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Abstract: The capability of humans to use their natural dynamics for generating explosive
motions in a highly-coordinated sequence is a feature that has yet to be reached in robotics. With
the introduction of intrinsically elastic joints, great progress towards this goal has been made.
However, there are still some challenges associated with this type of actuation, which limits its
application. Generating goal-directed sequences has proven to be difficult since optimal control
solutions tend to result in uncoordinated swing-up motions. This can be explained when viewing
the structure of the stiffness matrix: If the elastic elements are placed in series with the motor, a
diagonal stiffness matrix is generated. This in turn leads to a multitude of frequencies in which
the system can oscillate. By adding off-diagonal elements, a dominant main resonance behavior
can be achieved. Leveraging this cross-coupling stiffness, we show that robots are capable to
produce natural goal-directed oscillatory motions as well as explosive movements that closely
resemble human throwing.
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1. INTRODUCTION

For a number of decades, there have been various en-
deavors to exploit intrinsic joint elasticity in the robotics
community (e.g. Grebenstein et al. (2011); Ugurlu et al.
(2014)). The resulting systems reach high performance in
terms of the reachable output power and energy efficiency.
In the case of Series Elastic Actuators (SEA), a spring
is placed in series with the motor. By optimally storing
and releasing potential energy in springs, these systems
can significantly outperform rigid actuators (cf. Haddadin
et al. (2009)). The timing of energy storage and release,
however, could not yet be controlled well. Motion plans
generated by optimal control often result in resonant ex-
citation signals.
With the introduction of Variable Stiffness Actuators
(VSA), controlled energy transfer between bodies is pos-
sible for some well-timed solutions, leading to a goal-
directed launch sequence (cf. Haddadin et al. (2012)).
However, this comes at unreasonable costs in terms of
control: The computational complexity of the problem is
quite high, which makes it challenging to obtain real-time
optimal control solutions (cf. Haddadin et al. (2016)).
Clutched elastic actuators (CEA, cf. Plooij et al. (2017))
aim to control the energy flow by leveraging clutches in the
drive train (cf. Ossadnik et al. (2022); Rouse et al. (2014)).
Regardless, the discrete nature of the clutch engagement
again increases the control complexity.
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Fig. 1. Sketch of a throwing motion for a human and
a robotic arm. Using a cross-coupling stiffness, the
dynamics of the robotic arm are reshaped such that
goal-directed explosive movements naturally occur.

This is in stark contrast to the human musculoskele-
tal system. Notwithstanding the limited bandwidth and
high delays, humans are highly capable of accomplishing
complex motion sequences. During throwing movements,
the entire kinematic chain from the foot to the throwing
hand is involved. Professional athletes are able to precisely
coordinate each segment such that all joints reach their
maximum velocity one after another. In this acceleration
phase, the velocity is drastically increased from the prox-
imal to the distal elements of the chain. This is known
as proximo-distal sequence in the biomechanics literature
(cf. Heger and Wank (2021)). There clearly exists a gap
between what has been achieved in robotics so far and
what can be observed in biological systems.



We hypothesize that the issue lies within the very structure
of the system itself. The human arm is comprised of mul-
tiarticular coupling stiffnesses. If these stiffnesses are well-
tuned, coordinated motions could be achieved by means of
natural dynamics alone. Usually, such coupling terms are
missing in elastic joint robots. In a robot equipped with
SEAs, for instance, a diagonal stiffness matrix is created.
Without any control input, the resulting systems behave
chaotically due to the many frequencies that the system
can oscillate with. It has been observed (cf. Haddadin
et al. (2012)) that by adding off-diagonal elements to the
stiffness matrix, the dynamics of these systems can be
reshaped in a desirable manner: The coupling terms can
be chosen to achieve a single dominant resonance behavior.
The human musculoskeletal system might therefore imple-
ment cross-coupling which then can be exploited easily by
the brain and the central nervous system.

1.1 Contribution

In this paper, we show that cross-coupling stiffness can
be leveraged to enhance the performance of elastic joint
robots. In a series of hardware experiments with a
lightweight robot, we show that using a virtual cross-
coupling stiffness

• The coupled system always moves in a closed orbit.
• Periodic motions can be taught intuitively by moving
the robot in the desired direction (in contrast to a
system with only diagonal stiffnesses).

To further evaluate the concept, we conduct an optimal
control study in which we compare an elastic double
pendulum and a shoulder/elbow system with and without
coupling stiffness. The results demonstrate that

• We are able to control the energy flow from the
proximal to the distal parts of the chain, achieving
a goal-directed launch sequence similar to human
throwing.

• We avoid unwanted resonant excitation typically as-
sociated with series elastic actuation.

1.2 Organization

In Section 2, we begin with a brief overview of how to select
an appropriate cross-coupling stiffness. Using a virtual
cross-coupling stiffness, we show the results of hardware
experiments in Section 3. Then, in Section 4, we proceed
to formulate the optimal control for generating explosive
movements for a fully elastic robot. The simulation results
are given in Section 5 before concluding the paper in
Section 6.

2. CROSS-COUPLING STIFFNESS

First, let us consider a robot in the absence of Coriolis,
centrifugal and gravitational terms. The dynamics of this
system can be stated as

M(q)q̈ +K(q − q0) = 0, (1)

where q is the vector of link positions, q0 is an initial
configuration, M(q) is the inertia matrix and K is an

arbitrary, yet-to-be-defined, positive-definite stiffness ma-
trix. We assume that solutions to Eq. (1) can be expressed
as

q(t) =

n∑
i=1

aiζie
ȷωit, (2)

with amplitudes ai and frequencies ωi > 0, which leads
to the the generalized eigenvalue problem (cf. Petit et al.
(2012))

λiM(q)ζi = Kζi (3)

where λi = ω2
i and {λi, ζi} denotes the set of eigenvalue-

eigenvector pairs, the eigenmodes of the system. We wish
to shape the eigenmodes such that n repeated eigenvalues
λs arise (cf. Petit et al. (2012); Haddadin et al. (2012)).
Presupposing there is only a single eigenvalue, we can
reformulate the generalized eigenvalue problem as

λsM(q)V = KV , (4)

where V = [ζ1, . . . ζn]. It follows that

K = K(q) = λsM(q). (5)

Therefore, for producing the desired behavior, a configura-
tion-dependent stiffness matrix must be chosen that cor-
responds to the scaled mass matrix.

2.1 Oscillatory behaviour

We now proceed to analyze the oscillatory behavior of a
double pendulum equipped with cross-coupling stiffness.
We chose the same mechanical parameters as in Haddadin
et al. (2012). They are summarized in Table 1. For com-
parison, we also simulate the same system with a diagonal
stiffness only.
The phase plot in Figure 2 shows the evolution of both
systems, which are initialized at the equilibrium config-
uration with some initial velocity. The curve traced by
the coupled system is elliptical, forming a closed periodic
orbit. This synchronous kind of motion is generated solely
by the natural dynamics of the system. With the choice
of stiffness matrix, there is but a single main resonance

Table 1. Mechanical parameters of the double
pendulum system

Parameter Symbol Value

Mass Link 1 m1 5 kg

Mass Link 2 m2 4.6 kg

Moment of Inertia Link 1 Jl1 0.0453 kg m2

Moment of Inertia Link 2 Jl2 0.0492 kg m2

Length Link 1 l1 0.34 m

Length Link 2 l2 0.34 m

Fig. 2. Phase plots for the elastic double pendulum. The
system is initialized at q = [0, 0]T, q̇ = [3,−2]T.



Fig. 3. Coupled system. Phase plots and end-effector
position after a push in the x-direction.

Fig. 4. Uncoupled system. Phase plots and end-effector
position after a push in the x-direction.

behavior. Contrary to that, the uncoupled system ex-
hibits multiple frequencies. The resulting motion can be
characterized as a non-periodic chaotic type of motion. In
the small simulation time frame, already a large portion
of the phase space is covered.

3. HARDWARE EXPERIMENTS

Cross-coupling can also be exploited when dealing with
more complex systems. We use the Franka Emika Panda to
implement a virtual cross-coupling system. The dynamics
of this system can be written as

M(q)¨̂q +K(q)(q̂ − q̂0) = τ ext. (6)

Here, q̂ corresponds to the virtual joint position and τ ext

refers to the measured external torques. To match the
actual robot’s motion with the virtual system, we set the
current joint velocity of the virtual system as a desired
joint velocity

q̇des =

∫
M−1(q) (τ ext −K(q)(q̂ − q̂0)) dt. (7)

This is then passed to the robots’ joint velocity control
interface. Closed orbits can now be easily encoded by
leveraging the torque-sensing capability of the robot.

Fig. 5. Coupled system. Phase plots and end-effector
position after guiding the robot on an elliptical curve.

Fig. 6. Uncoupled system. Phase plots and end-effector
position after guiding the robot on an elliptical curve.

3.1 Programming closed orbits

To program closed orbits, we just have to start the
controller at an equilibrium position and use the robot’s
sense of touch to initialize the motion. Generating directed
behaviors becomes very natural and intuitive. Similar to a
slingshot, the robot’s end-effector can be drawn back and
released. The end-effector will then move along a vector
that is opposite to the drawing direction. In the following,
we compare coupled system equipped with cross-coupling
stiffness and an uncoupled system with a diagonal stiffness
matrix 1 .

3.2 Pushing along a straight line

In the first hardware experiment, we excite the robot
by pushing along a straight line in the approximate x-
direction of the end-effector. Figures 3 and 4 shows the
experimental results for the coupled and the uncoupled
system, respectively. In the case of the coupled system,
closed orbits arise for all three joints. The robot moves
1 The desired eigenvalue is set to λs = 10 and all the diagonal
elements of the uncoupled system are set to 10 as well. For the
experiments, only joints 1, 2, and 4 are used.
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Fig. 7. Picture series of the energy transfer experiment.

Fig. 8. Phase plots for the energy transfer experiment.

along the ”taught” line with a slight movement in the
z-direction as well. There is no such coordination in the
uncoupled system case.

3.3 Guiding along an elliptical curve

Similarly, elliptical motions can be taught by hand-guiding
the robot alongside the desired curve. Figures 5 and 6
show the trials for the coupled and uncoupled systems,
respectively. For the coupled system, a periodic approxi-
mate ellipse can be ”entrained”. This shape is not visible
in the uncoupled system, although joint 3 forms a closed
periodic orbit.

3.4 Energy transfer

In the last experiment, we investigate how to transfer
energy from proximal to distal joints. For this, we consider
the motion of joints 2 and 4 only. First, we excite the robot
such that the motion is dominated by q2. Then, by holding
the first joint at the right time, we inject energy into the
second joint (cf. Figures 8 and 7) After the transfer, the
oscillation is dominated by the distal joint q4. Thus, using
the coupling stiffness, transferring energy between joints
can be intuitively controlled.

The experiments demonstrate the potential for the ap-
plication of cross-coupling stiffness in the generation of
natural, goal-directed behavior. We will now show how this
can be utilized in the generation of explosive motions in
an optimal control setting.

4. GENERATION OF EXPLOSIVE MOVEMENTS

In this section, we aim to generate optimal throwing
motions by leveraging cross-coupling in fully elastic joint
robots. We consider two systems: A 2-DoF double pendu-
lum and a 3-DoF shoulder arm system (cf. Figure 9).

4.1 Full system model

First, let us consider the full dynamics of an elastic joint
robot under the simplifying assumption that motor and
robot dynamics are coupled only via the springs (cf. Spong
(1989)). We introduce motor positions θ to formulate the
robot dynamics

M(q)q̈ +C(q, q̇)q̇ + g(q) +K(q − θ) = 0 (8)

Bθ̈ +K(θ − q) = τ . (9)

Here, C(q, q̇)q̇ are the Coriolis and centrifugal terms, g(q)
is the gravity vector, and B is the motor inertia. In the
following, we assume that the stiffness matrix is constant,
i.e.

K = λsM(q0), (10)

for an equilibrium position q0. As in Haddadin et al.
(2012), we aim to maximize the end-link velocity of the
considered elastic robot arm. To formulate the optimal
control problem, we assume that the dynamics in Eq.
(8) is in singular perturbation form: Given a control law

τ = KP (θ̇d − θ̇), where KP is a diagonal matrix, we can
rewrite the motor dynamics as (cf. Haddadin et al. (2012))

ϵ(Bθ̈ +K(θ − q)) = θ̇d − θ̇, (11)

where ϵ = K−1
P . Taking the limit ϵ → 0 leads to θ̇ = θ̇d.

Now, we can restate the dynamics as

ẋ = f(x,u) :=

 u
q̇

M(q)−1(−h(q, q̇)−K(q − θ))

 , (12)

where x := [θ, q, q̇]T is the state, u := θ̇ is the new control
input and h(q, q̇) := C(q, q̇)q̇+ g(q) is the nonlinear bias
term.

4.2 Optimal control

We employ a direct collocation scheme to find the time
series of states x(t) and control inputs u(t) (cf. Bertsekas
(1997)). The optimal control problem can be stated as

min
x(t),u(t)

J (x(t),u(t)) (13)

s.t. ẋ(t) = f(x(t),u(t))

x(t) ∈ X , u(t) ∈ U .
Here, the sets X and U denote the box constraints on
the states and control inputs, respectively. As the cost
function, we use the end-effector velocity

J (x(t),u(t)) = −vEE(x(t)) = −J(q(t))q̇(t). (14)

We formulate the optimal control problem using the Mat-
lab interface of CasADi (cf. Andersson et al. (2019)) and
solve it using Ipopt (cf. Wächter and Biegler (2006)).
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(a) Double Pendulum

(b) Shoulder/elbow system

Fig. 9. Sketches of the two considered systems.

5. SIMULATION RESULTS

5.1 Double pendulum

We begin with the double pendulum system. The final time
of the optimal control problem is T = 1s. The maximum
motor velocity is set to θ̇max = 2rad/s. The stiffness
matrices are set to K = 50M(q0) for the coupled system
and K = diag([50, 50]) for the uncoupled system. Figure
10 shows the optimal control results and Figure 11 shows
a visualization of the two systems in motion. With the
stiffness matrix

K =

[
k1 k3
k3 k2

]
, (15)

we define the cross-coupling energy terms as

Ecross,1 = k3(θ2 − q2)
2 (16)

Ecross,2 = k3(θ1 − q1)
2. (17)

Coupled system. The system starts with a lunging mo-
tion before swinging back and forward again. The control
signal is of bang-bang type for both joints. There is an im-
portant detail: The signal for the second joint always lags
behind a bit. The velocity maxima of each link are reached
in a consecutive manner. When viewing the energy of the
system we can observe that Ecross,1 is almost zero during
the last phase of the motion. This means that there is no
energy transfer back to the first joint! As we can see in the
plot for the energies of link 2, almost all potential energy
is converted to kinetic energy. The coupling stiffness thus
facilitates the energy transfer from proximal to distal links,
achieving a proximo-distal sequence as described in the
introduction.
Uncoupled system. The uncoupled system, on the other
hand, does not show this kind of goal-directed behaviour.
The excitation signal is of bang-bang type as well. How-
ever, since the oscillation behaviour is not determined by a
dominant resonance frequency, the system is excited along
it’s multiple other frequencies resulting in a chaotic swing-
up motion. This is also apparent in the energy plot of the
system, which shows large oscillations from potential to
kinetic energy.

5.2 Shoulder/elbow system

Next, we investigate a slightly more complex system that
is a bit closer to the human arm. It consists of two limbs

and three joints corresponding to shoulder adduction and
internal rotation, and elbow extension. The mechanical
parameters are given in Table 2. Again, we compare two
similar systems, where the only difference is the stiffness
matrix. The matrices are given by K = 75M(q0), and
K = diag([75, 75]). The final time of the optimal control
problem is set to T = 0.75s. Figure 12 shows the optimal
control solution for both systems. Figure 13 shows a
visualization of the systems in motion. The system is
initialized at q0 = [0, 0, π/2]T with the arm extended
to the side with the elbow joint at a 90-degree position.
The initial motor position is chosen such that the torque
generated by the springs compensate for gravity. The
shoulder/elbow system has some special properties which
simplify the structure of the stiffness matrix. There is no
coupling between the shoulder rotation and the other two
joints since the mass matrix is given by

M(q) =

[∗ 0 0
0 ∗ ∗
0 ∗ ∗

]
.

Here, the asterisk denotes the non-zero elements. Thus
matching the scaled linearized mass matrix with a matrix
K only requires two coupling elements.

Coupled system. The motion of the coupled system
consists of two phases: Wind-up and acceleration. In the
wind-up phase, the first joint rotates the arm back as
the arm folds up. As soon as this movement comes to
a standstill, the launch is initiated. Shoulder adduction
and elbow extension reach their velocity limits almost
simultaneously. In the last 0.25s of the motion, almost all
potential energy is converted into kinetic energy again.
When viewing the cross-coupling energy terms, again we
can see that there is almost no energy flow back to joint
2. Similar to the double pendulum case, another proximo-
distal sequence could be achieved.
Uncoupled system. In case of the uncoupled system, we
can observe again a uncoordinated swing-up motion. Due
to the ill-posed natural dynamics of the system with its
multiple frequencies, no clear launch sequence is possible.

Table 2. Mechanical parameters of the shoul-
der/elbow system

Parameter Symbol Value

Mass Link 1 m1 4.6 kg

Mass Link 2 m2 4.6 kg

Mass Link 3 m3 5 kg

Moment of Inertia Link 1

J1,xx 0.028 kg m2

J1,yy 0.0457 kg m2

J1,zz 0.0457 kg m2

Moment of Inertia Link 2

J2,xx 0.028 kg m2

J2,yy 0.0457 kg m2

J2,zz 0.0457 kg m2

Moment of Inertia Link 3

J3,xx 0.03 kg m2

J3,yy 0.0497 kg m2

J3,zz 0.0497 kg m2

Length Link 1 l1 0.1 m

Length Link 2 l1 0.34 m

Length Link 3 l2 0.34 m
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Fig. 10. Optimal control results for the double pendulum. (a) Coupled system (b) Uncoupled system.
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t = 0s t = 0.33s t = 0.66s t = 1s

Fig. 11. Visualization of the double pendulum in motion.

6. CONCLUSION

In this paper, we showed how cross-coupling stiffness can
be exploited to reshape the natural dynamics of elastic
joint robots to achieve a single dominant resonance behav-
ior. The results demonstrated that using such stiffness, the
energy flow from proximal to distal parts in the kinematic
chain can be intuitively controlled. Systems with coupling
stiffness were able to produce natural goal-directed oscil-
latory motions as well as explosive movements with clear
launch sequences which were not yet possible when using
a diagonal stiffness.

We believe that with the advantages of cross-coupling,
robots can get one step closer to the astonishing capa-
bilities of the human musculoskeletal system and aim to
realize this concept in a physical prototype.
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