± 0.11

1.18± 0.08
2.54± 0.20

1.17± 0.05
2.52± 0.15

RED
ADE

FDE

0.71± 0.05
1.42± 0.09

0.70± 0.03
1.41± 0.07

0.73± 0.04
1.48± 0.08

cRED
ADE

FDE

0.69± 0.05
1.35± 0.08

0.68± 0.03
1.35± 0.06

0.72± 0.04
1.45± 0.07

TFb
ADE

FDE

0.72± 0.05
1.42± 0.09

0.72± 0.03
1.43± 0.08

0.75± 0.04
1.50± 0.08

cTFb
ADE

FDE

0.68± 0.06
1.32± 0.10

0.69± 0.03
1.37± 0.07

0.73± 0.05
1.47± 0.07

GAN
ADE

FDE

0.97± 0.12
1.98± 0.24

0.93± 0.10
1.90± 0.20

0.99± 0.12
2.03± 0.22

cGAN
ADE

FDE

0.89± 0.08
1.77± 0.15

0.84± 0.06
1.69± 0.15

0.89± 0.06
1.77± 0.12

VAE
ADE

FDE

0.82± 0.05
1.65± 0.08

0.82± 0.07
1.66± 0.16

0.84± 0.05
1.68± 0.10

cVAE
ADE

FDE

0.82± 0.05
1.62± 0.11

0.81± 0.04
1.58± 0.06

0.86± 0.05
1.72± 0.08

Table 2: Top-1 ADE/FDE (↓). Bold values indicate the su-

perior performance of conditional models compared to their

canonical counterparts.

Models Score Magni-S2 Magni-S3A Magni-S3B

GAN

ADE

FDE

CLL

0.68± 0.08
1.35± 0.15
4.99± 0.20

0.67± 0.04
1.34± 0.07
5.24± 0.39

0.67± 0.05
1.36± 0.10
5.12± 0.33

cGAN

ADE

FDE

CLL

0.62± 0.06
1.23± 0.11
4.68± 0.28

0.62± 0.04
1.21± 0.10
4.68± 0.25

0.64± 0.04
1.25± 0.05
4.92± 0.23

VAE

ADE

FDE

CLL

0.60± 0.05
1.19± 0.07
4.64± 0.27

0.62± 0.03
1.21± 0.08
4.71± 0.28

0.64± 0.04
1.24± 0.07
4.95± 0.28

cVAE

ADE

FDE

CLL

0.60± 0.04
1.17± 0.07
4.51± 0.25

0.58± 0.06
1.15± 0.04
4.45± 0.28

0.63± 0.05
1.23± 0.08
4.75± 0.29

Table 3: Top-3 ADE/FDE (↓) and CLL (↓) for generative

models. Bold values indicate the superior performance of

conditional models compared to their canonical counter-

parts.

approaches. This improvement gap between cRED and

cGAN with respect to their canonical counterparts might

be because GANs rely on a latent space while LSTM-based

methods do not (deterministic models). This latent space

attempts to learn the various modes of the input under-

lying distribution, while deterministic approaches require

more discernible cues in the input features to be effective.

When conditioning a GAN, the latent space is influenced
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by the condition, which helps in structuring and guiding the

learned latent representations. On the other hand, the latent

space in unconditional GANs exhibit more erratic behavior

due to the lack of conditioning information. Finally, cGAN

demonstrates an ability to learn the intrinsic data distribu-

tion pertaining to each role by capturing its various modes,

resulting in diverse yet accurate predictions.

In summary, the results outlined in this section reveal

that the THÖR-Magni dataset does not adhere to the con-

stant velocity profile. Instead, deep learning-based models

demonstrate superior performance over the CVM. The CLL

scores substantiate the efficacy of conditioning trajectory

predictors, while the ADE and FDE scores demonstrate that

incorporating the role information generally enhances the

accuracy of trajectory predictors. Based on these findings,

it is evident that the role information provided in the three

scenarios from THÖR-Magni dataset constitutes a valuable

feature for the investigation of novel role-conditioned tra-

jectory predictors. These results highlight the importance

of considering the role attribute for trajectory prediction.

5. Conclusion
In this paper we exploit the role assignment in THÖR-

Magni dataset in role-conditioned DL-based trajectory pre-

diction methods. We conduct a comprehensive evaluation

using four distinct approaches: deterministic baselines uti-

lizing LSTM and Transformer-encoder and two deep gener-

ative methodologies employing GANs and VAEs. Our find-

ings demonstrate that the conditional methods consistently

outperform or achieve comparable performance to the un-

conditional counterparts in the trajectory prediction task.

Specifically, the conditional GAN exhibits a significant

margin of improvement over the unconditional GAN across

all prediction metrics (Top-K ADE/FDE). Additionally, the

performance of conditional generative models, including

cGAN and cVAE, surpass their role-agnostic counterparts

(GAN and VAE) in data fitting metrics (CLL). These re-

sults emphasize the efficacy of incorporating role informa-

tion provided in THÖR-Magni dataset to enhance the pre-

diction and fitting capabilities of trajectory estimators and

highlight the potential advantages of role-conditioned deep

learning-based approaches in trajectory prediction tasks.

In future work, we intend to expand upon the current

manual role assignment to automatic techniques. In do-

ing so, we seek to explore more efficient and scalable

methods for assigning roles to individuals in human tra-

jectory datasets. Moreover, as we transition towards auto-

mated role assignment, the THÖR-Magni dataset can serve

as a valuable benchmark and a ground truth reference to

evaluate the performance of the developed methods. The

dataset’s existing manual role annotations will enable us

to rigorously assess the accuracy and reliability of the au-

tomatic role assignment techniques, facilitating their vali-

RED

RED

Figure 7: Trajectory predictions of unconditional meth-

ods (top) and conditional counterparts (bottom) for two test

samples in Magni-S3A. The cyan sample that goes from

the left to right corresponds to a Carrier-Bucket while the

green one is from a Carrier-Large Object. While the dis-

crepancy between RED and cRED predictions is minimal, a

substantial difference is observed between GAN and cGAN

predictions. cGAN effectively utilizes role conditioning to

offer diverse yet more accurate trajectory predictions.

dation and comparison. By leveraging automatic role as-

signment techniques and validating them against the natu-

ral well-established role annotations in THÖR-Magni, we

anticipate enhancing the dataset utility and contributing to

the advancement of trajectory prediction and crowd anal-

ysis research. Further, we can augment the present study

along a subset of JRDB-Act [5] available classes such as

standing, walking, cycling, scootering, skating, or running.

In this dataset, the labeling granularity is finer as it involves

per frame activities rather than per trajectory. This char-

acteristic presents an opportunity to delve deeper into the

research of role-conditioned trajectory prediction along an

innovative temporal dimension.
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