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Abstract—Soft robots can execute tasks with safer interactions.
However, control techniques that can effectively exploit the
systems’ capabilities are still missing. Differential dynamic pro-
gramming (DDP) has emerged as a promising tool for achieving
highly dynamic tasks. But most of the literature deals with
applying DDP to articulated soft robots by using numerical
differentiation, in addition to using pure feed-forward control to
perform explosive tasks. Further, underactuated compliant robots
are known to be difficult to control and the use of DDP-based
algorithms to control them is not yet addressed. We propose
an efficient DDP-based algorithm for trajectory optimization of
articulated soft robots that can optimize the state trajectory,
input torques, and stiffness profile. We provide an efficient
method to compute the forward dynamics and the analytical
derivatives of series elastic actuators (SEA)/variable stiffness
actuators (VSA) and underactuated compliant robots. We present
a state-feedback controller that uses locally optimal feedback
policies obtained from DDP. We show through simulations and
experiments that the use of feedback is crucial in improving the
performance and stabilization properties of various tasks. We
also show that the proposed method can be used to plan and
control underactuated compliant robots, with varying degrees of
underactuation effectively.

Index Terms—articulated soft robots, underactuated compliant
robots, optimal and state-feedback control, feasibility-driven
differential dynamic programming

I. INTRODUCTION

Across many sectors such as the healthcare industry, we
require robots that can actively interact with humans in
unstructured environments. To enable safe interactions and
increase energy efficiency, we often include soft elements in
the robot structure [1] [2]. For instance, in an articulated soft
robot (ASR) the rigid actuators connect to the joints through
passive elements with or without variable stiffness (Fig. 1).
These types of robots aim to mimic the musculoskeletal
structure in vertebrated animals [3], [4], which enables them
to perform highly dynamic tasks efficiently [5], [6]. A series
elastic actuator (SEA) has a linear spring between the actuator
and the load [7]. Instead, a variable stiffness actuator (VSA)
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(a) variable stiffness actuation. (b) series elastic actuation.

Fig. 1. Examples of articulated soft robots with joints that present torsional
springs. The red joints are actuated, while the white one is unactuated. (a) Two
degrees of freedom robot actuated by VSA performing a regulation task. (b)
Two degrees of freedom robot with an actuated SEA joint, and an unactuated
elastic joint.

integrates an elastic element that can be adjusted mechanically.
These actuators provide many potential advantages but also
increase the control complexity [8]. Similarly, compliant
robots, a subclass of soft robots, are systems with rigid links
and elastic joints (e.g., flexible joint robot SEA/VSA) in
which a generic number of unactuated joints can also be
present [9]. This mechanism further increases the modeling
and control complexity. In addition, this class resembles other
modeling formulations used in the soft robotics literature [1],
[10]: Pseudo Rigid Body(PRB) model [11], [12], Cosserat
Model [13], Constant Curvature models [14] and thus are an
important class of models.

Applying controllers derived for rigid robots tends to pro-
vide an undesired performance in soft robots (see Sec. III-A).
It may even have a detrimental effect, as it provides dynam-
ically infeasible motions and controls. Therefore, we need to
design control techniques that fully exploit the dynamic po-
tential of soft robots. In this regard, optimal control solutions
promise to be an effective tool.

Differential dynamic programming (DDP) is an optimal
control method that offers fast computation and can be em-
ployed in systems with high degrees of freedom and multi-
contact setups [15], [16].

In the context of soft robots, iterative LQR (iLQR) has
been used to perform explosive tasks such as throwing a
ball with maximum velocity by optimizing the stiffness and
controls [17]. Similarly, DDP has enabled us plan time-energy
optimal trajectories for systems with VSAs as well [18].
These works employ numerical differentiation to compute
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the derivatives of the dynamics and cost functions. But such
an approach is computationally expensive, and it is often
prone to numerical errors. These works also completely rely
on feed-forward control. Further, to the best of the authors’
knowledge, the control of underactuated compliant systems
has not been addressed using DDP algorithms. Furthermore,
devising control laws for such systems is known to be difficult
[19]. We propose an optimal control method for articulated soft
robots in this work.

A. Contribution

In this paper, we propose an efficient optimal control
method for articulated soft robots based on the feasibility-
driven differential dynamic programming (FDDP)/Box-FDDP
algorithm that can accomplish different tasks. It boils down to
three technical contributions:

(i) an efficient approach to compute the forward dynamics
and its analytical derivatives for robots with SEAs, VSAs
and under-actuated compliant arms,

(ii) empirical evidence of the benefits of analytical derivatives
in terms of convergence rate and computation time, and

(iii) a state-feedback controller that improves tracking perfor-
mance in soft robots.

Our approach boosts computational performance and im-
proves numerical accuracy compared to numerical differentia-
tion. The state-feedback controller is validated in experimental
trials on systems with varying degrees of freedom. We provide
the code to be publicly accessible.1

The article is organized as follows: after discussing state
of the art in optimal control for soft robots (Section II), we
describe their dynamics and formulate their optimal control
problem in Section III. Section IV begins by summarizing the
DDP formalism and ends with the state-feedback controller.
In Section V, we introduce various systems that we use for
validating the proposed method. Finally, Section VI shows
and discusses the efficiency of our method through a set of
simulations and experimental trials.

II. RELATED WORK

Compliant elements introduce redundancies in the system
that increases the complexity of the control problem. Optimal
control is a promising tool to solve such kinds of problems. It
can be classified into two major categories: 1) Direct, 2) Indi-
rect methods. Indirect methods first optimize the controls using
Pontryagin’s Maximum Principle (PMP) and then discretize
the problem. This approach has been used to compute optimal
stiffness profiles while maximizing the terminal velocity as
shown in [20], [21]. In [22], the authors use linear quadratic
control of an Euler beam model and show its effectiveness
w.r.t. PD/ state regulation method. But such methods have
poor convergence under bad initialization and cannot handle
systems with many degrees.

Instead, direct methods transcribe the differential equations
into algebraic ones that are solved using general-purpose
nonlinear optimizers. In [23], authors propose a time-optimal

1github.com/spykspeigel/aslr to

control problem for soft robots, and it is solved using the direct
method where the non-convexity of the problem is converted
into bilinear constraints. Similarly, in [24], [25] direct methods
are used to solve minimum time problems, and in [18], [26]
direct methods are used to solve energy-optimal problems for
soft robots. However, these methods often cannot be used in
model predictive control settings as they are computationally
slow.

Dynamic programming uses the Bellman principle of op-
timality to solve a sequence of smaller problems recursively.
But this approach suffers from the curse of dimensionality and
depends on input complexity. Rather than searching for global
solutions, DDP finds a local solution [27]. These methods are
computationally efficient but are highly sensitive to initializa-
tion, which limits their application to simple tasks. However,
recent work proposes a feasibility-driven DDP (FDDP) algo-
rithm improves the convergence under poor initialization [15]
enabling us to compute motions subject to contact constraints.
DDP-based approaches provide both feed-forward actions and
feedback gains within the optimization horizon. Both elements
enable our system to track the optimal policy, which increases
performance as shown in [28]. The FDDP algorithm is ef-
ficiently implemented in the CROCODDYL library. Similarly,
as described in [29], the Box-FDDP algorithm handles box
constraints on the control variables and uses a feasibility-
driven search. Both FDDP/Box-FDDP increases the basin of
attraction to local minima and the convergence rate when
compared to the DDP algorithm.

DDP and its variants have been used in the planning and
control of robots with soft actuators. For instance, we can
execute explosive tasks with VSAs using the iLQR algorithm
[17]. Similarly, we can apply DDP to describe a hybrid
formulation for robots with soft actuators [30]. Both works
demonstrate the benefits of modeling their VSAs in highly
dynamic tasks like jumping hopper and brachiation. But two
major drawbacks of these approaches are their dependence on
numerical differentiation, which increases computational time,
and the lack of feedback terms, which decreases performance.
To analytically compute the derivatives of rigid systems, [31]
exploits the induced kinematic sparsity pattern in the kinematic
tree. This method reduces the computation time obtained using
other common techniques: automatic or numerical differenti-
ation. It is possible to use the tools developed for the rigid
body case and tailor them for applications related to systems
with soft actuators. This will be beneficial for both the online
deployment of the algorithms and the control of systems with
high degrees of freedom. Secondly, in [28], the feedback
policy obtained from DDP, is employed instead in place of
a user- tuned tracking controller. The results show that the
local feedback policy obtained from DDP could be a promising
solution for state feedback.

III. PROBLEM DEFINITION

In this section, we formulate the optimal control problem
to plan a desired task with an articulated soft robot with a
fixed-base and without any contacts.

https://github.com/spykspeigel/aslr_to
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(a) rigid robot: joint motion.
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(b) ASR (10Nm/rad): joint motion.
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(c) ASR (3Nm/rad): joint motion.
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(d) ASR (0.01Nm/rad): joint motion.
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(e) rigid robot: Cart. motion.
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(f) ASR (10Nm/rad): Cart. motion.
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(g) ASR (3Nm/rad): Cart. motion.
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(h) ASR (0.01Nm/rad) Cart. motion.

Fig. 2. Motivational example: a 2DoF robot affected by gravity performing a regulation task with the desired final end-effector position equal to [0.01, 0.2]
m. The top row shows the joint evolution, the bottom row shows the Cartesian evolution. The dashed lines in the plots of top row indicate the desired final
joint angles and the red dot in the plots of bottom row indicates the desired position. The control input is obtained considering the robot as rigid (a),(e); in
this case, the robot reaches the final position [0.009, 0.2034] m. Then, the same control input is applied to three 2DoF articulated soft robots (ASR) with
different joint stiffness values. In (b),(f) the joint stiffness is 10 Nm/rad, and the the final end-effector position is [0.012, 0.204] m. In (c),(g) the joint
stiffness is 3 Nm/rad, and the the final end-effector position is [0.04, 0.21] m. In (d),(h) the joint stiffness is 0.01 Nm/rad, and the the final end-effector
position is [−0.0156, 0.2023] m. These results highlight the limit of modeling soft robot links as rigid models.

A. Motivational example

Soft robots present a model with larger state space di-
mension compared to rigid robots with the same number of
degrees of freedom (DoF). Therefore, including the soft robot
model into the optimal control problem inevitably increases
the computational load, which is caused by operations like
dynamics computation and other such operations part of the
optimal control routine. Thus, it is natural to question if we
really need to use the soft models. To answer this, we consider
an end-effector regulation task. In this task, we command a
2DoF soft actuated system (the physical parameters of this
2DoF system are introduced in Section V-A) using an optimal
control sequence that ignores the actuation dynamics (i.e.,
a rigid model). The desired final position is [0.01, 0.2] m.
Fig. 2(a), 2(e) show the optimal trajectory, and robot motion,
respectively. When the same control sequence is applied to an
articulated soft robot with a low stiffness value, we observe an
inconsistent behavior, and the end-effector position at the end
of the task is far from the desired point 2(b), 2(c), 2(d). We
also observe that the same control sequence shows different
performance when applied to systems with varying stiffness
values. Thus the use of control solutions devised for a rigid
actuated model may not work well for soft actuated systems
and may prove to be inconsistent.

B. Model

Consider a robot with an open kinematic chain with n+ 1
rigid links, and n compliant joints. Let the link-side coordi-
nates be q ∈ Rn, link-side velocity be q̇ ∈ Rn, motor-side
coordinates θ ∈ Rm, and motor-side velocity be θ̇ ∈ Rm.

These kinds of systems usually present large reduction
ratios, and the angular velocity of the rotor is due only to
their own spinning. Therefore, the energy contributions due
to inertial couplings between the motors and link can be
neglected. Given this observation, we assume the following:

Assumption 1. We assume that the inertial coupling between
the rigid body and the motor is negligible.

Under Assumption 1, using the Lagrangian formulation for
the coupled system, one can derive the equations of motion
as [32],

M(q(t))q̈(t) +C(q(t), q̇(t))q̇(t)

+G(q(t)) +
∂U(q(t),θ(t))

∂q(t)

⊤
= 0 (1)

Bθ̈(t) +
∂U(q(t),θ(t))

∂θ(t)

⊤
− τ (t) = 0, (2)

where, M(q(t)) ∈ Rn×n is the robot inertia matrix,
C(q(t), q̇(t)) ∈ Rn×n contains the centripetal and Coriolis
terms, and G(q(t)) ∈ Rn is the gravity term, B ∈ Rm×m

is the motor inertia, U(q(t),θ(t)) is the elastic potential, and
τ (t) ∈ Rm is the torque. The general nonlinear characteriza-
tion of the motor-side can be considered but we operate in the
linear region of the deflection. Thus we assume that:

Assumption 2. The elastic coupling is linear in q and θ.

Using Assumption 2, the torque due to elastic potential
is linear i.e. ∂U(q(t),θ(t))

∂q(t)

⊤
= K(t)(q(t) − Sθ(t)) and

∂U(q(t),θ(t))
∂θ(t)

⊤
= S⊤K(t)(Sθ(t)− q(t)). Here K(t) is a
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stiffness matrix and S ∈ Rn×m is the selection matrix. The
selection matrix S is of rank m. The stiffness matrix K can
be either constant or time-varying corresponding to SEA and
VSA, respectively. In the case of SEA, the stiffness of each
actuated joint is fixed to some σ. In the case of VSA, the
stiffness of each actuated joint can vary between σmin and σmax
and to maintain positivity of the spring stiffness we impose
σmin > 0. Similarly, under-acutated compliant arm refers to
the systems with the rank of selection matrix (rank(S)) being
less than m and the joints can be either actuated by SEA/VSA.

Now, using the linearity of elastic coupling, (1)-(2) reduce
to,

M(q(t))q̈(t) +C(q(t), q̇(t))q̇(t)+

G(q(t)) +K(t)(q(t)− Sθ(t)) = 0,
(3)

Bθ̈(t) + S⊤K(t)(Sθ(t)− q(t))− τ (t) = 0. (4)

It is worth mentioning that the model class in (3)-(4) is
also used to model flexible link robots in some state of the art
papers [11], [12], [19], [33] and in some soft robot simulators
[34].

In the case where all the joints are actuated, S is the identity
matrix, and n = m, then (3)-(4) can be written as

M(q(t))q̈(t) +C(q(t), q̇(t))q̇(t)+

G(q(t)) +K(t)q(t)− θ(t)) = 0,
(5)

Bθ̈(t) +K(t)(θ(t)− q(t))− τ = 0. (6)

The rotors of the actuators are designed with their COM on
the rotor axis to extend the life of the electrical drives. The
motor inertia matrix is diagonal as a result of this. Further,
the stiffness matrix should be invertible to ensure consistent
solutions to (1)-(6).

Assumption 3. The motor inertia matrix is diagonal.

Using Assumption 3, B(t) can be written as:

B(t)i,j =

{
Bi if i = j

0 if i ̸= j
(7)

Further to simplify computation, K(t) is diagonal and this
resembles the case where one spring is coupled between a
rotor and a link. Thus, K(t) can be written as,

K(t)i,j =

{
σi if i = j

0 if i ̸= j
(8)

In the following, for the sake of simplicity, we will omit the
explicit time dependence.

C. Goals

Using an optimal control approach, we aim to solve dynamic
tasks for robots actuated by SEA, VSA and underactuated
compliant robots. In this case, the forward dynamics will
be determined by (3)-(4) or (5)-(6). Additionally, we aim
to exploit feedback gains to increase performance and sta-
bilization properties. The tasks presented in this paper are end
effector regulation tasks for SEA/VSA and swing-up for the
underactuated compliant systems case.

D. Optimal control formulation

We formulate a discrete-time optimal control problem for
soft robots as follows:

min
(qs,q̇s,θs,θ̇s),(τs)

ℓN (qN , q̇N ,θN , θ̇N )

+

N−1∑
k=0

∫ tk+1

tk

ℓk(qk, q̇k,θk, θ̇k, τ k)dt

s.t. [qk+1, q̇k+1,θk+1, θ̇k+1] = ψ(q̇k, q̈k, θ̇k, θ̈k),

[q̈k, θ̈k] = FD(qk, q̇k,θk, θ̇k, τ k),

[qk,θk] ∈ Q, [q̇k, θ̇k] ∈ V, τ k ∈ U ,

,

where, qk, q̇k, θk, θ̇k and τ k describe the configuration point,
generalized velocity, motor-side angle, motor-side velocity,
joint torque commands of the system at time-step (node)
k; ℓN is the terminal cost function; ℓk is the running cost
function; ψ(·) defines the integrator function; FD(·) represents
the forward dynamics of the soft robot; Q represents the
admissible state space; V describes the admissible velocity
space and U defines the allowed control.

IV. SOLUTION

We solve the optimal control problem described in Section
III-D using the Box-FDDP algorithm. This section first sum-
marizes the Box-FDDP algorithm, which is a variant of the
DDP algorithm, and then analyzes the dynamics and analytical
derivatives of robots with SEAs, VSAs, and the underactu-
ated compliant robots. To account for the cost incurred by
the mechanism implementing the variable stiffness in VSAs,
we also introduce a cost function used in systems actuated
by VSA. Finally, we describe the state-feedback controller
derived from Box-FDDP. We would like to emphasize that
Box-FDDP is developed in [29] and is not a novel contribution
of this work.

iLQR/DDP methods are known to be prone to numerical
instabilities as these are single-shooting methods. Whereas,
FDDP is a multiple shooting method and thus provides nu-
merical benefits like better numerical stability. The feasibility-
driven search and the nonlinear roll-out features of the al-
gorithm ensure better convergence under poor initialization,
enabling better performance for highly nonlinear problems
compared to iLQR/DDP [15]. Box-FDDP is a variant of the
FDDP algorithm which can handle box constraints on control
variables. Box-FDDP is a more general algorithm that is
based on projected Newton updates to account for the box
constraints on control variables. Box-FDDP reduces to Newton
updates of FDDP in the case without box constraints on the
control variables. The method also provides a locally optimal
feedback policy which is expected to improve performance in
various tasks. This ability to handle optimal control problems
for highly nonlinear systems with the option of unfeasible
guess trajectory and the synthesis of feedback policies makes
FDDP/Box-FDDP a suitable candidate for articulated soft
robots.
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A. Background on Box Feasibility-Driven DDP

DDP solves optimal control problems by breaking down
the original problem into smaller sub-problems. So instead
of finding the entire trajectory at once, it recursively solves
the Bellman optimal equation backwards in time. To handle
control bounds and improve globalization properties, the Box-
FDDP algorithm modifies the backward and forward passes
of DDP.

The Bellman relation is stated as

V (xk) = min
uk

ℓk(xk,uk) + Vk+1(f(xk,uk)), (9)

where, V (xk) is the value function at the node k,
Vk+1(f(xk,uk)) is the Value function at the node k+1, ℓ is the
one step cost, x is the state vector (x ≜ [q⊤, q̇⊤,θ⊤, θ̇

⊤
]⊤),

u is the control vector and f(x,u) represents the dynamics of
the system.

FDDP uses a quadratic approximation of the differential
change in (9)

∆V = min
δuk

1

2

[
δxk

δuk

]⊤ [
Qxxk

Qxuk

Quxk
Quuk

] [
δxk

δuk

]
(10)

+

[
δxk

δuk

]⊤ [
Qxk

Quk

]
.

Q is the local approximation of the action-value function and
its derivatives are

Qxxk
= ℓxxk

+ f⊤xk
Vxxk+1

fxk
, Qxk

= ℓxk
+ f⊤xk

V +
xk+1

,

Quuk
= ℓuuk

+ f⊤uk
Vxxk+1

fuk
, Quk

= ℓuk
+ f⊤uk

V +
xk+1

,

Qxuk
= ℓxuk

+ f⊤xk
Vxxk+1

fuk
,

where, V +
xk+1

= Vxk+1
+ Vxxk+1

f̄k+1 is the Jacobian of the
value function, ℓxk

is the Jacobian of the one step cost, ℓxxk

is the Hessian of the one step cost and f̄k+1 is the deflection
in the dynamics at the node k + 1:

f̄k+1 = f(xk,uk)− xk+1.

1) Backward Pass: In the backward pass, the search direc-
tion is computed by recursively solving

δuk =argmin
δuk

Q(δxk, δuk) = k̂+ K̂δxk,

s.t. u ≤ uk + δuk ≤ u,
(11)

where, k̂ = −Q̂−1
uuk

Quk
is the feed-forward term and K̂ =

−Q̂−1
uuk

Quxk
is the feedback term at the node k, and Q̂uuk

is
the control Hessian of the free subspace. Using the optimal
δuk, the gradient and Hessian of the Value function are
updated.

2) Forward Pass: Once the search direction is obtained in
(11), then the step size α is chosen based on an Armijo-based
line search routine. The control and state trajectory are updated
using this step size

ûk = uk + αk̂+ K̂(x̂k − xk), (12)
x̂k+1 = fk(x̂k, ûk)− (1− α)f̄k−1, (13)

where, {x̂k, ûk} are the state and control vectors. In problems
without control bounds, the algorithm reduces to FDDP [15].
The interested reader is referred to [15], [29] for more details
about the algorithm.

B. Dynamics for soft robots

The forward dynamics in (5)-(6) can be written in compact
form as follows: [

q̈

θ̈

]
=

[
M 0
0 B

]−1 [
τ l

τm

]
, (14)

where,

τ l ≜ −C(q, q̇)−G(q)−K(q− θ), (15)

τm ≜ K(θ − q) + τ . (16)

We compute link-side dynamics efficiently via the use
articulated body algorithm (ABA) for the first block of
effective inertia matrix (which corresponds to the rigid body
algorithm). We then use the analytical inversion of B to
efficiently compute the motor-side dynamics in (14).

The forward dynamics computation in (3)-(4) can be done
similarly to the above process with a different definition of τ l

and τm

τ l ≜ −C(q, q̇)−G(q)−K(q− Sθ), (17)

τm ≜ −S⊤K(Sθ − q) + τ . (18)

The forward dynamics computation is summarized in Al-
gorithm 1:

Algorithm 1 Forward dynamics

1: Input: robotModel,q, q̇,θ, θ̇

2: Output: q̈, θ̈

3: q̈ ← Articulated Body Algorithm(ABA) (
q,v,0) + M−1(−K(θ − q))

4: θ̈ ← B−1(τ +K(θ − q))

M−1 is computed as part of the forward dynamics algo-
rithm. Additionally, the computation of θ̈ involves inversion
of B which in itself is diagonal in our cases.

C. Analytical derivatives

The block diagonal structure of the inertia matrix in (14)
allows us to independently evaluate the partial derivatives re-
lated to the link-side and motor-side. Among several methods
to compute the partial derivatives of the dynamics, the finite
difference method is popular. This is because the difference
between the input dynamics is computed n + 1 times while
perturbing the input variables. The successful implementation
of numerical differentiation requires fine parallelization tech-
niques, thus the finite difference could result in computational
complexity of O(n2) [35]. Another way is to derive the La-
grangian equation of motion, which requires only one function
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call. We use PINOCCHIO [36], an efficient library for rigid
body algorithms, which exploits sparsity induced by kinematic
patterns to compute the analytical derivatives with O(n) cost.
Now we illustrate the analytical derivatives for SEA/VSA and
the underactuated compliant model.

1) Series elastic actuation: To solve the full dynamics
model in the Box-FDDP/FDDP formalism we define the state
vector as x ≜ [q⊤ q̇⊤ θ⊤ θ̇

⊤
]⊤, and the input vector is

u = [τ ].
An explicit inversion of the KKT matrix is avoided in the

forward pass by inverting the matrix analytically:[
δq̈

δθ̈

]
= −

[
M 0
0 B

]−1 ([
∂τ l

∂x
∂τm

∂x

]
δx+

[
∂τ l

∂u
∂τm

∂u

]
δu

)
. (19)

The matrix has a diagonal block structure and can be switched
separately. The motor inertia matrix is diagonal for all practical
purposes and thus can be analytically inverted. Using the
definition of τ l in (15) one can analytically compute the
Jacobians. Here we only list the non-zero components, i.e.,

∂τ l

∂q
= −∂C(q, q̇)

∂q
− ∂G(q)

∂q
−K, (20)

∂τ l

∂q̇
= −∂C(q, q̇)

∂q̇
,

∂τ l

∂θ
= −K, (21)

∂τm

∂q
= K+

∂τ

∂q
,

∂τm

∂θ
=K. (22)

Similarly the Jacobian w.r.t. u is ∂τm

∂u = I. Using the same
principles, the analytical derivatives of the cost function w.r.t.
state and control can be derived.

2) Variable stiffness actuation: In the case of variable stiff-
ness actuators, we model the system using similar equations,
but stiffness at each joint is treated as a decision variable.
Thus the state vector is still x ≜ [q⊤ q̇⊤ θ⊤ θ̇

⊤
]⊤, but

the decision vector is u ≜ [τ⊤σ⊤]⊤ where, σ is the vector
of diagonal entries from K. So the Jacobians w.r.t. the state
variables remain the same as (20)-(22). Now the derivatives
w.r.t. decision vector are

∂τm

∂τ
= I,

∂τm

∂σ
= θ − q,

∂τ l

∂σ
= q− θ . (23)

To effectively incorporate the constraint on σ, we impose a
box constraint on the stiffness variables σmini < σi < σmaxi ,
where σi is the i-th component of the σ vector. We use the
Box-FDDP algorithm in [29], [37] to solve constrained optimal
control problems with box constraints on control variables
(Sec. III-D).

3) Under-actuated Compliant Arm: For underactuated
compliant systems, q ∈ Rn and θ ∈ Rm are of different
dimensions. Moreover, their analytical derivatives are different
from the fully actuated flexible joint case (i.e., (20)-(23)) as
shown below:
∂τm

∂θ
= −S⊤KS,

∂τm

∂q
= S⊤K,

∂τm

∂σ
= S⊤(Sθ − q),

(24)
∂τ l

∂θ
= KS,

∂τ l

∂σ
= −(q− Sθ) . (25)

The analytical derivatives of the dynamics are summarized
in Algorithm 2:

Algorithm 2 Analytical Derivatives

Input: robotModel,q, q̇, q̈,θ, θ̇, θ̈

2: Output: ∂q̈
∂q ,

∂q̈
∂q̇ ,

∂q̈
∂θ ,

∂θ̈
∂q ,

∂θ̈
∂θ ,

∂θ̈
∂θ̇

∂τrb

∂q , ∂τrb

∂q̇ ← Compute Recursive Newton Euler
algorithm(RNEA) derivatives(q, q̇, q̈)

4: ∂q̈
∂q = M−1(∂τrb

∂q − K); ∂q̈
∂q̇ = M−1(∂τrb

∂q̇ );
∂q̈
∂θ = M−1(K);

∂θ̈
∂q = B−1(K); ∂θ̈

∂θ = −B−1(K); ∂θ̈
∂θ̇

= 0

D. VSA cost function

The physical mechanism that implements variable stiffness
consumes energy. To include this cost of changing stiffness in
the optimal control problem, we define a linear cost in stiffness
[38].

ℓvsa =

m∑
j=1

∫ T

0

λ(σj − σr)dt , (26)

where, m is the number of actuated joints, σr is the stiffness
value under no-load conditions, σj is the stiffness value of the
joint j, and ℓvsa is the one step VSA mechanism cost. Using
this term, we ensure that the cost is zero at σr and the cost is
imposed only when stiffness is varied. The overall cost value
is dependent on the motor mechanics and it is modulated by
λ. The value of λ is related to the torque value required to
maintain a particular stiffness value. To ensure that ∥τ∥22 <
ℓvsa, the λ is assumed to be a linear interpolation between the
σmin and σmax

λ =
g2(σmax)− g2(σmin)

σmax − σmin
,

where, g2(·) is a function defined to represent the stiffness
change for a specific actuator used.

For variable stiffness actuator with an antagonastic mecha-
nism such as [39], g2(·) = τ21 + τ22 . The actual cost incurred
in change of stiffness is related to the square of the torque
curve and the design of the cost function (26), ensures that
it overestimates the cost incurred due to a change in stiffness
[38].

E. State feedback controller

Feedback controllers based on PD gains are user tuned and
sub-optimal. Instead of using sub-optimal policies to track
the optimal trajectory, we propose to both plan the optimal
trajectory and use the local policy obtained from the backward
pass of Box-FDDP/FDDP. In Section IV-A, the feedback gain
matrix is computed in the backward pass to ensure strict
adherence to the optimal policy as described in [28]. Thus
the controller can be written as

u = k̂+ K̂(x∗ − x). (27)



7

TABLE I
PHYSICAL PARAMETERS OF 7DOF ARM

mi[kg] li[m] mi[kg] li[m]
Link 1 1.42 0.1 Link 2 1.67 0.5
Link 3 1.47 0.06 Link 4 1.10 0.06
Link 5 1.77 0.06 Link 6 0.3 0.06
Link 7 0.3 0.06

The optimal control formulation, which considers the complete
dynamics and costs, is used to calculate this local and optimal
control policy. The feedback matrix for a VSA-actuated system
is K̂ ∈ R2m×(n+m), which also produces state feedback to the
stiffness control alongwith the input torques. Furthermore, it is
computationally less expensive than using a separate feedback
controller.

To calculate this local and optimal control policy, we
formulate an optimal control problem that considers the com-
plete dynamics and costs. The feedback matrix for a VSA-
actuated system is K̂ ∈ R2m×(n+m), which also produces
state-feedback gains for stiffness control along with the input
torques. Furthermore, it is computationally less expensive than
using a separate feedback controller.

V. VALIDATION SETUP

In this section, we introduce the simulation and experimen-
tal setup. Results and discussion will be presented in Section
VI.

A. System setup

We employ six different compliant systems: (a) a 2DoF
robot with SEAs at each joint; (b) a 2DoF robot with VSA
at each joint; (c) a 4DoF robot with SEAs at each joint; (d)
a 4DoF robot with VSAs at each joint; (e) a 7DoF system
with SEA at each joint; (f) a 7DoF system with VSA at
each joint; (g) an underactuated compliant robot modeled as a
2DoF robot where the first joint is actuated by a SEA and the
second elastic joint is unactuated; and (h) an underactuated
compliant robot modeled as a 2DoF robot where the first
joint is actuated by a VSA and the second elastic joint is
unactuated (i) an underactuated serial manipulator with 21
elastic joints and only the first one is actuated by SEA. We
perform simulations and experiments for (a), (b), (c), (d), (g),
(h) and only simulations for (e), (f), (i). We now introduce the
various systems

The physical parameters for 2DoF, 4DoF robots with SEA
and VSA are: the mass of the links mi = 0.55 kg, the inertia
of the motors Bi,i = 10−3 kgm2, the center of mass distance
ai = 0.085 m, and the link lengths li = 0.089 m. Similarly,
we consider the following physical parameters for the 7DoF
system actuated by SEA and VSA at each joint. The physical
parameters resemble those of a Talos arm [40] (Table I), but
we add a compliant actuation at each joint. The motor inertia
is set to Bi,i = 10−3 kgm2 for all joints.

We classify our results as follows:
1) In Section VI-A, we report the difference between the

Jacobians of the dynamics computed by numerical dif-
ferentiation and analytical differentiation. The simulation

is conducted for the 2DoF and 7DoF cases actuated by
both SEA and VSA. We show the average and standard
deviation of the computed difference at 20 random con-
figurations and with velocities and control inputs set as
zero. The number of iterations for convergence and the
time taken for convergence are also reported.

2) In Section VI-B, we present the simulation and exper-
imental results of the end-effector regulation task with
SEAs and VSAs for a 2DoF, 4DoF and 7DoF arms.
• 2DoF robot: the Cartesian target point is [0.01, 0.2]
m, the time horizon is T = 3 s, and the weights
corresponding to control regularization is 10−2, state
regularization is 1, goal-tracking cost is 10−1, and
terminal cost contains a goal-tracking cost with 104

weighting factor. In the case of SEAs, we define the
stiffness of each joint as σi = 3 Nm/rad. Instead, in
the case of VSAs, the value of the stiffness lie between
σmin = 0.05 Nm/rad and σmax = 15 Nm/rad. We also
include an additional cost term (26) which accounts for
the power consumption due to change in the stiffness
and the weight is set to 1 and the λ is set to 10.

• 4DoF robot: the Cartesian target point is [.1, .3, .15]
m, the time horizon is T = 4 s, and the weights
corresponding to control regularization is 10−1, state
regularization is 10−3, goal-tracking cost is 100, and
terminal cost contains a goal-tracking cost with 104

weighting factor. In the case of SEAs, we define the
stiffness of the first joint as σi = 10 Nm/rad each
joint as σi = 5 Nm/rad. Instead, in the case of VSAs,
the Cartesian target point is [.15, .3, .15] m, the value
of the stiffness lies between σmin = 2 Nm/rad and
σmax = 15 Nm/rad. We also include an additional cost
term (26) which accounts for the power consumption
due to change in the stiffness and the weight is set to
1 and the λ is set to 10.

• 7DoF robot: the Cartesian target point is set as
[0, 0, 0.4] m, and the time horizon is T = 1.5 s.
The weights corresponding to control regularization is
10−2, state regularization is 1 and goal-tracking cost
is 10−1. In the case of SEAs, we define the stiffness
value of each joint is set to σ = 10 Nm/rad. Instead,
in the case of VSAs, the stiffness value of each joint
varies between σmin = 0.7 Nm/rad and σmax = 10
Nm/rad.

3) In Section VI-C, we illustrate the results obtained for
underactuated compliant robots with varying DoFs and
varying degrees of underactuation.
• Underactuated 2DoF compliant arm: In the case where

the first joint is actuated by a SEA, the stiffness
constant σ = 5 Nm/rad and the time horizon is
T = 3 s. For the case where the first joint is actuated
by VSA, the value of σmin = 0.05 Nm/rad and
σmax = 15 Nm/rad and the time horizon is T = 2 s.
The weights corresponding to control regularization is
10−1, state regularization is 10−2, ℓvsa is 10−2 and the
goal-tracking cost is 10−1. The stiffness of the second
link is 2 Nm/rad.
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• Underactuated serial manipulator: The stiffness ma-
trix of a flexible link can be written as K =
diag(K11, ...,Kmm). Further, the motor inertias are
considered to be negligible. We model an underac-
tuated serial manipulator as a 21 joint under-actuated
compliant arm with the total length being 3.15 m and
only the first joint is actuated and has 20 passive elastic
joints.

4) In the final Section VI-D, we compare the energy con-
sumption in an end-effector regulation task, for rigid,
SEA, and VSA cases. We report the results with three
different systems: a fully actuated 2DoF system, a fully
actuated 7DoF system and, a 2DoF underactuated com-
pliant arm. For comparison purposes, the weights of the
various cost terms in the objective function for the task
for rigid, SEA, and VSA are the same.

For cases involving SEAs, we use the FDDP solver, and
for cases with VSAs, we impose these box constraints on
the stiffness values using the Box-FDDP solver. Both solvers
used in the simulations and experiments are available in the
CROCODDYL library [15].

B. Experimental setup

We use the experimental setup illustrated in Fig. 1 for all
experiments. At each joint, we utilize QBMOVE ADVANCED
[39] as the elastic actuator. It features two motors attached to
the output shaft and is based on an antagonistic mechanism.
The motors and the links of the actuator both include AS5045
12 bit magnetic encoders. The actuator’s elastic torque τ and
nonlinear stiffness function σ satisfy the following equation

τ = 2β coshαθs sinhα(q − θe) , (28)
σ = 2αβ cosh(αθs) coshα(q − θe) , (29)

where, α = 6.7328 rad−2, β = 0.0222 Nm, θe is the motor
equilibrium position, θs tunes the desired motor stiffness and
q is the link-side position.

For the experiments related to systems with an un-actuated
joint, we set the θs of the passive joint as constant and θe is
set to be null. This pragmatic choice equips the passive joint
with a torsional spring and position encoder. This enables us
to resemble an underactuated compliant robot.

The optimal control with VSAs returns τ and σ as the
output of the optimal control problem. We need to invert
the equations (29) to find θe and θs as these will be input
to the actual motors. The parameters like α and β can be
found in the manufacturer’s datasheet, and q is the link
trajectory seen from the optimization routine. In the results
obtained from the experiments, we compare the results of
feedback control with pure feed-forward control. To quantify
the tracking performance of these controllers, we use as metric
the root mean square (RMS) error.

VI. RESULTS AND DISCUSSIONS

In this section, we present and discuss the simulation and
experimental results. The code necessary to reproduce the
results reported in this section are publicly available. 2

2github.com/spykspeigel/aslr to

TABLE II
RATIO BETWEEN DIFFERENCE OF NUMDIFF AND ANALYTICAL DIFF AND

MAX ANALYTICAL DIFF

SEA VSA

Problems Average Std. Dev. Average Std. Dev.

2DoF 2 · 10−7 1 · 10−7 8 · 10−6 3 · 10−7

7DoF 5 · 10−7 5 · 10−6 9 · 10−6 6 · 10−6

A. Analytical derivatives vs. numerical derivatives

Using analytical derivatives of the dynamics is expected to
improve the numerical accuracy. We present simulation results
in this subsection to support this claim. In Table II, we show
the average and standard deviation of the difference between
numerical differentiation and analytical differentiation. This
is for at 20 random configurations and with initial velocities
and controls set to zero. The values reported are the ratio
with respect to the maximum value of the analytical derivative
obtained among the randomized configurations for each case.

In Table III, we show the average and standard deviation
of the number of iterations for convergence between numeri-
cal differentiation and analytical differentiation-based optimal
control method. The 2DoF and 7DoF systems are assigned
end-effector regulation tasks with 20 random desired end-
effector positions which include non-zero terminal velocity.
For the underactuated 2DoF system, the task is to swingup
to the vertical position with 20 random initial configurations
which include nonzero initial velocity. The standard deviation
for numerical derivatives is significantly more than that of
analytical derivative-based OC for underactuated 2DoF VSA
cases, even though the average value is similar to analytical
derivatives-based OC.

For the 7DoF system with each joint actuated by SEA case,
the optimal control based on numerical derivatives converges
more than 400 iterations in 8 out of 20 cases. Similarly, in the
7DoF system with each joint actuated by VSA, 12 out of 20
problems take more than 400 iterations to converge. One can
obtain similar results for cases with higher degrees of freedom
and generic under-actuation.

TABLE III
ITERATIONS TAKEN BY OPTIMAL CONTROL BASED ON NUMDIFF AND

ANALYTICAL DIFF

AnalyticalDiff NumDiff

Problems Average Std. Average Std.

2DoF SEA 6 2 7.1 1.6
2DoF VSA 24 2.1 24.3 2.3
under 2DoF SEA 31.1 2.1 32.6 3.3
under 2DoF VSA 39.1 6.7 40.9 38
7DoF SEA 45.6 19.68 8 cases take > 400
7DoF VSA 47.83 15.3 12 cases take > 400

Most importantly, the computation of analytical derivatives
is computationally cheaper. In Table IV, we provide a com-
parison of the time taken per iteration for the optimal problem
with an end-effector regulation task for 2DoF and 7Dof
case and swingup-task for the under-actuated 2DoF system.

https://github.com/spykspeigel/aslr_to


9

Fig. 3. Snapshots of the end-effector regulation task with the 2DoF system
actuated by SEA in both joints. Please refer to the video attachment for more
details.

As can be noted, the analytical derivatives provide about
100 times increased performance. A C++ implementation is
expected to show increased performance and enable MPC-
based implementation as can be noted in our recent works
[28], [41].

TABLE IV
AVERAGE TIME TAKEN PER ITERATIONS FOR OPTIMAL CONTROL BASED

ON NUMDIFF AND ANALYTICAL DIFF (IN SECONDS)

AnalyticalDiff NumDiff

Problems SEA VSA SEA VSA

2DoF 0.098 0.099 3.9 4.3
under 2DoF 0.13 0.14 7.1 7.9
7DoF 0.17 0.32 23.01 23.22

B. Optimal trajectory for regulation tasks of SEA and VSA
systems

Fig. 4 shows the simulation and experimental results of the
2DoF SEA case. This includes the optimal trajectory (Fig.
4(a)) and the input sequence (Fig. 4(b)). At the end of the
task, the end -effector position was [0.0098, 0.20] m. The
link position in the experiment is presented in Fig. 4(c). A
photo-sequence of the experiment is depicted in Fig. 3; please
also refer to the video attachment. The RMS error for the first
joint in the case of pure feed-forward control was 0.2503 rad
and in the case of feedback control was 0.2296 rad. Similarly,
for the second joint, we observe that the RMS error in the pure
feed-forward case was 0.1274 rad, and with feedback control
was 0.1076 rad. So, this illustrates the advantage of using
feedback gain along with the feed-forward action for the task.

Similarly, Fig. 5 illustrates the results of the same end-
effector regulation task for the 2DoF system actuated by VSA
as described in section V-A. The end-effector position at the
end of the task was [0.011, 0.202] m. Fig. 5(d) shows plot of
the link positions obtained from the experiments.

Fig. 6(a) shows a configuration of 4DoF system with SEA
in each joint. It also illustrates the photo sequence of the
experiment for an end-effector regulation. The desired end-
effector position is [0.1, 0.3, 0.15] m, and the method was
able to generate a trajectory that reaches [0.11, 0.33, 0.13] m
in simulations. The link position obtained from the experiment
is shown in Fig. 6(d)-6(g). In the case of pure feedback control,
the RMS error for the first joint was 0.0361 rad, for the second
joint was 0.0545 rad, the third joint was 0.0659 rad and the
fourth joint was 0.0388 rad. Whereas using feedback control,
the RMS error for the first joint was 0.0344 rad, for the second

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

(a) Link positions

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

(b) Input torques

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

(c) Link 1 position
Fig. 4. End-effector regulation task of a 2DoF system with SEA in both joints.
(a) Joint evolution in simulation. (b) Input torque evolution in simulation. (c)
Evolution of joint 1 and joint 2 in experiments. We compare the desired and
the link positions using pure feed-foward (FF) and the feedback and feed-
forward (FF+FB) cases, which shows better performance.

joint was 0.0550 rad, for third joint was 0.0653 rad and for
the fourth joint was 0.0240 rad.

Fig. 7 shows the results for the 4Dof system with VSA in
each of the joints. We show the results for an end-effector
regulation task with desired end-effector position as [.15, .3,
.15] m and the end-effector position in the simulation was
[0.134, 0.36, 0.13] m. The link position obtained from the
experiment is shown in Fig. 7(d)-7(g). In the case of pure
feedback control, the RMS error for the first joint was 0.0428
rad, for the second joint was 0.0230 rad, the third joint was
0.0294 rad and the fourth joint was 0.0222 rad. Whereas using
feedback control, the RMS error for the first joint was 0.0429
rad, for the second joint was 0.0213 rad, for third joint was
0.0294 rad and for the fourth joint was 0.0136 rad.

Using the proposed approach, we were also able to produce
optimal solutions for higher dimensional systems. In Fig. 9
we provide the simulation results, which includes the joint
positions and the input sequence, for a 7DoF system with SEA
at each joint.

In Fig. 10, we provide the simulation results, which includes
the input sequence 10(b) and the stiffness profile 10(c), for
7DoF system with VSAs at each joint. A photo-sequence of
the task is showed in Fig. 8. The error in the end-effector
position for 7DoF SEA systems is 0.0091 m and for 7DoF
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(a) Link Position
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(b) Input Torques
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(c) Stiffness Profile
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(d) Links position
Fig. 5. End-effector regulation task of a 2DoF system with VSA in both joints.
(a) Link position in simulations (b) Input torque evolution in simulation. (c)
Input stiffness evolution in simulation. (d) Evolution of joint 1 and joint 2
in experiments. We compare the desired and the link positions using pure
feed-foward (FF).

VSA system is 0.005.
Thus, the proposed method is capable of achieving suc-

cessful results both in the case robots actuated by SEA and
VSA. It can also be applied to platforms with high degree of
freedom. We also show that feedback gain matrix is helpful
in reducing the RMS error.

In comparison to earlier works [42], [43], the presented
method was able to synthesize dynamic motion and control
with a smaller time horizon (1-4 seconds). By dynamic mo-
tions, we refer to the tasks where the contribution provided
by M(q)q̈, C(q, q̇) is comparable to the static contribu-
tion to the torque and therefore is not negligible, such that
||M(q)q̈+C(q, q̇)q̇|| ≈ ||G(q) +Kq||.

Furthermore, it is worth mentioning that the employed
actuator present an highly nonlinear dynamics even in the
SEA case (see Section V-A). Thus, achieving good tracking
performance also proves the robust aspect of the proposed
method.

(a) Snapshots of the end-effector regulation for 4DoF with a SEA in each
joint. Please refer to the video attachment for more details.
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(b) Link position
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(c) Input Controls
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(f) Link 3 position
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(g) Link 4 position
Fig. 6. End-effector regulation task of a 4DoF system with SEA in all joints.
(a) Link position in simulation (b) Input Torque. The desired end-effector
position was [0.1, 0.3, 0.15] m and it reached [0.11, 0.33, 0.13] m. (c), (d), (e),
(f) Evolution of all joints in experiments. We compare the desired (simulation)
and the link positions using pure feed-forward (FF) and feed-forward with
feedback (FF+FB), which shows better performance.
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(c) Stiffness Evolution
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(e) Link 2 position

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

(f) Link 3 position
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(g) Link 4 position
Fig. 7. End-effector regulation task of a 4DoF system with VSA in all joints.
(a) Link position in simulation. (b) Input torque evolution in simulation. (c)
Stiffness profile. The desired end-effector position was [.15, .3, .15] m and
it reached [0.134, 0.36, 0.13] m. (d),(e),(f),(g) Evolution of all the joints in
experiments. We compare the desired and the link positions using pure feed-
forward (FF) and feed-forward with feedback (FF+FB), which shows better
performance.

Fig. 8. Motion of the 7DoF arm with VSA in all the joints performing an
end-effector regulation task. The red ball indicate the desired position.
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(b) Input torques
Fig. 9. End-effector regulation task of a 7DoF system with SEA in all joints.
(a) Evolution of the link positions in simulation. (b) Input torque evolution
in simulation.
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Fig. 10. End-effector regulation task of a 7DoF system with VSA in all joints.
(a)Evolution of the link positions in simulation. (b) Input torque evolution in
simulation. (c) Input stiffness evolution in simulation.
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C. Optimal control of underactuated compliant robots

Fig. 12 shows the simulation and experimental results of
the swing-up task performed by the 2DoF underactuated
compliant arm with a SEA in the first joint. This includes
the optimal trajectory (Fig. 12(a)) and the input sequence
(Fig. 12(b)). Fig. 12(c) illustrates the link positions of both
the joints obtained from the experiments. Snapshots of the
experiments are depicted in Fig. 11; please also refer to the
video attachment. The RMS error for joint 1 in the case of
pure feed-forward control was 0.3908 rad and in the case of
feedforward plus feedback control was 0.3734 rad. Similarly
for joint 2 we observe that RMS for pure feed-forward case
was 0.1607 rad and for feedforward plus feedback control was
0.1571 rad.

The simulation and experimental results for the swing-up
task of the 2DoF underactuated compliant arm with VSA in
the first joint are shown in Fig. 13. The RMS error for joint 1
in the case of pure feed-forward control was 0.3857 rad and in
the case of feedforward plus feedback control is 0.2068 rad.
Similarly, for joint 2 we observe that RMS for the pure feed-
forward case was 0.1701 rad and for feedback control was
0.1341 rad. So, the use of feedback gains reduces the error
and helps to stabilize the upward-pointing position in both
cases. Similarly, an underactuated 4DoF system can also be
stabilized in the vertical position since the proposed controller
uses state-feedback controller (and given the system reachable
in the vertical equilibrium).

Fig 14 illustrates the motion synthesized by the proposed
algorithm for an underactuated serial manipulator with 21
joints and only one actuated joint. The task presented is
an end-effector regulation task with the desired end-effector
position being: [2.12, 2.12] m and the terminal velocity being:
[7.07, 0] m/s with the error in simulation being 0.006 m. In Fig.
15, we present the end-effector motion and the input torques.

Thus, the proposed method is successful in planning optimal
trajectories for under-actuated compliant systems as well.
Especially the simulation results with an under-actuated serial
manipulator with 20 passive joints are promising as the error
in the end-effector position is only 0.006 m.

The results presented here neglect the exact nonlinear ac-
tuator dynamics, and thus the tracking performance on the
experimental setup illustrates the robustness of the method.

D. Energy consumption

The sum of torque squared over the whole trajectory is
assumed to be the most suitable candidate to compare different
controllers for power consumption [44] i.e., T =

∑N
k=0 τ

2
k .

Using this metric, we conduct simulations and show that
elastic actuation reduces energy consumption. To illustrate
this we use end effector regulation task for a fully actuated
2DoF system, a fully actuated 7DoF and a 2DoF underactuated
compliant arm. For each of the systems, the cost weights are
kept the same across rigid, SEA and VSA actuation for a fair
comparison.

Table V shows that use of SEA and VSA lowers the energy
consumption for all the three systems.

TABLE V
POWER CONSUMPTION COMPARISON BETWEEN RIGID AND SOFT

ACTUATORS

Problems rigid SEA VSA

2DoF 142.07 138.46 84.17
2DoF Flexible 101.019 87.53 50.84
7DoF > 10000 6112.77 4545.26

VII. CONCLUSION AND FUTURE WORK

In this work, we presented an efficient optimal control
formulation for soft robots based on the Box-FDDP/FDDP
algorithms. We proposed an efficient way to compute the
dynamics and analytical derivatives of soft articulated and
underactuated compliant robots. The state-feedback controller
presented in this paper based on local and optimal policies
from Box-FDDP/FDDP helped to improve the performance
in swing-up and end-effector regulation tasks. Overall, the
application of (high authority) feedback to soft robots may be
an advantage or a disadvantage [1]. For instance, in [45] it is
shown how feedback can stabilize unstable equilibrium points
of the system. Furthermore, feedback increases the robustness
of model uncertainties and disturbances. However, the negative
effect of feedback is the alteration of the mechanical stiffness
of the system [43], [46] which defeats the purpose of building
soft robots. In fact, compliance is purposefully inserted into
robots to confer them the so-called embodied intelligence [47].
This derives from the interaction between the system body, its
sensory-motor control, and the environment, and it has the goal
to simplify the robot control thoughtfully inserting complexity,
and intelligence, into the robot body [48]–[50]. For this reason,
depending on the specific task, the application of feedback to
soft robots should be carefully approached. Future work will
focus on preserving the natural behavior of the controlled soft
robot including limitations to the feedback authority in the
control problem similar to [51].

Another future research direction would consist of extending
the formalism to soft articulated legged robots. Accounting
for compliance in legged robots is expected to improve the
performance compared to existing approaches. The use of
feedback alters compliance in the system. This behavior is
undesirable as it defies the sole purpose of adding the soft
elements in the first place. One possible research direction
would be to explore a DDP-based algorithm, maybe in a bi-
level setting, to obtain feedback gains that respects system
compliance and still get high performance. Further, an MPC
solution based on the proposed framework is seen as a natural
extension of this work.
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