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Abstract—With the improvements in their
computational and physical intelligence, robots are
now capable of operating in real-world environments.
However, manipulation and grasping capabilities are
still areas that require significant improvements.
To address this, we introduce a new data-driven
grasp planning algorithm called Grasp it Like a
Pro 2.0. This algorithm utilizes a small number of
human demonstrations to teach a robot how to grasp
arbitrary objects. By decomposing objects into basic
shapes, our algorithm generates candidate grasps
that can generalize to different object’s geometry.
The algorithm selects the grasp to execute based
on a selection policy that maximizes a novel grasp
quality metric introduced in this work. This metric
considers the complex interdependencies between the
predicted grasp, the local approximation produced
by the basic shape decomposition, and the gripper
used. We evaluate our approach against multiple
baselines using different grippers and objects. The
results demonstrate the effectiveness of our method
in generating and selecting high-quality and reliable
grasps. With a soft underactuated robotic hand, our
algorithm achieves a 94.0% success rate in 150 grasps
across 30 different objects. Similarly, with a rigid
gripper, it achieves an 85.0% success rate in 80 grasps
across 16 different objects.

Index Terms—Grasping, Multifingered hands,
Perception for Grasping and Manipulation, Human-
driven Grasping
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Fig. 1. The ability to grasp previously unseen objects with different
grippers, adapting to imperfectly known, highly dynamic, and
unstructured situations is crucial to enable general-purpose robots
to be effective in a large Ąeld of use cases.

I. Introduction

Grasping objects is a fundamental skill that humans
acquire easily, allowing them to manipulate a wide
range of objects effortlessly. However, current robotic
manipulation and grasping capabilities still lag behind
human abilities [1], hindering the development of general-
purpose robots capable of operating in unstructured and
dynamic environments [2], [3]. Because of this, much effort
has been, and is currently being, devoted by the robotics
community in studying the theory of grasping with a focus
on grasp planning for unknown objects [4].

Grasp planning methods are classically divided into
two categories [5]: analytical and data-driven approaches.
Analytical methods rely on well-established force and form
closure theory to plan contact points for a stable grasp
assuming complete knowledge of the object’s geometry and
physics [6]–[9] and thus lack in flexibility and robustness
when the robot does not have access to a model of the
object to grasp. For this reason, data-driven approaches
have become more and more popular within the last
20 years [10]–[21], as they show greater flexibility and
performance in uncertain settings.

These methods rely on the generation of a set of
candidate grasps using, e.g., heuristics or learning from
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data, and on the consequent ranking of the grasps within
this set [22]. Typically based on deep learning approaches,
such methods exploit large datasets of objects and labeled
grasps (generally designed for parallel rigid grippers) to
train neural networks for grasp-detection [23] or grasp
evaluation [15]. Other approaches perform the training
using synthetic datasets [17], [24] relying on a model of the
gripper used; or exploit human-grasp demonstrations [18],
[19] to generate human-like grasps. While deep learning-
based approaches are promising tools for grasp planning,
they might require a large amount of training data and
time [25], [26] to be robust and adaptable to novel objects
and to more complex grippers with many degrees of
freedom or provided with compliant elements. Indeed,
for these cases, datasets of labeled grasps might not be
available or reliable models for use in simulators could
be difficult to obtain. The development of lightweight and
data-efficient algorithms that can be adapted to different
grippers and that can synthesize valid grasps for a wide
variety of objects is still an open problem.

In this paper, leveraging on the framework proposed
by the authors in [19], we present Grasp it Like a Pro
2.0 (GLP 2.0), a data-driven grasp planning algorithm
that is able to generate grasps for unknown objects with
different grippers (see Fig.1). The method only requires
human demonstrations of grasps, composed of 6-DoF hand
poses and interaction forces, of basic shapes. The collected
demonstrations are used to learn a model used for grasp
synthesis.

Given the point cloud of an unknown object as input,
GLP 2.0 decomposes it into the same basic shapes
used for training. It then uses the learned model to
generate candidate grasps for these basic shapes. A global
analytical grasp quality score is introduced to evaluate
and select the grasps. The score takes into consideration
the characteristics of the gripper used by the robot,
the acquired point cloud, possible collisions with the
environment, and an estimate of the grasp interaction
forces obtained through the learned model.

The main contributions of the paper are:

1) the design and implementation of the data-driven
method, GLP 2.0, to generate 6 DoF grasp poses for
unknown objects;

2) the design of a novel grasp selection policy based on
an analytical grasp quality score to rank and select
the generated grasps;

3) the extensive experimental validation of GLP 2.0 on a
compliant underactuated robotic hand, the Pisa/IIT
SoftHand [27], with a direct comparison with our
previous approach [19]. The method achieves relevant
performance in terms of grasping success rate on a
total of 30 objects and 150 grasps (5 per object),
showing a 25% improvement;

4) an experimental comparison, using the Pisa/IIT
SoftHand, of GLP 2.0 with two state-of-the-art
algorithms [15], [28] on 16 objects and 80 grasps.
Results show that our approach outperforms the two
baselines in terms of grasping success rate;

5) an implementation of GLP 2.0 with a more standard,
rigid, gripper, showing that the framework can be
transferred and applied to different robotic hands;

6) an experimental comparison of GLP 2.0 applied to
a two-finger rigid gripper, the Franka Emika Hand
[29], on 16 objects and 80 grasps. The results show
that GLP 2.0 achieves good performance, comparable
to the ones obtained with the compliant hand for
the same set of objects, and it outperforms the two
baselines [15], [24] in terms of grasping success rate;

7) a detailed and critical discussion of the limitations of
GLP 2.0.

The structure of the paper is the following. In Section II
we review the relevant literature, Section III describes the
main component of the algorithm, while in Sections IV
and V we describe the experimental setup and protocol
used to validate the method with both compliant and
rigid grippers, discussing the results obtained. Eventually,
we draw our conclusions and discuss directions for future
research in Sections VI and VII.

II. Related Works

Grasping is one of the most popular research topics
in the robotics community, and over the years many
approaches and solutions have been proposed for grasp
synthesis. Beside the distinction between analytical and
data-driven methods, they are classified in [12] according
to: the information they assume to have about the target
object (known, familiar, unknown), the features used for
the synthesis (2D, 3D, or multi-modal), the object-grasp
representation (local or global object attributes), and
the specific hand used (standard grippers, multi-fingered
hands, or underactuated/soft end-effectors).

A. Known Objects

Grasp synthesis for known objects relies on a complete
knowledge of the target object. This knowledge is used to
generate offline a set of grasps from which select a feasible
candidate. Then, once an object belonging to the database
is encountered, the problem is to select a feasible grasp
given the environmental conditions [10], [30]–[32].

However, human environments are characterized by a
large variety of objects, with different shapes, sizes, and
materials. This high variability makes it problematic to
use techniques that require a complete knowledge of the
object. Indeed, this would lead to the long-lasting and
time-consuming process of providing the robot with a
model for each possible object it might encounter.

B. Familiar Objects

The limitations of the grasping methods based on
the full knowledge of the object can be overcome by
approaches that exploit the fact that many every-day
objects share similar/familiar and common characteristics
[18], [33]–[38]. By exploiting this familiarity, it is possible
to train on a set of objects and generalize to novel objects
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that fall within one of the categories in the training set.
This relaxes the necessity of having an exact model for
every object to be grasped.

Grasp synthesis for familiar objects can help increasing
the generality of the grasp creation process. Nonetheless,
their performance depends on the quality and variety of
the data used for training. An erroneous categorization
of a novel object could produce unreliable grasps [4], but
acquisitions of large datasets is a time-consuming and non-
trivial operation [26]. The use of synthetic datasets [24]
generated through simulations with reliable simulators like
Graspit! [39] could ease the data generation phase, but
relying on a model of the hand used for grasping their
applicability to more complex hands other than rigid ones
is still an open problem [40], [41].

Therefore, a great effort has been put by the scientific
community in developing grasping algorithms for unknown
objects, i.e., not relying on any prior information on
the object, but only data acquired from perception. The
method we propose falls into this category.

C. Unknown Objects

Given an unknown object, grasp candidates can
be generated from acquired partial and not-complete
point-clouds. The approach proposed in [4] uses an
approximation of the gripper shape (using a two-layer C-
shape cylinder) and then searching for this shape on the
partial point-cloud. This is conceptually similar to the
method proposed in [42], which however did not exploit
depth measures. Other approaches exploit the inherent
symmetry of many commonly used objects to generate
a full model from a partial point-cloud using geometric
considerations [43], [44] or deep-learning [45]. The shape
is then used to generate a set of grasp candidates.
In [46], starting from a noisy point-cloud, grasps for
a multi-fingered hand are generated based on a shape
complementarity metric between the cloud of the object
and the shape of the hand, whose kinematic model is
assumed to be known.

A different approach that relies only on 2D images
is presented in [47]. They use curvature information
obtained from the silhouette, combined with a visual-
servoing control to maximize the curvature at the grasping
points, to achieve a correct grasping pose. The work
proposed in [15] generates grasp hypotheses for a 2-
fingered gripper on any visible surface of the input point
cloud. It also proposes a new grasp descriptor takes into
account local surface normals and different viewpoints. In
[48], the authors propose a new grasp planning algorithm
that takes into account both object geometry and gripper
characteristics as inputs. A deep neural network is used
to predict a set of contact points from the point cloud of
the target object that are in force closure and reachable
by the hand. The use contact points as output allows to
transfer between different multi-fingered hands, assuming
that a kinematic model is available.

Besides, there exists a class of methods that attempt to
resolve the problem of grasping unknown and potentially

irregularly shaped objects using soft and compliant
grippers [49], [50]. The planning and control of the grasp is
simplified, using, e.g., simple top-down grasps [50], and the
embodied intelligence and adaptability of the soft gripper
is exploited to increase the robustness.

The approaches presented so far use either global
information about the shape or low-level local features
to generate the grasp hypothesis. A different solution,
like the one proposed in this work, is instead to use
approximations of the object using basic primitive shapes.
Approaches of this type mainly differ based on the
type and number of primitive shapes employed. A single
quadric, estimated from multiple views, is used in [51]
to approximate the object shape and plan grasp poses
for a multi-fingered hand. The approach presented in
[52] uses a single superquadric model to approximate
both the shape of the unknown object and the volume
graspable by an anthropomorphic hand. The grasping
pose is then obtained as the solution of an optimization
problem. In [53] a partial view of the object is used to
generate a superquadric model. They assume symmetry
to complete the object model to fit for the superquadrics
representation. The grasp is then designed to maximize
the stability and force balance, using the fitted parameters
to determine the best contact points for a two-fingered
gripper.

However, decomposition via a single primitive shape
often fails to provide an accurate approximation of the
object [30], [54]. In [54], the authors decompose the object
into a multilevel tree of superquadrics used to select
subspaces likely to contain good grasps. Sampling of these
subspaces and evaluation using Graspit! are then used to
find stable grasps. Multiple superquadrics are also used in
[55] to estimate the surface of an object from 2.5D data.

The approach we propose does not use superquadrics
to approximate the object shape, but, as well as other
methods [19], [56], [57], uses the minimum volume
bounding box (MVBB) decomposition. This choice
represents an effective trade-off between computational
effort and quality of the approximation [30] and have been
widely applied as supportive method for grasp synthesis.
The MVBB decomposition has been used in [56] to
generate a grasping pose for a given box based on a user-
defined geometric heuristic. Random local variations of
the selected pose are then tested in simulation on a set
of synthetic point clouds of unknown objects.

Based on this work, in [19] we proposed a data-driven
method for grasping unknown objects. In [19] the grasping
pose of the robotic hand associated to a box was no longer
based on a geometric heuristic, but used a small set of
demonstrations provided by a human operator operating
the same hand to generate human-like poses. The quality
of a grasp was then evaluated, considering the relative
box-hand alignment and the possible collisions with the
environment. The algorithm showed good performance,
being able to generate valid grasps for an underactuated
compliant robotic hand with 19 degrees of freedom without
needing any information about the object other than
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Fig. 2. Pipeline of the proposed method Grasp it Like a Pro 2.0. GLP 2.0 starts with the acquisition of a point cloud of the target object.
The cloud is decomposed into a generic number N of minimum volume bounding boxes. A model learned from human demonstrations of
grasps for exemplary boxes is used to generate a set of 6-DoF grasp poses for the obtained decomposition. A novel grasp quality score, Sg, is
introduced based on information about the robotic gripper, the point cloud of the object and the environment, and of the grasp interaction
forces estimated using a learned model to rank and select the best grasp among the candidate set.

Fig. 3. (Left) Box-related reference frame. (Right) Gripper-related
reference frame.

those acquired with its perception, or to model the
robotic hand, but using only a limited set (648) of
demonstrations. Nonetheless, it was validated only for the
Pisa/IIT SoftHand.

In this paper, building upon this framework, we propose
a data-driven grasp planning algorithm for grasping
unknown objects that can be adapted to different grippers.
In the following section, a detailed description of the
proposed method is reported.

III. The Grasp Planning Algorithm

In this section, we describe the main components of
the proposed grasp planning algorithm, GLP 2.0. Figure 2
reports a schematic visualization of the proposed pipeline.

The approach starts with the acquisition of a point
cloud of the target object. The cloud is decomposed into a
generic number N of minimum volume bounding boxes.
Secondly, exploiting a Decision Regressor Tree (DTR)
trained on recorded data of a skilled human grasping
sample boxes with the same gripper, a set of candidate
grasps is generated from the obtained box decomposition.
These poses are then ranked according to a specific metric,
that takes into consideration the geometry and properties
of the robotic gripper and an estimate of the interaction
forces, and the best grasp is selected for execution.

The approach proposed in this paper is inspired by the
method we presented in [19], but differs from it in three key

Fig. 4. Collected data and Ątted curve used to select µ.

aspects: the approximation of the object shape with the
box-decomposition algorithm, the grasp-generation

policy, i.e., the definition of the set of candidate grasps and
finally the grasp-selection policy, i.e., the metric used to
select the best grasp.

In the following, we present a detailed description of all
the components of the proposed algorithm.

A. Object Acquisition and Shape Approximation

The first step of the planning algorithm is the
acquisition of the object point cloud through the use
of RGB-D sensors. Following [19], the point cloud is
processed in order to decompose the object into a
number N of bounding boxes. We decided to use a
box-decomposition method for approximating the shape
of the acquired point cloud because we found out
cuboids represent a good tradeoff between computational
effort for obtaining a decomposition and capability
of approximating the object shape for grasp planning
purposes. Indeed, decomposition based on minimum-
volume bounding boxes have been already successfully
used in the literature [19], [30], [56] for this kind of
problem. In addition, as we will highlight in the next
section, this solution allows us to increase the data
efficiency of the proposed approach that can use a
small set of human demonstrations. The decomposition
is performed using a modified C++ implementation1 of

1https://github.com/manuelbonilla/pacman bbox
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(a) µb(X) = X/10 : Using a linear function, small objects are
decomposed into a larger number of boxes, whereas large objects
might be approximated with a single box.

(b) µb(X) = a1 log (a2X + 1): Using a log function, small objects
are decomposed into a single box, whereas large objects might be
approximated by a larger number of boxes.

(c) Examples of box decomposition for different objects. Top [19], bottom our approach.

Fig. 5. Effects of the two different methods to deĄne the minimum number of points of the point cloud contained within a single bounding
box.

the algorithm proposed in [30] that was already used in
our previous work [19]. A description of the decomposition
procedure is reported in the Appendix. The final output of
the algorithm is a set B of bounding boxes. Each element
b ∈ B is a pair formally defined as

b ≜ ⟨Tb,λb⟩, (1)

where λb ≜ [λb,1, λb,2, λb,3]
⊤

∈ R3 represents the vector
of the box dimensions, while

Tb ≜



r̂b,1 r̂b,2 r̂b,3 yb

0 0 0 1



, (2)

is the transformation matrix expressing the pose of the
box in the world frame. Specifically, yb is the position in
world frame of a reference frame like the one depicted in
Fig. 3, while r̂b,j , j ∈ ¶1, 2, 3♢, are the versors aligned with
the box sides.

The box decomposition is a crucial step in the
entire process of the algorithm. A poor decomposition,
which does not adequately approximate the object, can
potentially lead to the generation and then selection of
inefficient and non-robust grasps.

The decomposition algorithm has three user-selectable
parameters, the minimum volume admissible for a box,
the gain threshold used to evaluate if a split has to be
enforced, and the minimum number of points µb of the
point cloud each box should contain. In [19] the minimum
volume was set to a fixed low value, while the minimum
number of points of the point cloud was set proportional

to the total number of points (constant of proportionality
set to 0.1). This latter choice carries with it some problems
and limitations when decomposing both small objects
(associated to point clouds composed of few points) and
large objects (with a higher number of points). Small
objects are approximated with numerous boxes of small
size. Larger objects are instead approximated by a single
bounding box, with dimensions that can be potentially out
of the graspable range for the chosen gripper.

To overcome these issues and achieve an approximation
of the shape of the object more suited for generating high-
quality grasps, we propose in this work a different law
for selecting the minimum number of points. Instead of
a linear trend, we opted for a logarithmic curve described
by the following equation

µb ≜ a1 log (a2X + 1), (3)

where µb is the minimum number of points contained by a
bounding box b, X is the total number of points, while a1

and a2 are design parameters, regressed from experimental
data. Indeed, we collected a set of 120 point clouds, and
for each cloud we saved the pair ⟨♣cloud♣, µb⟩ containing
the number of points of the cloud, ♣cloud♣, and the value
of µb leading to a good box decomposition. We used these
pairs to fit the logarithmic curve (3) and compute the two
parameters. The collected data and the fitted curve are
shown in Fig. 4.

Using this function, small objects are approximated with
a reduced number of boxes (or even a single one) while
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Fig. 6. Experimental setup used to record the set of human
demonstrations. The PhaseSpace cameras (1) are used to track the
pose of the hand using eight hand-Ąxed markers (5) and eight box-
Ąxed markers (7). A human operator (4) grasps a set of boxes (2)
with the Pisa/IIT SoftHand (6). A force torque-sensor (8) is used to
record the interaction wrenches. The recorded data are saved on a
PC (3), and later used to train a DTR model. Training on a small
set of recorded demonstrations of a skilled operator grasping cuboids,
the robot is able to generate a grasp pose for a generic object.

larger objects are decomposed in such a way that better
approximation of their shape is obtained, as shown in
Fig.5.

B. Grasp Prediction from Human Data

One of the main feature of the approach is the
exploitation of human grasping skills to let the robot
learn human-like poses for the specific gripper used. Here,
we used the Pisa/IIT SoftHand [27] as gripper, but the
considerations reported in the following can be adapted
to different gripper choices.

1) Robotic Gripper: First we present the information
about the robotic gripper needed by the proposed method.
Indeed, we only need a few information of the specific
gripper. In particular, we define the object hand as

h ≜ ⟨Oh,O,C , δ⟩ . (4)

The first element of h is the reference frame Oh =
(r̂h,p, r̂h,t, r̂h,f) attached to the hand, which is the one
depicted on the right in Fig. 3. Then, we have a
representation of both the gripper shape, O ⊂ R3, and
a model of the closing region of the gripper, C ⊂ R3.
The definition of C is inspired by [58], where they define
the closing region of a gripper as “the volumetric region
swept out by the fingers when they close”. Finally, the
vector δ ∈ R5 is used to encompass a series of gripper-
related thresholds on the maximum graspable dimensions,
the relative gripper-box alignment, and the collisions
thresholds.

These elements will be described and used in Sec.III-C
to define the grasp-quality score and for the selection of
the best grasp.

2) Learning Human Grasping Skills: First, we collected
a small set of grasp demonstrations from a human

operator. With the setup depicted in Fig.6, a commercial
Phase Space Motion Capture2 system is used to track
the position of 8 markers placed on the robotic gripper
(a manually operated Pisa/IIT SoftHand in our case)
w.r.t. other 8 world-fixed markers. This system allows for
registration of the correct hand pose when grasping a set
of 56 cuboid sample boxes, whose dimensions have been
chosen to cover the feasible grasp range of the gripper3.

We also recorded the interaction wrenches exerted
during the grasp. Indeed, during the demonstrations, the
sample boxes were rigidly fixed and aligned to a sensorized
platform. The platform was equipped with a force-torque
sensor ATI mini45. The sensor, zeroed and calibrated
properly before each trial, is used to record the interaction
wrenches (forces and torques) during the grasping phase.

For each attempt, the operator was asked to exert for
3 seconds a force along the three spatial directions and
a torque along all the axes of the box. These signals
were then used to define a metric for the total interaction
wrench of the grasp as w = [f, τ ]

⊤
∈ R2. Specifically,

the recorded data have been processed extracting the
maximum value for each component of both the force and
the torque, and the elements f and τ have been computed
as the norm of the vectors composed of these maximum
values for the force and torque, respectively.

Following [19], the recorded set of 648 grasping attempts
is used to let the robot learn a model p = ψ(λb) to predict
a human-like pose p = [p1, . . . , p6]⊤ ∈ R6 (relative to
the box), given the box dimensions λb. In [19] this was
made possible through the use of a Decision Tree Regressor
(DTR).

Applying this learned model ψ(λb) to the boxes
generated by the minimum volume bounding box
decomposition algorithm, we are able to generate a set
of human-like candidate grasp poses for the gripper.
Indeed, using a small set of human demonstrations, we are
potentially able to grasp any object, regardless of shape or
size, without any prior information or knowledge about it
apart from an acquired point cloud.

a) Inclusion of interaction wrenches: In [19], we
only use the pose of the hand and box dimensions from
the demonstrated data to train the DTR and infer a
grasp pose given a vector of box dimensions. However,
as pointed out, these were not the only data recorded
during the demonstrations that could be exploited for
planning purposes. The recorded demonstrations also
provide information on the interaction forces generated
during the grasp, that we decided to actively include
into the planning pipeline. The choice to include theses
interaction forces in the grasp planning algorithm is
dictated by the considerations made in [19], where it is
pointed out as the grasping success rate was quite low
for heavy objects. Our insight is that the inclusion of
interaction forces can help to select more robust grasps.

2http://phasespace.com/
3https://qbrobotics.com/wp-content/uploads/2021/07/

qb-SoftHand-Research-datasheet-r200.pdf
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In order to include this information into the grasp
planning algorithm, we propose to let the robot learn an
augmented model ψ̃(λb) that is able to infer from the
vector of box dimensions λb not only the hand pose p, but
also a model ν(λb) for the interaction wrenches metric w.
Therefore, the complete model learned by the robot is



p

w



= ψ̃(λb) =



ψ(λb)
ν(λb)



. (5)

b) Global Grasp Generation Policy: In [19], a set of
48 candidates poses is generated for a specific box, selected
according to a hand-designed heuristic. The best feasible
grasp in this set is then selected and executed, without
considering the grasps generated from other boxes in B.
The original method is inherently locally optimal because
of the greediness introduced by evaluating grasps for only
one box, and it could result in suboptimal choices.

We now take a step toward building a global method
by removing the box selection step. The prediction of the
grasp poses is thus made over all the boxes generated
by the decomposition algorithm. Hence, we increase the
set of candidate grasps from which to select the best one
(see Fig.2). We can also guarantee to select the optimal
grasp, according to the specific metric and the feasibility
constraints, among all the possible grasps originated from
the given box decomposition.

3) Generation of the candidate set: We present now how
the set of candidate grasps G is generated. As explained
in the previous section, given a decomposition of a point
cloud into a set of cuboid bounding boxes B, we are able to
predict a set of grasp poses p and interaction wrenches w.
Each of these pairs ⟨p,w⟩ is associated with the specific
box b ∈ B from which it was generated. We therefore
define a grasp g as a tuple composed by the specific gripper
h used for the demonstrations, a predicted grasp pose p,
the box b used for prediction, and eventually the predicted
interaction wrench w, i.e., as

g ≜ ⟨h, p, b,w⟩. (6)

All the grasps predicted for a given box b ∈ B

are collected into a set Gb. Finally, the complete set of
candidate grasps G is simply built as the union of the
grasps set for each box in B

G =
⋃

b∈B

Gb. (7)

C. Grasp Evaluation

As typical for data-driven approaches, the grasp to
execute among the candidate set is chosen so to maximize
a properly defined metric [22], [59]. In this work, we
propose a metric embedded into a global quality score (Sg).
This score maps each grasp to a real number between zero
and one, i.e., Sg : G → [0, 1], and has been designed so to
take into account:

i) the box from which the grasp has been generated;
ii) the predicted interaction wrench;

iii) the relative alignment between the box and the
gripper;

iv) possible collisions with the environment.

In the following, we describe in detail the heuristics used
to embed the effects from (i) to (iv) into proper score
functions, used to construct the global score Sg.

1) Box score: The first index is related to the specific
box b used for predicting the grasp, and in particular to
its density of points belonging to the point cloud, ρb, and
its distance from the point cloud centroid, db.

This score is used to favor grasps originated from outer
boxes, that can approximate handle-like parts and are
associated with a higher number of collision-free grasps
[19], but with a high density of points, i.e., that provide
a good local approximation of the object shape. The box
score can then be computed as

Jb ≜
1

2





ρb

max
bk∈B

ρbk





2

+
1

2





db

max
bk∈B

dbk





2

, (8)

where the density and centroid distance have been
normalized w.r.t. the maximum density and maximum
distance of all the boxes in B.

Note that the score Jb is equal for all the grasps g ∈ Gb.
2) Wrench score: The second score, Jw, is used

to embed the learned wrench into the grasp-selection
procedure. It is used to favor grasps associated with high
interaction wrenches w. Indeed, our hindsight is that w

can be used as an indirect measure of the robustness and
stability of the grasp, i.e., grasps associated with high
interaction wrenches w have a higher probability of being
more robust. It is important to remark that the learned
wrench is used only for planning purposes, i.e., to compute
the associated score Jw, and are not used during the
execution of the grasp.

The score has been selected as

Jw ≜
1

2





fg

max
gk∈G

fgk





2

+
1

2





τg

max
gk∈G

τgk





2

, (9)

where the force and torque of the selected grasp have
been normalized w.r.t. the maximum force and maximum
torque considering all the grasps in G .

3) Alignment score: This index considers the relative
alignment between the gripper and the object to grasp,
and depends on both the specific gripper and the object
(or its local approximation used to sample the grasp). This
score is used to penalize grasps that are highly aligned with
sides that exceed the physical limits of the robotic hand.
Grasps in which the fingers are highly aligned with long
sides (see Fig.7(a)) are indeed discarded in favor of grasps
less aligned (see Fig.7(b)).

In our previous work, we used the metric proposed in
[56] to select the to-be-executed grasp, searching the pose
with the thumb of the SoftHand more aligned with the
longest side of a candidate box. This actually leads to a
greedy iterative procedure that starting from the longest
box side searches for the grasp with the thumb most
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aligned without considering the alignment with the other
sides.

In this work, we exploit similar considerations for the
definition of the specific score Ja. First, we remove the
iterative procedure to select the grasp with the thumb
more aligned with the longest side, introducing a term α ∈
[0, 1] that combines both information on the dimensions
of the box and the alignment of the thumb w.r.t. all the
dimensions. More formally, we define α as

α ≜
1

λ̄
max

j∈¶1,2,3♢
λb,j ♣̂rb,j · r̂h,t♣ , (10)

where λ̄ = maxb∈B maxj∈¶1,2,3♢ λb,j is the longest
dimension among all the boxes in B, r̂h,t is the versor
of the hand frame Oh aligned with the thumb (see Fig.3),
and · is the scalar product operator.

Second, we include into Ja information on the
constraints provided by the maximum opening of the
hand. Indeed, the dimensions of the hand provide a natural
limit on the maximum dimensions graspable.

Being r̂h,f the unitary versor of the hand frame directed
along the fingers (as in Fig.3), the relative angle between
the gripper fingers and a box side versor r̂b,j can be simply
computed as θj ≜ acos(♣̂rb,j · r̂h,f♣), being j = 1 . . . 3.
Note that, given the definition of θj we have that θj ∈
[0, π/2]. We introduce the following function to evaluate
the alignment of the hand w.r.t. the sides of the box

βλj
≜

{

1 − sinc
(

θj

δθ



, (θj ≤ δθ) ∧ (λb,j > δλ)

1 otherwise,
(11)

where δθ ∈ δ(h) is a user-defined threshold on the
maximum allowed relative alignment and δλ ∈ δ(h) is
the maximum length graspable by the gripper (25 deg and
100mm, respectively, for the SoftHand), and sinc is the
unnormalized sinc function defined as

sinc(x) ≜







sin(x)

x
, x ̸= 0

1. x = 0
(12)

A tridimensional representation of βλj
as function of the

relative alignment θj and of the length λb,j is reported in
Fig.7(c).

Combining (10) and (11), we eventually define Ja as
follows

Ja ≜ α

3
∏

j=1

βλj
. (13)

It can be noted that, if the alignment is above the desired
threshold and/or the length is within the gripper physical
limits, Ja will be equal to α, i.e., ranking the grasps
depending on the thumb alignment and the normalized
length of the box side.

4) Collision score: An important aspect to consider
when selecting a grasp is the potential collision of the
gripper with the object and the environment (such as a
table) in the selected pose. In addition, it is important to
consider possible collisions that may happen during the
closure of the gripper fingers. We propose to include into

Sg information on these collisions, introducing a collision
score to penalize and discard grasps that are not collision-
free.

The definition of this score exploits two auxiliary
indexes designed to take into account the two class of
collisions presented before, i.e., collisions of the whole
gripper and collisions of the fingers during the closure.

To model the former, we introduce κO , a function
that exploits the prior knowledge on the geometric
representation of the shape of the gripper h, i.e., O(h)
to detect collisions of the gripper at the grasping pose.

Given O(h), it is possible to define the density ρO of
the occupancy volume as the ratio between the number
of points of the object (and the environment) inside the
said volume and the total volume of O. From this, κO is
defined as

κO ≜

{

0, if ρO ≥ δO

1, otherwise,
(14)

where δO ∈ δ(h) is a user-defined threshold that
determines when the gripper is considered to collide with
the environment. This threshold is used to account for
the resolution and presence of noise in the acquired point
cloud. The effect of κO is, hence, to filter out the grasp
poses for which the gripper would be in collision with the
object or the table on which the object lies.

For the sake of simplicity, we assume that the occupancy
volume O of the gripper can be approximated by a union
of cuboids, to speed up the computation of ρO . More
complex and detailed choices can be made, e.g., employing
ellipsoids or superquadrics [60], but this increases the time
needed to check the collisions.

To include the fingers’ range of movements and the
possible collisions during closure, we introduce κC , a
function that exploits the model of the closing region of
the gripper h, C (h).

Figure 8 shows examples of two different grasp poses
generated for a boiler. The blue points are the point cloud
acquired by the camera, the pink points are the points
of the cloud that are inside the box used to generate the
two grasps. The yellow points represent the points of the
cloud that do not belong to the aforementioned box but
are inside the closing region C (h) of the gripper.

In the example, the gripper used was the Pisa/IIT
SoftHand. Due to its compliance and its synergy-based
closure mechanism, we modelled the closing region as a
single cuboid originated from the index and middle fingers.
Different, and more fine, approximations can be made to
describe C (h), depending on the specific gripper used [52],
[58], [60].

It is possible to see how, for the grasp on the left, the
closing region contains points of the object (yellow points)
that do not belong to the box used to generate the grasp.
Thus, while closing, the fingers would collide with the
object. This could reduce the likelihood of a successful
grasp, due to, e.g., a displacement of the impacted object
or the impeded closure of the hand around the target box.
For the grasp on the right, the closing region contains only
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(a) Fingers highly aligned to the
longest side of the box.

(b) Fingers loosely aligned to the
longest side of the box.

(c) Tridimensional representation of βλj
as function of the alignment

and of the length.

Fig. 7. Alignment of the Ąngers w.r.t. the box dimensions.

(a) (b)

Fig. 8. Two examples of grasp poses generated for a speciĄc box
output of the box decomposition algorithm using a boiler point cloud
as input. The orange box originated from the Ąngers of the hand is
a simple model of the closing region C (h).

points part of the target box, hence providing a collision-
free closure.

We designed κC to include a heuristics into the grasp
planning algorithm favoring grasps as in Fig.8(b) over
grasps as in 8(a). Given a grasp g for a specific box b ∈ B ,
we define the density ρC as the ratio between the number
of points of the object that are not contained into the
target box b but are inside the closing region C (h) and
the total volume of the closing region C (h). From this, κC

is defined as

κC ≜











0, if ρC > δ̄C

ζ(δC ), if
¯
δC ≤ ρC ≤ δ̄C

1, otherwise,

(15)

where δ̄C ∈ δ(h) and
¯
δC ∈ δ(h) are two user-defined

thresholds, and where ζ(δC ) is a smooth and monotonic
function such that ζ(δ̄C ) = 0 and ζ(

¯
δC ) = 1, e.g., a

cubic spline. The collision score Jc is then modeled as the
combination of the two contributions, κO and κC , related
to O and C . More formally, Jc is defined as

Jc ≜ κOκC . (16)

5) Global grasp quality score: Having defined four cost
indexes to model the effects from i) to iv), we can
eventually define the score Sg as the product of these four
elements

Sg(g) ≜ Jb Jw Ja Jc. (17)

The designed metric is able to effectively describe the
complex interdependencies between the predicted grasp,

the box it is related to, and the gripper used for the grasp,
by encompassing all these factors into a global score.

It has to be noted as, from the definition, Sg(g) = 0 only
in case of collisions, i.e., Jc = 0, and/or in case of grasps
aligned with non-graspable sides, i.e., Ja = 0.

D. Grasp Selection Policy

Using (17), the grasp to be executed is selected as the
solution of the constrained optimization problem

g∗ = arg max
g∈G

Sg(g)

s.t.

g ∈ Fr

Sg(g) > 0,

(18)

where
Fr = ¶g ♣ p(g) ∈ Wr♢

is used to denote the set of grasps g for which the grasp
pose p(g) belongs to the reachable workspace Wr of the
specific robot r used to reach the pose. The problem is
solved using a two-step approach. First, find the grasp in
the set G that maximizes Sg. Then, the resulting pose is
passed as input to a dedicated and robot-specific inverse
kinematic block that will check for the feasibility. If the
selected grasp is not feasible, it is removed from G and
the algorithm select the next best grasp. It is worth noting
that the last constraint, Sg(g) > 0, implies that all grasps
that are in collisions or are not feasible for the gripper
due to the size of the box-side it is aligned with, are
automatically discarded.

IV. Experimental Validation: Soft Hand

In this section, we describe the setup used for the
experimental validation, and we present and comment the
results of the experiments. First we report and discuss
the performance of GLP 2.0 compared to our previous
work [19]. Then, we compare the performance with two
different state-of-the-art algorithms for planning grasps for
soft hands.

A. Experimental Setup

The setup we used for the experiments is shown
in Figure 9(a). It is composed by two RGB-D Intel®
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(a) Experimental Setup.

(b) Objects from [19].

(c) Additional objects tested.

Fig. 9. Experimental setup and complete set used for the experimental validation (a). 30 objects, of which 21 are the ones used in [19] (b)
and 9 additional objects (c), from left to right: Big Colander, Small Colander, Controller, Brush, Pot, Boiler, Bottle, Foam Brick, Tennis
Ball.

RealsenseTMD415 Camera 1 , used to acquire the point
cloud of the target object. The grasp pose is executed using
a Franka EMIKA Panda 2 equipped with a Pisa/IIT

SoftHand 3 , the gripper used to collect the training data
for the DTR (see Sec.III-B2 and [19]).

The manipulator and the end-effector are controlled
using ROS. The point cloud acquisition is made using the
ROS interface provided by Intel. The box decomposition
is implemented in C++, while the grasp prediction using
the DTR is implemented with a Python script. We used
SciKit-Learn to train the DTR with a maximum tree
depth of 8 (as in [19]). It has to be remarked that the DTR
is trained only on the set of grasp demonstrations provided
by a human operator for the set of cuboid boxes shown
in Fig.6, and thus it does not require to be trained on
real objects. All the other steps have been implemented in
MATLAB, including the inverse kinematics step through
the reverse priority inversion algorithm proposed in [61]
and [62].

B. Object Dataset and Experimental Protocol

We evaluate the performance of the algorithm on a
dataset composed of 30 objects, for which the robot does
not have any model. We use the 21 objects used for
the experimental evaluation in [19] (chosen as they have
characteristics similar to the ones proposed in [63] as
benchmark set), and we include 9 novel objects. The
complete dataset is shown in Fig.9(b)-(c): on top the
original set of testing objects, on the bottom the new
objects. The new set presents three objects that are similar
to the ones already used in [19] (the ball, the pot, and
the foam) with slightly differences in terms of size and
characteristics, but also includes a set of large and/or
heavy objects such as the colander and the boiler which
were not in [19].

In each test, the object is the only element in the scene,
and it is randomly placed on a table in the reachable
workspace of the robot. The robot always starts from
the same position above the object. The approaching

trajectory is composed by a 5-order polynomial for the
translational part, while spherical linear interpolation
(SLERP) is used to connect the initial and final
orientation. For each object, we tested 5 grasps, for a
total of 150 grasps. After the object is grasped, the robot
lifts the object 150mm to evaluate the robustness of the
closure. A grasp is considered successful if the robot is able
to complete the task (grasping and lifting) without losing
the object or without stopping. If the algorithm does not
return any feasible grasp, the task is marked as a failure.

C. Results

In this section, we comment the results of the
experimental validation. We first evaluate and compare
the performance against the original method, which acts
as baseline, in terms of overall grasping success rate
and time needed to select a candidate grasp. We also
compare the number of boxes obtained using the original
and the modified box decomposition algorithm presented
in Sec.III-A. A summary of these results is reported in
Tab.I, our approach is denoted as GLP 2.0, where the
overall success rate is reported, together with statistics
(in the form mean±standard deviation (min, max)) on the
execution time, the number of boxes, the number of points
of the acquired point cloud, and the time for each step of
the two algorithms. The values for the boxes have been
rounded to the closest integer.

1) Grasping Performance: The first evaluation is about
the grasping success rate of GLP 2.0 for the 30 objects.
The method achieves an overall grasping success rate over
the 150 grasps of 94.0% compared to the 75.3% obtained
by the baseline algorithm. Figure 10 reports the success
rate for each object in the dataset.

For every object our approach outperforms, or at
least evens out, the baseline. Clear improvements can be
seen when grasping large and/or heavy boxes, such as
the Power Drill, the Big Colander, the Boiler, and the
Brush. In particular, the baseline is not able to generate
a successful grasp for the Big Colander, probably due
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TABLE I
Statistics on the experimental validation with the Pisa/IIT SoftHand.

Rate [%] Time [s] Boxes Points T̄P C [s] T̄BB [s] T̄BS [s] T̄GP [s] T̄GS [s]

GLP 75.3
3.15 ± 1.39

(1.66, 7.54)

2 ± 1

(1, 6)

4160 ± 2450

(651, 10690)

0.40 ± 0.23

(0.08, 1.08)

1.29 ± 1.00

(0.37, 4.61)

0.08 ± 0.02

(0.04, 0.16)

1.14 ± 0.05

(1.11, 1.36)

0.48 ± 0.24

(0.02, 3.47)

GLP 2.0 94.0
5.42 ± 3.41

(1.88, 15.17)

2 ± 1

(1, 5)

4347 ± 2537

(540, 10346)

0.40 ± 0.23

(0.08, 1.09)

1.39 ± 1.22

(0.38, 5.57)
−

1.24 ± 0.12

(1.13, 2.01)

2.71 ± 2.36

(0.22, 9.14)
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Fig. 10. Grasping Success Rate [%] with the Pisa/IIT SoftHand. Red dashed bars the results using GLP 2.0, the approach proposed in this
paper, blue solid bars using [19]. GLP 2.0 shows a 25% improvement of the overall grasping success rate over the set of 30 objects (94%
compared to 75.3%).

to a poor box decomposition (large objects are often
decomposed into a single box using [19]). Even if we
remove this object from the statistics, the overall success
rate using [19] is lower than the one we achieve (77.9%
versus 94.5%).

In Fig.11 we show some frames of the robot while
grasping eight objects from the complete dataset: the Big
Colander, the Boiler, the Bottle, the Brush, the Controller,
the Pot, the Small Colander, and the Spatula.

It can be noted that the robot tries to grasp handle-
like parts for most of these objects, e.g., the Boiler, the
Brush, and the Pot. In addition, lateral grasps are selected
for slender objects such as the Bottle and the Brush,
while top-down grasps seems more likely for objects with
a different aspect ratio, i.e., larger than taller.

2) Box Decomposition: Following the considerations
reported in Sec.III-A on the modified box decomposition
algorithm, we compare the differences between GLP 2.0
and the work in [19] in terms of the number of boxes used
to approximate the object. In Fig.12 we report the number
of boxes N as a function of the number of points of the
acquired point cloud. It is worth noting as the different
method for determining the minimum number of points
within each box leads to objects with few points generally
approximated with one or two boxes at most, while the
original approach can generate up to six boxes. Objects
with many points are instead decomposed more finely.

3) Execution Time: We then compare the timing
performance of the proposed approach and of the original
algorithm. Both algorithms have been executed on a
Laptop PC equipped with an Intel Core i7 Processor
(6×2.20 GHz) and 16 GB DDR4 RAM.

As shown in Fig.13(a), our approach proved to be about
1.7 times slower on average, with a worst-case execution
time that is around twice the one of the baseline. In
particular, it can be noted from Fig.13(c) that while the
previous approach is weakly affected by the number of
boxes (almost constant with a linear regression coefficient
of -0.03), GLP 2.0 takes longer as the number of boxes
increases (linear regression coefficient of 2.34). It is worth
to recall that the cardinality of the candidate set G grows
linearly with the number of boxes N (#G = 48N).

Analyzing the average contribution of each step of the
two algorithms it can be noted from Fig.13(b) as the main
difference between the two methods relies on the time
spent during the analysis of the candidate grasps and the
grasp selection. Indeed, the algorithm proposed in this
paper evaluates a larger set of grasps with a more complex
metric, so we can expect an increased computational
effort. Indeed, if we normalize the time needed by the two
algorithms for the cardinality of the respective grasp sets
(accounting also for the cases in which [19] is required to
select a different candidate box due to the lack of feasible
grasps) we obtain that our approach takes on average
20ms per grasp compared to 4ms per grasp using [19].
Nonetheless, the current MATLAB implementation has
not been optimized for performance, since optimizing the
throughput of the entire system was out of the scope of this
work. We are confident that an optimized implementation
will be able to reduce the time needed to select the
candidate grasp.
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(a) Big Colander (b) Boiler

(c) Bottle (d) Brush

(e) Controller (f) Pot

(g) Small Colander (h) Spatula

Fig. 11. Selections of frames of the robot grasping the Big Colander, the Bottle, the Brush, the Controller, the Pot, the Small Colander,
and the Spatula.

D. Comparison with other approaches

While the previous section presented the results of the
proposed method compared to [19], this section presents
the result of the comparison with other two grasp planning
methods for soft hands.

First, we compare the performance with the method
presented in [28], called CS-GQ-CNN in the following,
that combines the grasp quality convolutional neural
network (GQ-CNN) module presented in [24] with the
closure signature (CS) concept presented in [57], to plan
grasps with the Pisa/IIT SoftHand. The GQ-CNN module
estimates the optimal grasp (center and direction) to be
performed with a parallel-jaw gripper given an observed
depth image of the object to grasp. The CS module,
instead, is used to plan the hand-object alignment given
the estimated grasp center and direction. The CS provides
a simplified way to plan grasps with soft hands, as it

characterizes a specific closing motion that the hand
can achieve through a direction of maximum closure
applied at a certain point. As highlighted in [28], the
center and direction defined by the CS can be compared
to the grasping center and direction of a parallel-jaw
gripper, thus it allows fast adaptation of models trained
for parallel-jaw grippers to different hands.

Then, using a similar approach, we exploit the CS
concept to adapt the Grasp Pose Detection (GPD)
method presented in [15] to the Pisa/IIT SoftHand
gripper. GPD takes a point cloud as input and produces
6D pose estimates of viable grasps as output. The
GPD process involves two primary stages: generating a
vast selection of potential grasps through sampling, and
subsequently evaluating with a four-layer convolutional
neural network (CNN) which of these candidates are good
grasps.

Note that while GPD, similar to our methods, takes as
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Fig. 12. Number of boxes as a function of the number of points of the point cloud. Solid our approach, dashed [19].

(a) Statistics on the Execution Time. (b) Average contribution of each step of the
algorithm.

(c) Mean execution time as a function
of the number of boxes. Solid our
approach, dashed [19].

Fig. 13. Execution Time Performance.

input the object point cloud and outputs 6D grasp poses,
the CS-GQ-CNN plans a grasp pose from a depth image
obtained from an overhead camera and has been developed
for top-down grasps. Since our setup uses two cameras, we
decided to run the CS-GQ-CNN method on both depth
maps, selecting the grasp with the highest Q-value among
the two sets generated.

The comparison has been carried out on a subset of
16 objects taken from the ones listed in Tab. II. This
subset contains objects covering various sizes, shapes, and
weights. Indeed, it has large and heavy objects, the Boiler
and the Power Drill, small objects, such as the Small Cup
and the Toy Block, and even soft objects, like the Foam
Brick. In addition, it also includes objects that are hard to
grasp with our proposed method, e.g., the Controller. The
experimental protocol is the same as the one described
in the previous section, and for each object we perform 5
grasp attempts with the three methods.

Figure 14 reports the results of the comparison. First,
we report the dimensions of the dataset used to train
the different machine learning models used by the three
methods (Fig. 14(a)). It can be noted that GPD has
been trained over 300,000 grasp poses randomly sampled
over the created dataset of 1.5 million grasps (50,000
labeled grasps for each of the 55 objects of the BigBird
dataset), while the GQ-CNN model presented in [24] has
been trained over a dataset of 6.7 million synthetic point
clouds, parallel-jaw grasps, and analytic grasp methods.
In contrast, our method builds upon a small dataset of
less than 1000 demonstrations of a human grasping sample
cuboids. In fact, we use machine learning to generate the
set of candidate grasp poses while the grasp evaluation is
performed through a white-box method that exploits the
grasp quality metric presented in Section III-C and does
not require training a neural network.

Then, we show that the average time needed to obtain
the grasp pose to be executed for each method (Fig. 14(b))
and the success rate for each object and the overall success
rate over the testing set (Fig. 14(c)). The three algorithms
have similar performance in terms of average time needed
to generate and select the grasp to be executed. The
results show that our method clearly outperforms both the
baselines for every object in the testing set, realizing an
overall 91.25% success rate while the two baselines remain
around a 50% of successful grasps.

CS-GQ-CNN is the method achieving the worst
performance. This result can be explained by the fact
that it does not generate 6D grasps, but, exploiting the
Dex-Net architecture, it predicts and evaluates grasps
parameterized with the planar position, angle, and depth
of a gripper relative to the depth image. In addition, the
method has been designed for overhead cameras and top-
grasps and struggles to adapt to more general settings
and camera positions. On the other hand, GPD predicts
6D grasps and performs slightly better than the other
baseline, but it has to be pointed out that the grasp
quality network has been trained for rigid parallel grippers.
Our approach, instead, is able to take into account the
gripper structure and characteristics when generating and
evaluating the grasps, as shown with the experimental
validation on rigid gripper described in the following.

V. Experimental Validation: Rigid Gripper

Some considerations about the general applicability of
the method to different grippers are necessary. Indeed,
the experimental validation has been carried out with
the SoftHand, an underactuated and compliant gripper.
The compliant nature of the SoftHand, and its capability
to adapt during the closure, can affect, to some extent,
the performance. Thus, an experimental validation using
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(a) Dimensions of the collected training
datasets. Data are displayed using a
logarithmic scale.

(b) Execution times. (c) Success Rate

Fig. 14. Results of the comparison with GPD and CS-GQ-CNN using the Pisa/IIT SoftHand. GLP 2.0 outperforms both baselines on the
tested objects, relying on a smaller set of demonstrations.

Fig. 15. Data acquisition with the Franka Hand

a rigid 2-Finger gripper (the Franka Hand) has been
performed. This validation aims to assess if GLP 2.0 can be
adapted to different grippers, and to evaluate the influence
of compliance on the performance of the method. In the
following, the procedure used to collect the data needed by
the DTR for the grasp prediction and the considerations
used to provide a well-posed definition of the gripper to
compute the grasp quality score are presented.

A. Acquisition of the human expertise

In order to apply the method to a different gripper,
it is necessary to collect the data (grasping poses and
wrenches) used to train the DTR. To this end, the setup
depicted in Fig. 15 has been used to collect them. First,
an ARuco marker is used to retrieve the pose of the box
w.r.t. the robot frame. Then, a human operator uses the
Franka Hand, through the hand-guiding interface of the
Franka arm, to grasp the box attached to the F/T sensor
and collect the data following the same protocol used for
the Pisa/ITT SoftHand.

Considering the maximum opening of the gripper, it was
not possible to demonstrate a grasp for each of the possible
configurations of the 56 cuboids, so the dataset consists of
630 grasps, compared to the 648 grasps that were collected
using the SoftHand.

1) Considerations on the grasp quality metric: Given
the definition of each element of (17), while Jb and

Fig. 16. Top: DeĄnition of the local frame used to compute Ja for
the Panda Gripper and examples of alignment of the gripper with a
box. Bottom left: approximation of the collision volume O as union
of three cuboids. Bottom right: ĄngersŠ closing region C .

Jw, as described in (8) and (9), are basically gripper-
agnostic, Ja and Jc are instead strongly gripper-dependent.
Specifically, they depend on the definition of the quantities
collected into the tuple h (see equation (4)).

For Jc, being it related to the collisions of the gripper
and its fingers during the grasping procedure, it should
only be necessary to provide an approximation, even
rough, of O and C to compute κO and κC . More critical
instead is the question of the box-gripper alignment.
Indeed, the considerations provided in Sec.III-C3 are, at
first glance arising from assumptions on the structure of
the specific robotic hand used.

It is possible to use similar considerations for standard
parallel grippers, as shown in Fig. 16 using the Franka
Hand (a 2-finger parallel gripper). The top row shows how
it is possible to define a local frame as the one defined
for the SoftHand (see Fig. 3) to compute the gripper-box
alignment score Ja. Following considerations analogous to
the ones used for the SoftHand, grasps highly aligned with
the longest side of a box might not be robust (or even
unfeasible) given the limits on the gripper width (that
for the Franka Hand is set to 0.08cm). The bottom row
is instead a representation of the approximation using a
combination of cuboids for O and the approximation of C
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(a) Objects used for the validation and examples of
generated grasps.

(b) Franka Hand: Grasping Success Rate (%).

Fig. 17. Experimental setup and grasping success rate using the Franka Hand. GLP 2.0 achieves an overall grasping success rate of 85.0%,
comparable to the one obtained on the same objects with the Pisa/IIT SoftHand (91.25%). GLP 2.0 outperforms the other two baselines,
which score a success rate lower than 60%.

through a single cuboid.
From these considerations, it is possible to provide a

suitable definition of h even for the case of more standard
grippers.

B. Experimental setup and objects

The setup replicates the one used for the validation with
the SoftHand: two Intel Realsense D415 cameras are used
to collect the object point cloud. The manipulator and
the gripper are controlled using ROS. The point cloud
acquisition is made using the ROS interface provided by
Intel. The box decomposition is implemented in C++,
while the grasp prediction using the DTR is implemented
with a Python script.

The performance of the algorithm is evaluated on a
dataset composed of 16 objects, representing a subset of
the complete dataset used for the validation with the
SoftHand. A picture of the set of objects and a snapshot
of executed grasps is shown in Fig. 17(a).

For each object, five grasps are attempted, with the
target object placed randomly on the table at the
beginning of each trial. The robot starts each trial from
the same initial position. An RRT planner is used to
plan a collision-free trajectory to reach the grasping pose.
When the robot reaches the computed grasping pose, the
gripper fingers are closed, and the manipulator tries to lift
the object 150mm. A grasp is successful if the robot can
keep the object grasped after the lifting phase. The trial
is marked as a failure also in the case of the algorithm
returning no feasible grasps.

C. Results

The results of the method applied to the Franka Hand
(in the following denoted as GLP2-F) are compared to
three different baselines: i) the proposed method using the
Pisa/IIT SoftHand (GLP2-SH); ii) Dex-Net 2.0 [24]; iii)
GPD [15].

The results of the experimental validation are reported
in Fig. 17(b), where the success rate for each object

is reported for the method and the three baselines.
The method using the Franka Hand achieves an overall
grasping success rate of 85.0%, compared to the 91.25%
obtained with the same objects with the Pisa/IIT
SoftHand. It is worth noting that it achieves satisfactory
performance for almost every object in the dataset,
except for the Small Cup and the Spatula, and clearly
outperforms the other two baselines, GPD and Dex-Net,
that score a success rate lower than 60%. As expected,
Dex-Net is the method with the worst performance, as
it has been developed assuming observations from an
overhead camera. Compared to the results obtained with
the SoftHand, it is possible to notice an improvement for
the Controller. At the same time, there is a clear decrease
for the Small Cup (60% against 100%).

The reason for this reduction can be explained by the
fact that such a small object is, in general, more affected
by errors and artifacts in the acquired point cloud and
depth maps. This type of artifact consequently influences
the grasp pose generated and, for a rigid gripper such as
the one used, can lead to failures and non-robust grasps.
Indeed, it can be noted that also GPD and Dex-Net
struggle with this particular object, since they are both
able to grasp only once over the 5 trials. In these cases, the
compliance of the gripper and its ability to adapt influence
the performance positively.

Overall, these results seem to confirm that the proposed
method is generally capable of generating and selecting
good quality grasps even for non-compliant grippers,
outperforming both GPD and Dex-Net. Furthermore,
the results show that the performance are not strongly
affected by the compliance of the gripper used initially.
Nonetheless, using a compliant gripper can help increase
robustness against uncertainties and errors related to poor
perception.

VI. Limitations

This section will discuss the main limitations and
shortcomings of the different parts of the proposed
method.
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(a) Big Colander (b) Boiler

(c) Drill (d) Toy Orange

(e) Spray (f) Spatula

Fig. 18. Selections of frames of the robot grasping the Big Colander, the Boiler, the Power Drill, the Toy Orange, the Spray, and the Spatula.

a) Box decomposition: The main limitation is related
to the robustness of the method to perception inaccuracies.
Indeed, the performance of the box decomposition phase,
and thus of the whole pipeline, strongly depends on the
quality of the point cloud acquired by the sensors. Noisy
or incomplete point clouds can lead to poor decomposition
and therefore to reduced grasping performance. One
possible solution to this shortcoming might be to use shape
completion networks to reconstruct the acquired point
cloud from partial views [64], [65]. This change would also
work toward a more flexible framework because it could
reduce the number of cameras needed to capture the point
cloud.

b) Grasp generation: The method requires a dataset
of grasp poses and interaction wrenches to train DTR.
These data are gripper-dependent, therefore, to adapt the
method to different grippers, it would be necessary to
reacquire the data with the specific gripper. It has to be
noted as this limitation is common to other data-driven
algorithms that learn grasps for the specific gripper used
for data collection. Further investigations are needed to
increase the generality of the proposed approach, and to
understand if the data collected with a specific gripper,
e.g., a 2-finger parallel gripper, can be transferred to and
used for other grippers that have similar properties, e.g.,

other 2-finger grippers.

c) Grasp selection: The grasp selection procedure
depends on the evaluation of the quality score Sg. This
score has been designed according to a set of heuristics
that we believe are capable of evaluating the “quality” of
a grasp. Nonetheless, some of these heuristics are based on
the specific gripper definition h and have been described in
Section III-C for the case of the SoftHand. We have later
shown that it is possible to transfer the score and gripper
definition to a completely different gripper, i.e., the Franka
Hand. However, while some of the parameters like the ones
describing the gripper’s shape and closing regions, or the
maximum graspable dimension, might be straightforward
to compute and tune, the tuning of the other parameters,
i.e., the collision’s and alignment’s thresholds, is less
direct and it is impossible to provide a general automatic
procedure.

In addition, in the current form the grasp selection
policy is designed to select the best kinematically feasible
grasps and does not take into consideration any other
property related to the specific robot used to move the
gripper, e.g., the manipulability of the grasp pose. In
theory, it could be possible to modify the grasp selection
policy presented in (18) by scaling the grasp quality
metric by a measure of the manipulability of the specific
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grasp pose. This term could be computed using, e.g., the
manipulability index introduced by Yoshikawa in 1985 [66]

µ(g) =
√

det
(

J(qg)JT (qg)
)

,

where qg is the joint configuration realizing the grasp
pose g, retrieved using a robot-specific inverse kinematics
solver. This procedure would select a grasp considering
both the quality of the grasp, measured by Sg, and the
manipulability of this grasp given the specific manipulator.

d) Grasp execution: Eventually, the current
framework only tackles the problem of generating a
grasp pose for the gripper. The selected grasp is then
executed in open-loop. However, especially in presence of
uncertain and noisy perception, open-loop execution might
cause failures because of early or inaccurate hand-object
contacts [67]. Indeed, including closed-loop adaptive
grasping strategies, capable of using tactile and contacts
information [67], into the proposed framework have the
potential of improving the performance, especially when
using rigid, non compliant, grippers.

VII. Conclusions

In this paper, we presented GLP 2.0, a data-driven
grasp planning algorithm for grasping of unknown objects.
The method leverages and improves a previous work from
the same authors, which exploits an approximation of the
target object into a generic number of basic shapes to
generate a set of candidate grasps from demonstrations by
a skilled human operator grasping the same shape. Based
on the same philosophy of transferring the human grasping
skills to the robot, we proposed an improved grasp-
generation method and a novel grasp-selection policy. The
experimental validation with a compliant underactuated
hand shows that the method outperforms the original
algorithm in terms of overall grasping success rate, at
the expense of an increased execution time. We also
showed that the method is transferable to more standard,
rigid, grippers, providing an experimental validation of
the method when applied to the Franka Hand, a two-
finger gripper. Finally, we compared the method with
several baselines, showing that GLP 2.0 achieves better
performance in terms of grasping success rate. Future
works will extend the method to multi-object cluttered
scenarios and to task-oriented grasp planning.

Appendix

Object Dimensions

In Tab.II we reported the dimensions and the weights
of the objects used for the experimental validation.

Box Decomposition Algorithm

Algorithm 1 describes the decomposition procedure.
The algorithm uses a fit-and-split approach, that starts
with fitting a 3D bounding box on the whole point cloud.
This box is added to a list of candidate boxes, that are
iteratively tested for potential splitting. If the volume of

the candidate box or the number of points enclosed within
it are below a user-specified threshold, the candidate box
is added to the final set of boxes. Otherwise, the algorithm
evaluates a best split of this box, by using 2D projections
of the enclosed points to the box faces, according to the
procedure reported in Algorithm 2. This split produces
two boxes, box1 and box2, and if the reduction rate of the
volume of the two new boxes compared with the original
box is less then the user-specified gain, the two are added
to the list of candidate boxes. Oterwhise, the split is not
enforced and the original box is added to the final set of
boxes.

Decision Tree Regressor

We use Decision Tree Regressors (DTRs) to learn
the model ψ̃(λb) to predict the grasp pose and the
associated interaction wrenches. In this work we trained
two DTRs, one for predicting the grasp pose given a
vector of box dimensions, and one for regressing the metric
of the interaction wrenches described in Section III-B2.
The Regression Tree model is represented as a binary
tree, with each node representing a single input variable
xj and a split point on that variable. The tree’s leaf
nodes include an output variable y, which is utilized to
produce a prediction. Given a (xi,yi) observation for I =
1, 2 . . . , n, the regression tree construction is explained
by the following stages: i) choose a splitting variable j
and a splitting point s; ii) create two regions, R1 and R2:
R1(j, s) = ¶x♣xj ≤ s♢, R2(j, s) = ¶x♣xj > s♢; iii) for each
k ∈ ¶1, . . . ,K♢ find the splitting variable j and the split
point s that solve the problem

min
j,s

[min
c1,k

∑

xi∈R1(j,s)

(yi,k−c1,k)2+min
c2,k

∑

xi∈R2(j,s)

(yi,k−c2,k)2] ,

where c1,k, c2,k ∈ R are two constant decision variables
that describe the model response. Given j and s, the
solution of the minimization is

ĉ1,k = ave(yi,k♣xi ∈ R1(j, s)), ĉ2,k = ave(yi,k♣xi ∈ R2(j, s)),

where ave is the average of yi,k in region R1 or R2, and
we define ĉ1 = [ĉ1,1, . . . , ĉ1,K ]T and ĉ2 = [ĉ2,1, . . . , ĉ2,K ]T .
iv) After determining the optimal split for each splitting
variable, divide the data into two areas and perform the
splitting procedure on each of the two regions recursively.
The maximum tree depth is empirically chosen to 8 as a
trade-off between model complexity and risk of overfitting.
We used K-fold cross validation to verify the performance
of the trained models, evaluating the MSE error between
the models’ predictions and the true labeled data in the
validation set.
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