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Human-Flow-Aware Long-Term Mobile Robot Task
Planning Based on Hierarchical

Reinforcement Learning
Yuchen Liu , Luigi Palmieri , Member, IEEE, Ilche Georgievski , Member, IEEE, and Marco Aiello

Abstract—The difficulty in finding long-term planning policies
for a mobile robot increases when operating in crowded and dy-
namic environments. State-of-the-art approaches do not consider
cues of human-robot-shared dynamic environments. Aiming to fill
this gap, we present a novel Human-Flow-Aware Guided Hier-
archical Dyna-Q (HA-GHDQ) algorithm, which solves long-term
robot task planning problems by using human motion patterns
encoded in Maps of Dynamics (MoDs). To tackle the complexity of
long-term robot operation in dynamic environments, we propose a
combination of symbolic planning and Hierarchical Reinforcement
Learning (HRL) that generates robot policies considering cost
information derived from MoDs. We evaluated HA-GHDQ in a fac-
tory environment with two simulation and one real-world datasets
to complete a transportation-and-assembly task. Our approach
outperforms the baselines with respect to sample efficiency and
final plan quality. Moreover, we show that it is more adaptable and
robust against environmental changes than the baselines.

Index Terms—Task planning, integrated planning and learning,
human-robot collaboration.

I. INTRODUCTION

NOWADAYS, robots have become important helpers in
industrial and household settings [1], [2], [3], [4]. In such

environments, they need to constantly take the presence of
humans into account. For example, a mobile robot operates in a
factory to transport and assemble different parts, while there are
humans moving around, as shown in Fig. 1. While completing its
tasks, the robot should efficiently navigate and avoid collisions
with humans.

This example can be treated as a task and motion planning
(TAMP) problem. Two major classes of task planning tech-
niques are the learning-based and model-based approaches [5].
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Fig. 1. An example of a factory environment and the human motion pattern.
The human motion pattern is modeled using a CLiFF-map [12] represented with
the arrows, where the arrow length and color denote the velocity and orientation
of the observed human flow at a location respectively.

Numerous recent works focus on learning-based approaches,
for instance, using Reinforcement Learning (RL). The model-
based approaches, namely automated task planning, use classical
symbolic formalisms such as the Planning Domain Description
Language (PDDL) [6] to define the planning problems, whereas
its development appears highly isolated from the research of
learning-based approaches [7]. Many learning-based robot task
planning methods have already achieved robust performance
in static environments [7], [8], [9] and dynamic environments
that consider interaction and collision avoidance with moving
objects using RL [10]. However, due to the performance drop
of the RL approaches with growing state and action spaces as
well as planning horizon, they can only handle relatively simple
tasks [11].

Enabling the awareness of dynamic objects in long-term
planning still remains a crucial research topic. An efficient way
of achieving human awareness is to extract motion patterns of
human flow using a Map of Dynamics (MoD), which represents
the spatial information of dynamics (e.g., flow density and direc-
tion) at different positions, such as Circular-Linear Flow Field
map (CLiFF-map) [12]. Predicting human motions individually
in crowded environments and subsequently considering them
in the planning phase significantly increases the computational
effort [10]. On the contrary, MoDs consider the crowd as a whole
entity and model its own long-term behaviors. Taking MoDs as
prior knowledge of the environment’s dynamics enables a simple
and efficient derivation of the cost to cross the human flow. The
latter can be used to generate robot behaviors that avoid traveling
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against the human flow. However, works to combine MoDs in
task planning are so far unseen.

Nevertheless, human flow differs from time to time, thus,
static MoDs can be easily invalidated. A learning-based ap-
proach such as Hierarchical Reinforcement Learning (HRL)
can help the task and motion planners to be more adaptable to
environmental changes. Aiming to improve the performance of
long-term mobile robot task planning in dynamic environments,
we propose a Human-Flow-Aware Guided Hierarchical Dyna-Q
(HA-GHDQ) algorithm, where the robot uses HRL to learn the
costs to cross the human flow from the MoDs and completes
long-term tasks. HRL allows the agent to learn through tasks
with long planning horizons more efficiently than standard RL,
while also being adaptable to environmental changes. Our work
is inspired by the Guided Dyna-Q (GDQ) algorithm [7], which
only focused on completing short-term navigation tasks using
non-hierarchical RL in a static environment. Similar to GDQ, we
also use an automated task planner to guide the learning process.
In summary, we present the following key contributions:

i) Our approach is the first to combine human flow aware-
ness, hierarchical reinforcement learning, and automated
task planning to solve long-term mobile robot task plan-
ning problems in dynamic environments.

ii) Our approach outperforms various baselines with respect
to sample efficiency, path length, and final plan quality.
Our approach achieves similar high-quality plans while
being up to 2000 times faster than an optimal search-based
planner. Moreover, we show that it is more adaptable and
robust against environmental changes than the baselines.

II. RELATED WORK

The presented work lies at the intersection of three fields:
MoDs, HRL, and robot task and motion planning.

1) Map of Dynamics: MoDs are powerful in representing
typical human movements with flow-like motion patterns and
serve as a-priori knowledge in the planning phase [13]. Kuc-
ner et al. [12] use Semi-Wrapped Gaussian Mixture Models
(SWGMMs) to map the human velocities, and represent the
human motion patterns with the Circular-Linear Flow Field map
(CLiFF-map). In our previous work [1], we use them to improve
conventional robot motion planners to plan smoother and shorter
trajectories.

2) Hierarchical Reinforcement Learning: HRL can success-
fully overcome the drawback of performance drop in standard
RL approaches in large state and action spaces as well as
long planning horizon, and brings higher learning efficiency,
where HRL decomposes large problems into a hierarchy of
sub-problems, and each sub-problem can be implemented with
a standard RL approach [11]. In recent years, many HRL
approaches have been proposed such as Hierarchies of Ab-
stract Machines (HAMs) [14], the option framework [15] and
Hierarchical Dyna (H-Dyna) [16]. In this letter, we combine
H-Dyna into the option framework to learn additionally from
the “replayed” experiences [17].

3) Learning-Based Robot TAMP: Many approaches use RL
for solving robot TAMP problems. For instance, Jiang et al. [9]
propose a framework that integrates mobile robot TAMP and
RL to combine their ability of high-quality offline planning
and generalizability, but was applied in a static environment.
The GDQ algorithm proposed in the base work [7] uses an
automated task planner to guide the RL process for a mobile

robot to navigate through a static office environment, but with a
short planning horizon. Some recent works also combine auto-
mated task planning with HRL [18], [19] to speed up learning
for long-term tasks, whereas they are evaluated with relatively
simple navigation tasks in static and small-scale environments.
For tackling human-robot shared environments, various social
navigation approaches are developed to avoid collision with
humans in low-level motion planning [1], [10], [20], where the
robots should first predict the human motions within a short
planning horizon. However, predicting all human motions is
computationally very costly in crowded environments [10]. Re-
cent learning-based social navigation methods [21], [22] achieve
solid performance in goal-reaching tasks in crowded scenarios,
but do not tackle long-term task planning problems.

III. PRELIMINARIES AND NOTATIONS

1) Task Planning Problems: A task planning problem is a tu-
ple 〈S,A, T,R, s0, sG〉, whereS is a finite set of state variables,
A is a finite set of actions, T is a state transition function and R
is the corresponding state transition reward, s0 is an initial state
and sG is a set of goal states. The solution of a task planning
problem is a plan π, i.e., a list of state-action pairs (s, a) whose
execution leads from s0 to sG. A plan π∗ is optimal when it
results in the highest reward.

2) Circular-Linear Flow Field Map: A CLiFF-map uses
multimodal statistics to represent motion patterns. For model-
ing human flow in an environment, the velocities of humans
V = (θ, ρ)T with speed ρ ∈ R+ and orientation θ ∈ [0, 2π)
observed at a location are mapped into a SWGMM ξ. A
CLiFF-map is defined as a set of SWGMMs along with their
motion probability p̄n, observation ratio q̄n and location ln:Ξ =
{(ξn, p̄n, q̄n, ln)|n ∈ Z+, ln ∈ R2}. An example of a CLiFF-
map is shown in Fig. 1.

3) Hierarchical Reinforcement Learning: HRL approaches
decompose large RL problems into a hierarchy of sub-problems,
and jointly use the policies in each hierarchical level to inter-
act with the environment. For example, in a two-level option
framework, the policy at a higher level πΩ can be denoted as
policy over option, and the policy at a lower level πω is called
intra-option policy, namely an action sequence with respect to
a given option [15]. An option ω ∈ Ω is a triple 〈Iω, πω, βω〉 in
which Iω ⊆ S is an initiation set of states, πω : S ×A → [0, 1]
is an intra-option policy, and βω : S → [0, 1] is a termination
condition, with Ω representing the option space. An option ω is
available in state st if and only if st ∈ Iω , then the agent picks
an option ω according to its policy over options πΩ, then follows
the intra-option policy πω until the termination condition βω is
met. The option value function QΩ(s, ω) : S ×Ω×A → R is
the action value function of executing an action with respect to
the given state and option. The optimal policy over option π∗

Ω
can then be found by maximizing the option value function QΩ.

IV. APPROACH

Hereinafter we focus on solving a long-term mobile robot task
planning problem, where the agent should learn to produce a
high-level task plan to achieve the given goal while minimizing
the overall cost, i.e., traveling distance and the cost to cross
human flow derived from the human motion patterns in a given
environment.
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Fig. 2. An overview of the architecture of HA-GHDQ.

Running example: We consider a mobile robot that moves in
a factory environment and performs an e-bike assembly task.
There are five parts of the e-bike (steering wheel, rear wheel,
body frame, battery, and saddle) distributed in the factory at
corresponding locations. The robot should gather the parts and
bring them back to the assembly zone one by one, and assemble
them. The robot can perform four actions: move, pick, drop, and
assemble. The human motion pattern is initially unknown to the
robot and can be learned by observing the environment during
the exploration. We use CLiFF-map to represent the human
motion pattern.

A. Architecture

The learning system of HA-GHDQ consists of three main
parts, i.e., the hierarchical reinforcement learner, the environ-
ment model, and the automated task planner. An overview of
the system architecture is shown in Fig. 2. The planner takes
the domain knowledge and the problem instance as inputs (e.g.,
reported in PDDL). The domain knowledge includes the object
types, the predicates, and the action knowledge, while the prob-
lem instance contains the initial and goal states, the properties
of all objects, and the cost of traversing between each connected
location (initialized with distances). Both inputs are defined by
the user. We use Π to represent the automated task planner.
During the learning process, it computes an optimal task plan π
with respect to the current knowledge by minimizing the cost.

The task plan π is passed to the hierarchical reinforcement
learner. π provides a sequence of state-action transitions that
successfully leads to the goal and guides the update of the action
value function. The hierarchical reinforcement learner generates
the action policies for the robot to interact with the environment
model. The CLiFF-map is integrated into the environment model
and serves for obtaining the cost of traversing through human
flow. The environment model returns the corresponding rewards
back to the hierarchical reinforcement learner for updating the
value function, and also to the problem instance to update the
cost terms.

B. Task Decomposition

To serve the HRL, the planning problem can be decomposed
as follows: to assemble an e-bike, all parts need to be fetched in
the factory and transported to the assembly zone. Both fetching
and transporting a part can be seen as a simple navigation task
consisting of a few move actions followed by a pick or drop
action. Thus, the planning problem can be decomposed into three
hierarchical levels as shown in Fig. 3. The first level refers to

Fig. 3. Task decomposition of HRL.

the options, i.e., the parts. The second level denotes the sub-
options, i.e., fetch a part or transport it back, with a determined
order. The last level consists of sequences of primitive actions for
accomplishing the sub-options, which indicate the minimalistic
tasks and can be solved by a simple RL approach. Finally, the
assemble action concludes the task. In addition to Ω, we use
U to denote the sub-option space. The policies over option,
sub-option, and intra-option policy, i.e., πΩ, πU and πω , can
be interpreted as the order of options, sub-options, and actions
respectively.

C. Environment Model

To integrate the CLiFF-map into the environment model, first,
the human motion pattern needs to be extracted from a dataset of
human trajectories. For simplifying the computation of cost to
cross human flow, in each grid cell, we only use the weighted sum
of the mixture models to represent the velocity ρ and heading
angle θ of human flow, the motion probability p̄ and observation
ratio q̄ are not multi-modal and can therefore be directly used.

For computing the cost of traversing the human flow, a grid
graph is built based on the CLiFF-map, as shown in Fig. 4. Each
node in the grid graph lies in the center of the corresponding grid
cell (1 m resolution) obtained when building the CLiFF-map.
The edges between each two grid nodes are bi-directional, given
that the cost to cross human flow may be different in each
direction. The weight of each edge is computed as the weighted
sum of the step cost and the cost to cross human flow between
the two grid cells. Moreover, the cost to cross human flow is
proportional to the relative angle between agent and human
flow direction θ, human velocity ρ, motion probability p̄, and
observation ratio q̄. It has lower values if the robot moves in
the same direction as the human flow, and higher values when
it moves against the human flow direction. It is computed as
follows:

wi,j = w1cstepi,j
+ w2cflowi,j

= w1cstepi,j
+ w2[(1− cos(θj − θagent)) · ρj · p̄j · q̄j ]

(1)

where wi,j , cstepi,j
and cflowi,j

are the edge weight, the step
cost, and the cost to cross human flow from grid node i to j,
respectively, with wi,j ≥ 0.

The grid graph is stored in the environment model for obtain-
ing the real cost when the agent interacts with the environment.
If an agent moves from one grid node to another, the resulting
cost will be the summed weight along all the traveled edges. The
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Fig. 4. The grid graphs and the planning graphs on the simulation ((a) and (b)) and real-world human trajectory datasets (c). A zoomed view of the grid graph
and the CLiFF-map is illustrated on the top right in (a). The planning graphs consist of the red nodes and the green bi-directional edges, with nodes 0 (a), 10 (b)
and 9 (c) being the assembly zones, nodes 3 (a), 6 (b) and 2 the steering wheel zones, nodes 5 (a), 8 (b) and 7 (c) the saddle zones, nodes 6 (a), 10 (b) and 0 (c) the
rear wheel zones, nodes 7 (a), 1 (b) and 13 (c) the battery zones, and nodes 8 (a), 3 (b) and 1 (c) the body frame zones.

cost from a source grid node src to a target grid node tar is given
by csrc,tar =

∑tar−1,tar
k=src,l=src+1 wk,l.

However, producing a long-term task plan based on the dense
and large dimensional grid graph is computationally inefficient.
Therefore, a sparse planning graph is built based on the grid
graph by extracting the relevant landmarks from the map. The
landmarks are manually identified (i.e., or can be learned of-
fline), where their locations are relevant for the planning domain
(e.g., a part is located at this place, or where the human flow
merges or splits). The nearest grid node to a landmark is selected,
and treated as a node to constitute the planning graph. The
illustration of the planning graph can also be seen in Fig. 4.
The robot can only move from one node to a neighbor node
when it takes a move action. The planning graph consists of
significantly fewer nodes and can be used to compute the task
plan for the robot. The edges of the planning graph are also
bi-directional, and the edge weight in each direction is obtained
by first finding the corresponding grid nodes from the grid graph,
and then calculating the cost from one grid node to another:
wpm,n

= cO(m),O(n), where wpm,n
is the edge weight from node

m to node n in the planning graph, c refers to the previously
defined cost computation, O is a mapping function which finds
the corresponding grid node from the grid graph given a node
from the planning graph.

D. Algorithms

Algorithm 1 describes the learning loop of HA-GHDQ. It
takes the inputs of option space Ω, sub-option space U , state
space S, action space A, automated task planner Π, termination
condition β, initial and goal states s0 and sG as well as the
parameters: discount factor γ, learning rate α, counter threshold
m and maximal reward Rmax. The action value function Q is
optimistically initialized with the help of the automated task
planner Π (Line 1), and then updated with policy iteration (Line
7). The learning loop is repeated until the reward converges, or
the maximal number of training episodes is reached. The results
of the algorithm are the trained Q function, and the policies
over option, sub-option, and intra-option policy, namely πΩ, πU

and πω .
Algorithm 2 presents the optimistic initialization. At Line 4,

the task planner creates an initial optimistic plan π based on
the current knowledge, i.e., the distances between each node in
the sparse graph, without knowing the human motion pattern.
Since the plan π only consists of state-action pairs, while the

Algorithm 1: HA-GHDQ.

HRL needs the hierarchy of options, sub-options, and actions to
update the value function, it is necessary to extract the policy
over option πΩ, policy over sub-option πU as well as the intra-
option policy πω from the plan π to serve the HRL, i.e., the order
of transporting parts and the actions to accomplish the fetch and
transport sub-options (Line 5). The agent uses the policies to
initialize the transition, reward, and Q function (Lines 6 to 11).

Algorithm 3 describes the policy update with hierarchical
Dyna-Q. In each training step, the agent selects an action and ex-
ecutes it to interact with the environment, and obtains the reward
r and the next state s′ from the environment model. The reward
function is defined as follows: for a move action from node m
to node n, the agent receives r = rmove = −wpm,n

according
to the edge weight; for the pick or drop action, the agent gets
r = rpick = rdrop = 1

2Rmax; finally, for the assemble action,
the agent obtains r = rassemble = Rmax.

The reward r is used to update the Q function (Line 4) and
the cost terms in the problem instance if the agent observes that
the real cost differs from the cost term in the problem instance
(Line 12). Once a state tuple 〈ω, u, s, a, s′〉 has been visited
for over m times, the transition and reward functions will be
updated, indicating this state tuple is already known (Lines 8 to
10). Subsequently, the task planner creates a new plan based
on the updated knowledge and updates the Q function with
simulated experience (Lines 13 to 21). Once the current option
or sub-option terminates, the next possible ones will be selected
according to the option value function QΩ and the sub-option
value function QU (Lines 22 to 27).
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Algorithm 2: INITWITHGUIDE.

V. EVALUATION

We compare our approach with three baselines, two are
non-HRL approaches, namely Dyna-Q [17] and Guided Dyna-Q
(GDQ) [7], and one HRL approach, namely H-Dyna [16]. For
evaluating their performance, the part of the hierarchical rein-
forcement learner shown in Fig. 2 is replaced by each baseline
approach correspondingly. The main difference between GDQ
and Dyna-Q as well as between HA-GHDQ and H-Dyna is that
GDQ and HA-GHDQ use the automated task planner to guide
the learning process of Dyna-Q and H-Dyna, respectively. As
illustrated in Fig. 4, each time, the robot will start at the assembly
zone, and pick up a part by navigating to the corresponding posi-
tion and transporting it back to the assembly zone successively.
In the following, each learning approach is called an “agent” for
convenience.

In order to gain insights into the sample efficiency, quality of
the results, and robustness against changes in the environment
and planning configuration, we test the approaches in three
experiments: a static environment, a switching goal situation,
and a partial change of the human flow. We compute the fol-
lowing metrics: the cumulative reward, the plan length, the task
completion rate (i.e., how many sub-tasks were completed), and
the planning time. The task completion rate is computed as
follows: completing a sub-option gives 9% of completion, since
there are 5 parts (i.e., options) in total and each option contains
two sub-options, completing all the options (i.e., all parts are
transported to the assembly zone) returns (9 + 9)× 5 = 90%
of completion. Finally, performing the assemble action gives
the last 10%.

A. Implementation and Parameters

We use the simulation datasets of human trajectory designed
in our previous work [1], i.e., the p-shape and the maze map, and
the ATC dataset which records the real-world human trajectories
in a shopping center [23], as shown in Fig. 4. The parameters
are set as follows: the step cost cstep = 1, the maximal re-
ward rmax = 4, the learning rate α = 0.001, the discount factor
γ = 0.99, and the probability of random action ε = 0.015. Each
agent is trained with 20 runs, with 100 episodes per run for the
p-shape and maze maps, and 200 episodes for the ATC map.
Each episode allows a maximum of 180 steps for the p-shape
map and 80 steps for the maze and ATC maps. The number
of “replay” steps is set to 300. We focus on highlighting the
superiority of HRL in long-term task planning rather than the

Algorithm 3: POLICYUPDATE.

implementation of HRL, thus, the HRL in our approach is simpli-
fied by omitting the option value functionQΩ and the sub-option
value function QU , i.e., the order of options and sub-options.
Therefore, we simplify the running example by having the same
start and end position for the robot to allow a random option
order.

All approaches are implemented in Python 3.8.13. We run
the experiments on a standard PC with an Intel Xeon W CPU
at 3.40 GHz and 32 GB RAM. Furthermore, we use PDDL to
encode the domain knowledge and problem instance and Fast
Downward (FD) [24] as the automated task planner and A* blind
heuristic as the search configuration. We validate the correctness
and feasibility of the plan created by the FD planner with the
plan validation tool VAL [25].

B. Static Environment

Fig. 5 shows a comparison of the cumulative rewards of each
agent and the normalized cost of the optimal plan created by the
FD planner, i.e., the optimal cost, in two simulation datasets. The
slight drop in the planner cost in the first 20 episodes is caused
by the update of the cost terms in the problem instance when the
agent observes the cost to cross human flow. Both hierarchical
agents have stably reached near-optimal cost, which implies a
high consistency in finding the optimal solution. HA-GHDQ
takes averagely 54.24 s in the p-shape map and 129.58 s in the
maze map till convergence, and H-Dyna takes 18.92 s and 9.84 s
in the two maps respectively. Despite HA-GHDQ taking much
longer time to converge than H-Dyna due to the execution time
of the FD planner, HA-GHDQ converges to near-optimal reward
with significantly fewer episodes than H-Dyna in both maps, i.e.,
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Fig. 5. Comparison of cumulative rewards and normalized costs of the Fast Downward (FD) planner of all experiments on p-shape and maze maps. The shaded
areas represent the 10% and 90% quantile of reward through all runs.

TABLE I
COMPARISON OF TASK COMPLETION RATE AND PLAN LENGTH (I.E., NUMBER OF STEPS IN EACH EPISODE) OF ALL EXPERIMENTS. THE NUMBERS ARE DISPLAYED

IN median± std AND ARE CALCULATED OVER ALL RUNS AND EPISODES

40 vs. 70 episodes on average in the p-shape map (75% more
than HA-GHDQ) and 32 vs. 71 episodes on average in the maze
map (122% more than HA-GHDQ). Table I also presents that
H-Dyna is only able to complete the task goal in the maze map,
while HA-GHDQ consistently reaches 100% of completion, and
is able to achieve the optimal plan length with a notably lower
standard deviation.

Additionally we test the HA-GHDQ agent without learning
the CLiFF-map derived costs, which result in lower rewards
than the optimal values. Those are close to HA-GHDQ’s initial
rewards as shown in Fig. 5(a) and (d), since the costs of travers-
ing between each node are only initialized with distances (see
Section IV-A).

In contrast, the non-hierarchical agents GDQ and Dyna-Q
converge to notably lower rewards, and none of them completes
the task goal. The reason for the poor performance can be

inferred from Fig. 6, the brighter edge color implies a signif-
icantly higher frequency of traversing, which is caused by a
convergence in a local minimum. For the ATC dataset we run
the agents in the static environment experiment: since the human
trajectories are recorded in the real-world, simply changing a
part of the trajectories will lead to non-existing human behaviors.
The rewards shown in Fig. 7 display similar results, where only
the two hierarchical agents reach the optimal cost. Although
HA-GHDQ takes averagely 473.14 s to converge and H-Dyna
takes 23.09 s, HA-GHDQ uses significantly fewer episodes than
H-Dyna, i.e., 21 vs. 171 episodes (719% more than HA-GHDQ),
and has a dominantly higher median completion rate as shown
in Table I.

Moreover, the trained HA-GHDQ agent can generate a plan
up to nearly 70% faster (in the ATC map) than H-Dyna, and over
200 times faster than the FD planner in the p-shape and the maze
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Fig. 6. Comparison of exploration heat-map of Dyna-Q and GDQ agents of
partial change of human flow experiment. The edge color indicates the total
frequency of traversing along the edge in both directions.

Fig. 7. Reward of static environment experiment on ATC map. The shaded
areas represent the 10% and 90% quantile of reward through all runs.

TABLE II
COMPARISON OF PLANNING TIME IN [ms] BETWEEN TRAINED AGENTS AND

FD PLANNER OF ALL MAPS. THE RESULTS OF DYNA-Q AND GDQ ARE

NEGLECTED SINCE THEY NEVER FULLY COMPLETE THE TASK. THE NUMBERS

ARE SHOWN IN median± std

maps, as well as over 2000 time faster than FD in the ATC map
as shown in Table II.

C. Goal Switching

We evaluate the adaptability of the agents against changes
in the planning configuration. We switch the location of the
steering wheel zone and the assembly zone after completing
the static environment experiment, and train for additional 100
episodes without resetting the learned Q functions. The other
configurations and the CLiFF-map remain unchanged.

As shown in Fig. 5(b) and (e), for the first 100 episodes, the
rewards of all agents developed similar to those in the previous
experiments. After the switch, the reward of H-Dyna drops
immediately and then slowly converges again to a new highest
reward in the maze map, but fails to reach the optimal cost in the
p-shape map, and only has 54% of median completion rate, while
the reward of HA-GHDQ has barely dropped and converges
again to the new optimal cost in both maps. Table I shows that
H-Dyna can still complete the task after the configuration change
in the maze map, but the lower standard deviations in completion
rate and plan length of HA-GHDQ indicate a high capability of
completing the task consistently, and high robustness against
the configuration change. In contrast, GDQ and Dyna-Q still
perform the worst with respect to all the metrics.

D. Partial Change of Human Flow

In order to evaluate the robustness of the agents against the
environmental change, we flip the human flow direction of the
CLiFF-map in the circle of nodes 2− 3− 6− 5− 2 in the p-
shape map and nodes 2− 6− 7− 2 in the maze map by 180◦
for additional 100 episodes. Other values in the CLiFF-map as
well as the planning configuration remain the same.

After the change, the reward of HA-GHDQ drops lightly but
reaches the new optimal cost again in both maps, while the
reward of H-Dyna in the p-shape map rises slower, and does
not reach the optimal cost in the maze map, as reported in Fig.
5(f). According to the task completion rate and plan length given
in Table I, HA-GHDQ still performs the best after the change
of human flow, indicating high robustness and adaptability to
environmental change.

E. Observations

1) On the Need of MoDs: Without embedding the costs
derived from the MoDs, the agents only consider the traveling
distance, and it leads to lower rewards, i.e., higher overall costs,
as shown in Fig. 5(a) and (d). By using the MoDs to represent the
human motion patterns, the agents learn to minimize the overall
cost by avoiding traversing against the human flow to achieve
human flow awareness.

2) On the Need of HRL: Observed from all the experiments
above, we conclude that with the growing complexity of the
task planning problems in a given environment, it is more likely
that the agent will take the same action multiple times, but in
fact, each time the action serves a different purpose, i.e., under
a different option. Thus, the same action will have different Q
values regarding different options. Non-hierarchical RL is by no
means proper in this case, and will possibly lead to confusion in
selecting actions.

3) On the Combination of Learning and Planning: Although
the computation time of the FD planner increases HA-GHDQ’s
training time, the FD planner helps to optimistically initialize
the agent, and improves sample efficiency by notably reducing
the number of steps in each episode, which can be implied by
comparing the plan length between H-Dyna and HA-GHDQ
in Table I. Moreover, the usage of the FD planner allows
HA-GHDQ to achieve a higher completion rate and robustness
against changes in environment and planning configuration, as
well as shorter planning time than H-Dyna. We argue that plan
quality, robustness, and planning time are significantly more
important for benchmarking robot operation than training time.
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While the learning agents can automatically perceive the
environmental changes when interacting with the environment
and obtaining rewards, automated task planners such as FD are
less adaptable to these changes, they need to be combined with
extra functionalities, e.g., execution monitoring and recovery.
Besides, their domain knowledge and problem instances are usu-
ally specified by human experts manually. Moreover, automated
task planners tend to fail with the growing complexity of task
planning problems and longer planning horizons [26].

4) On the Limitations: Our approach can be applied to other
mobile robot navigation tasks, but the computational efficiency
of the training phase varies according to the efficiency of the
automated task planning, which grows with the complexity of the
planning problem. Our approach does not consider replanning
in failure cases, where the robot stops at a place that is neither
at any node nor edge.

VI. CONCLUSION

To handle the complexity of human-robot-cohabited envi-
ronments and long planning horizons, we propose Human-
Flow-Aware Guided Hierarchical Dyna-Q (HA-GHDQ), which
presents a novel combination of HRL with automated task plan-
ning that plans considering learned costs derived from MoDs’
representations. Human awareness is enabled by considering the
latter, which encodes long-term human behaviors in crowded
and dynamic environments. The evaluation shows that our algo-
rithm outperforms all the other baselines with respect to sample
efficiency, robustness to the changes in planning configuration
and environment, plan quality, and planning time. For future
work, we plan to use function approximators for representing
the learned hierarchical Q function, and train also with different
problem definitions. We also plan to validate our approach on a
robot in a real-world environment, and open source the code.
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