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Information-aware Lyapunov-based MPC 1n a
feedback-feedforward control strategy for
autonomous robots

Olga Napolitano!, Daniele Fontanelli?, Lucia Pallottino! and Paolo Salaris'

Abstract—This paper proposes a feedback-feedforward control
scheme that combines the benefits of an online active sensing con-
trol strategy (the feedforward control component) to maximize
the information needed for correctly executing the desired task,
with a Lyapunov-based control strategy (the feedback control
component) that guarantees an asymptotic convergence towards
the task itself. To quantify the amount of the collected information
along the planned trajectories, the smallest eigenvalue of the
Constructability Gramian is adopted as a metric and optimized,
for generating the feedforward control component, within a
Lyapunov-based Model Predictive Control framework (LMPC).
The latter indeed allows to systematically handle the closed-
loop stability and robustness properties of a Lyapunov-based
nonlinear control law, and, at the same time, to reduce the
estimation uncertainty and, thus, increase the task execution
performance. To show the effectiveness of our method, we
consider three case studies where a unicycle equipped with
suitable onboard sensors has to perform three classical tasks
in mobile robotics: path following, point-to-point motion, and
trajectory tracking.

Index Terms—Optimization and Optimal Control; Sensor-
based Control; Motion and Path Planning

[. INTRODUCTION

CTION selection is a crucial decision process for hu-

mans, and depends on the state of both their body and
the environment that, analogously to robots, sensors cannot
provide directly. Because signals in humans sensory and motor
systems are affected by variability and/or noise, the brain dedi-
cates a lot of effort to efficiently combine collected information
(i.e., sensor inputs) and prior knowledge (i.e., the knowledge
base from life memories) [1]. In particular, humans appear to
adopt a strategy that is not a pure feedback, but includes also
a feedforward active sensing control component to reduce the
detrimental effects of uncertainty [2] and hence increase the
probability of task success w.r.t. passive sensing [3].

Manuscript received: September, 9, 2021; Revised December, 15, 2021;
Accepted January, 26, 2022.

This paper was recommended for publication by Editor E. Manchand upon
evaluation of the Associate Editor and Reviewers’ comments.

This work has received funding from European Union’s Horizon 2020
Research an Innovation Program under Grant Agreement No. 101017274
(DARKO) and partially by the Italian Ministry of Education and Research
(MIUR) in the framework of the CrossLab project (Departments of Excel-
lence).

1 Research  Center “E.  Piaggio” and
formation Engineering, University of
paolo.salaris,lucia.pallottino@unipi.it
olga.napolitano@phd.unipi.it

2 Department of Industrial Engineering, University of Trento, Italy.
daniele.fontanelli@unitn.it

Digital Object Identifier (DOI): see top of this page.

Dip. of In-
Pisa, Italy.

In robotics, action, and motion planning [4] are typically
used to accomplish a given task (e.g., reaching a particu-
lar configuration) with stability guarantees (e.g., Lyapunov
stability theory), and/or optimizing a cost of interest (e.g.,
control effort), under different constraints (e.g., on limited
Field-of-View sensors). However, as for humans, the success-
ful generation and execution of a motion plan substantially
depends on the accuracy of the reconstructed surroundings
and (internal) state trajectories that, in a real scenario, are
not assumed directly measurable by on-board sensors but
estimated. Due to non-linearities, the quality of the sensory
information strongly depends on the actions chosen to perform
the task, as for humans. Similarly, an interesting coupling also
exists in robotics between perception and action: generation
of a motion/action plan should find a balance between effi-
cient/stable task execution and improved estimation.

This paper hence proposes a feedback-feedforward strategy
for a robotic system where the feedforward component aims at
maximizing the information collected by the onboard sensors
(for correctly accomplishing a desired task) by using an online
active sensing control strategy [5], while the feedback compo-
nent guarantees an asymptotic convergence, in the Lyapunov
sense, towards the desired state/task (e.g., reaching a desired
posture).

Active sensing control strategies are widely used in robotics
to reduce estimation uncertainty. In [6] authors surveyed the
fundamental components of robotic active learning systems,
while [7] uses active perception to improve the quality of
domain randomization-based pose estimation with neural net-
works applied to 2D images. A task-oriented active sensing
scheme that minimizes the uncertainty in future task-related
actions is proposed in [8], whereas [9] proposes a yaw-based
trajectory control algorithm that jointly optimizes aggressive-
ness and feature co-visibility for state estimation improvement.
In [10], instead, a perception-aware model predictive control
framework for quadrotors has been proposed to maximize the
visibility of a point of interest and minimize its velocity in the
image plane. The authors of this paper have already proposed
active sensing control strategies [11], taking also into account
measurements noise [12], intermittent measurements [13] as
well as in combination with shared control [14]. However,
we never consider the coupling of an active sensing control
strategies with a stabilizing feedback control law for better
accomplishing a task of interest. We will show here that
control inputs computed on the state estimates generate an
uncertainty on the time derivative of the candidate Lyapunov
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function proportional to the state estimation uncertainty, which
is directly related to the active sensing choices. To quantify
the amount of the collected information (and hence of the un-
certainty) along the planned trajectories, the Constructability
Gramian (CG), quantifying the level of constructibility of the
current/future state, is used as the guiding metric [11], [15].
Ensuring Lyapunov stability with uncertainty is a chal-
lenging problem that can be tackled using authority-sharing
paradigms [16]. Instead, in this paper, the effective combi-
nation of the feedback/feedforward components with uncer-
tainties is pursued adopting an iterative, finite-horizon optimal
control approach within the Lyapunov-based Model Predictive
Control (LMPC) technique [17, Chapter 2]. LMPC tech-
nique is classically used to account for control input bounds
in combination with, e.g., measurements delays [18], data
losses [19], trajectory tracking performance requirements [20].
[21] presents a real-time solution for a unified Nonlinear
MPC and Control Lyapunov Function controller with lim-
ited computational resources. Finally, [22] presents an MPC
approach for a class of nonlinear systems with unbounded
uncertainties guaranteeing stochastic stability. However, none
of the previous publications deals with the intimate and fruitful
connection between feedback and feedforward components,
which are here presented using simulations on a unicycle
vehicle engaged in three classical tasks in robotics: path
following, trajectory tracking and point-to-point motion.

II. INFORMATION-AWARE LYAPUNOV-BASED
MPC

The components of the proposed feedback-feedforward con-
trol scheme are detailed in this section and depicted in Fig. 1:
the Lyapunov-based feedback control law steers the robot to
the task accomplishment, while the feedforward component
maximizes the sensor information through active sensing.

A. THE FEEDBACK COMPONENT

Let us consider a time-invariant, input affine nonlinear
system

q(t) = f(q(t)) +9(q(t))u(t) (D

where q(t) € R” is the state of the system, u(f) € R™ its
control input and f(-) and g(-) are the drift vector and the
control vector field, respectively. Let us then consider a pos-
itive definite candidate of Lyapunov V (q(t)), with V(0) =0
and ¢(t) = 0 the desired equilibrium. The Lyapunov-based
Control Law u(t) = uyp(g(t)) (LCL in Fig. 1) that makes
g(t) = 0 asymptotically stable is derived by imposing

V(g(t)) = LV (q(t) + LV (q(t))us(q(t) <0,  (2)

with L the Lie derivative, and then applying, if needed, the
LaSalle-Krasowski principle.

The above control design implicitly assumes that the state of
the nonlinear system g(t) is completely known. However, in a
real scenario, the state of the system is usually unknown, and
only an estimate g(t) is made available by an observer (e.g.,
an EKF) which exploits sensory data. As a consequence, the
control inputs @ ¢4 (g(t)) are computed on the state estimates,

which of course are affected by uncertainties. For this reason,
the time derivative of V' becomes,

V(a(t),a(t)) = LV (a(t)) + LgV(a()as(@(t). 3
By adding and subtracting LV (g(t))uysy(¢(t)) in (3),

V(g,q) = ~LyV(a)(up(e) —up(@) + V(). @

Since an EKF will be adopted as an observer for the state
estimation, we can assume that up to the first order

q=q+eg withE{e,} =0 )

where E {-} is the expectation operator and, assuming that &,
is the estimation error and P its covariance matrix returned
by the EKF, we have P = E {sqsg}. It then follows that the
effects of the uncertainties on the control law are described
by the Taylor expansion around e, = E{e,} =0

Upy(q) = usp(q) + duley) =
Ouyy(q)
Oeq

e +0@2), ©

gq=0

=wup(q) +

where O(g,) are all the terms of order greater or equal to
two. We can now determine the first two moments of the
random variable (4) assuming the following first order Taylor
approximation

Suley) ~ 0tsy(q)

~ e, e, = De,, (N

gq=0

which yields (up to the first order approximation)
E{V(@.a)} = V()

E{(Wq,fn - E{V<q,a>})2} - ®
= (~L,V(@))DPD" (~L,V(g)".

From (8), it is clear that the stability of the equilibrium
depends on the state estimation uncertainty and its propagation
through the control inputs. Therefore, the use of an appropriate
feedforward control component that steers the robots along the
most informative trajectories to reduce the estimation uncer-
tainty, has a positive impact on the task execution stability.

B. THE FEEDFORWARD COMPONENT

The MPC synthesizes a constrained optimal control se-
quence over a finite prediction horizon capable of handling
control and state constraints as well as other optimization
targets. The cost function to be minimized is typically a
quadratic cost function involving penalties on the system states
and control actions. MPC usually optimizes over a family of
piecewise constant inputs with a fixed sampling time. Once
the optimization problem is solved, only the first step of the
control sequence is applied in a receding horizon fashion.
Closed-loop stability is a common optimization constraint,
e.g., inherited from a Lyapunov-based approach. In such
a case, the MPC can be modified so that Lyapunov-based
stability is enforced by design in the so called Lyapunov-based
Model Predictive Control (LMPC) [17, Chapter 2] approach,
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Fig. 1. Feedback-feedforward control scheme that determines at run-
time the feedforward control action that maximizes the information
collected through sensors along the future path taking into account the
feedback control action that guarantees the asymptotic convergence
toward the desired task.

whose classical formulation applies to affine control systems,
as described as in the following Problem 1.

Problem 1 (LMPC) Given the prediction horizon L, the con-
trol input u(t), the predicted trajectory of the nominal system
q subjected to u(t) and with initial state q(t) at time ty,
find, ¥t € [ty, tyy1], the optimal sequence

u' = ungl(nA) J[tk, tryr] (Q(t), u(t)) (9)
s.1.
1) q(t) = f(q(t)) +g(q(t))ult) (10)
2) q(tx) = q(tr) (an
Hu<ult)<u (12)
4) LyV(q(ti))u(te) < LeV(g(te))us(q(ts)  (13)

where S(A) is the family of piece-wise constant functions with
sampling period A, Jy, +, . ,.1(q(t),u(t)) is the cost index to
be minimized, (10) is the nominal model of the system, which
is used to predict the state evolution starting from the initial
state (11), and (12) are the control constraints. Finally, (13)
is the Lyapunov stability constraint guaranteeing that the time
derivative of V(q), computed at time ty with u(ty) the first
step of the control strategy , is smaller than or equal to the
value obtained if u,(q) would have been in a sample-and-

hold fashion.

With respect to the ideal Problem 1 we have to deal
with two major issues. First, only an estimate of the state
q(t) is available at time ¢j, hence it should be used in
place of the actual initial state q(t;) = @q(tx), implying
that w () turns to @(tx). Second, the proposed feedback-
feedforward control scheme assumes that the first step of the
MPC synthesized control law fed to the system is given by
w(ty) = Usp(ty) + pp(tr) (see Fig. 1). By substituting
in (13), the stability constraint boils down to

LoV(q(te))(ps(te)+tpy(te)) < LoV (q(te))trs(ts) (14)

Furthermore, in the standard formulation of the LMPC, the
cost function (9) usually is a weighted sum of the state and the
control input [17, Chapter 2]. Instead, in this active sensing
setting, the cost function introduced in [11] is adopted, which
is subsumed in the following.

Let us consider a general nonlinear system

q(t) = f(q(t), u(t))
z(t) = h(q(t)) +v

where z(t) € RR? are the output of the system and v ~
N(0,R(t)) is a normally-distributed Gaussian output noise
with zero mean and covariance matrix R(t). A suitable metric
for quantifying the amount of the acquired information is the
aforementioned CG that quantifies the ability of estimating
the current state q(t) from knowledge of the system outputs
z(t) and inputs w(¢) with ¢ € [to, ¢] and hence the amount of
information collected through the onboard sensors about g(t).
The CG is defined as

15)

Gelto, tr) é/ f@T(T, te)HT (1YW o(T)H (1)@ (7, t7) dT

t
' (16)
where t; > to, H(T) = ngq((:)))’ and W.(r) € RP*P

is a symmetric positive definite weight matrix (a design
parameter), that may be used for, e.g., accounting for out-
puts with different units and different uncertainties. Matrix
®(t,ty) € R" ™, also known as sensitivity matrix, is defined
as ®(t,ty) = %qT(t) and obeys the following differential
equation with final conditions at ¢ f

i 1y) - L0

The link between the CG and the optimal estimation error
covariance matrix P (obtained here with the EKF), reported
in [11], turns to be instrumental for a practical implementation
of the feedback-feedforward control scheme. More precisely,
let us consider the continuous Riccati equation

(t7tf)7 ‘I’(tf,tf):I. )

P () =—P ')A - AT P () +HTt)RH(1),

(18)
with A(t) %‘1’“), i.e., the state-dependent linearized
dynamic matrix of (15) around a nominal trajectory. It is
possible to show that the solution of (18) is

P H(t) = @7 (to,t) Py ' ®(t0,t) + Gel(to, t) = Ge(—00,1).
19)
The first term of (19) represents the contribution of the a priori
information P~ *(tg) = Py but shifted at time t by ®(to,1).
The second term is instead the contribution of the information
actually collected during the interval [to, t] and encoded by
the CG in (16) with W (t) = R_l(t) and t; = t¢. Hence,
Ge(—o0,t) represents the current knowledge, given by the
already collected information about the current q(t) in the
interval [to, t] plus any other additional a priori information
available at time t(, and it is directly available from the EKF.
When planning the future maneuvers for [t, ¢ /], one has

Ge(—o00,tp) = T (tt5)Ge(—00,)B(t,ty) + Gelt )
(20)
where the first term represent bow the current knowledge
is projected at the final time ¢y by means of the operator
@T(t, ty) while the second one quantify the information yet
to be collected in the interval [¢, ¢;] and correctly represented
by CG.
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In this work, as in [11], we will use the differential
approximation of the smallest eigenvalue of the CG given by

IGe(—00,tp)llu = 4| DM (Ge(—oorty)) (21
i=1

where p1 << —1 and A;(A) stands for “the i-th smallest
eigenvalue of A”.

As a consequence, the Information-aware LMPC problem
to be solved at runtime for the feedback-feedforward control
scheme reported in Fig. 1 reads as follows:

Problem 2 (Information-aware LMPC) With the same
meaning of the parameters of Problem 1, find the optimal
sequence, Nt € [tp, tryr], of the feedforward control
components

min

- c\ ™ vt
N |G (=00, thyr)ln

Upp =

s.t.

2) q(tx) = q(t)
3) w—up(q(t) <upp(t) < w—up(q(t)
4) LgV(q(tr))tss(te) <0

Notice that, Condition 4) of Problem 2 derives directly
from (14), which is the explicit equivalent form of Condi-
tion 4) of Problem 1 when w(ty) = wsp(ti) + wpp(te) is
considered.

ITII. SIMULATION RESULTS

To prove the effectiveness of our approach, we test it
on a unicycle vehicle that performs three classical tasks in
mobile robotics: path following, point-to-point motion, and
trajectory tracking. Moreover, we compare the results applying
the proposed Information-aware LMPC (dubbed I-LMPC), i.e.,
feedback-feedforward controls obtained by the solutions of
Problem 2, with: 1) the results obtained by directly applying
the feedback sy (t) only (LCL) 2) the results obtained by
using the classical LMPC, that is, by applying the solution of
Problem 2 where the cost function defined by (21) is replaced
by a task-oriented cost function defined as follows:

thtL
/t 16(7) = arasill. + lu(r) —urask(7)|r. dT (22)
k

where (qp,s, UTask) are the desired state and control inputs
that steer the vehicle once the task is executed.

To this end, we perform 100 simulations for each task and
each control approach randomizing on the initial estimated
configurations g, that are generated according to the initial
estimation covariance matrix P, related to the initial state
estimation. Moreover, we carry out a statistical analysis in
terms of estimation error and task error by using a Wilcoxon
rank sum test with a significance level of 5%. The task error
is obtained by computing the difference between the current
configuration of the robot and the one it would assume if the
task was correctly executed. We assume a normally distributed
Gaussian output noise with zero mean and covariance matrix,

R = 0.3I while the actuation/process noise is considered
negligible. Finally, the sampling time is A = 50 ms for all
the tasks, while the prediction horizon L, which is equal to
the control horizon, is equal to 30, 15 and 20 time steps for the
path following, the point-to-point and the trajectory tracking,
respectively. These values are chosen as a trade-off between
the computation time and the possibility of correctly executing
the task. All the optimization problems are solved using the
CasADi tool [23] in Python and adopting the direct single
shooting method with the ma57 ipopt solver.

A. Path following

The objective is to determine a Lyapunov based control law
such that the vehicle is asymptotically stabilized, w.l.o.g. on
the straight line y = 0. This goal can be achieved if, at the
end, y = 0 and 6 = 0. Note that for this task, the dynamic of
y and 6 are not influenced by the one of x. As a consequence,
we consider the following reduced kinematic model of the

unicycle vehicle,
Uy =0 sin,
0 =w,

where g = [y 6]7 is the state of the robot and u = [0 w]
the control inputs (with o # 0 assumed constant). Let us
hence consider the following Lyapunov candidate function
V(q) = 3(y* + 62). By choosing wy;(q) = —y¥220 — Ky
we obtain V(q) = —Kp6? < 0, and hence, by using the
Krasowski-Lasalle principle it is easy to show the G.A.S. of
the equilibrium.

Since the state of the robot is unknown, the control inputs
have to be computed by using §(¢) instead of gq(t). As
a consequence, after some algebra and following the step
described in II-A, the first two moments in (8) become

E{V(a.0)} = ~Kot® + 0F {3u(c,)} = ~Kof?,
E {(V(q, q) —E {V(q, (})})2} —¢>DPD".

Moreover, the stability constraint of the LMPC (14) for this
task becomes

T

OQwrr <0. (23)

Notice that, for this case, g, and wrgsx are equal to zero
in (22).

In the simulations, the unicycle is equipped with a sensor
that measures the range from the path, i.e., h(t) = y(¢). Notice
that, the straight line ¥y = 0 is an unobservable path with
this output (6 is not observable). We choose T = 18 sand
the initial configuration is ¢go = [5 m, 7 rad]l and Py =
diag([0.5%, 0.2%]). To conclude, v = 1 m/s, Ky = 2 and
—-7< Wep + Wy <T.

Fig. 2 shows the mean values with their standard deviation
of both the estimation errors and the task execution perfor-
mances. For the LCL and the LMPC, the estimation errors do
not converge to zero (see Figure 2(a)) and hence the task is not
correctly executed. In addition, for the I-LLMPC case, the un-
certainty is smaller than the other two cases most of the time.
Notice that, as soon as the vehicle approaches the desired path
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of the EKF.

Fig. 2. Statistical results in terms of average value and standard deviations
for the path following task. The results obtained for the LCL are plotted in
red, for the LMPC in green, for the proposed I-LMPC in blue.

(i.e., approximately after 13 s of simulation, see Figure 2(c)),
the smallest eigenvalue of P! reduces, confirming that the
straight line y = 0 is an unobservable path. Moreover, the
Wilcoxon test confirms that there are statistical differences for
all cases, and that our approach provides the most informative
trajectories. Fig. 3 shows the trajectories corresponding to one
sample out of the 100 performed. Notice that the LCL and
LMPC trajectories are similar, and the real robot reaches the
path and stays there for a while before diverging indefinitely

from it. Instead, by using the I-LMPC solution, the vehicle
follows a completely different path and correctly executes
the task remains on the path for much longer. The average
computation time for each iteration, together with its standard
deviation is 20 = 1 ms for LMPC and 40 £ 2 ms for I-
LMPC. Moreover, the task success rate is 6% for LCL, 5% for
LMPC and up to 60% for I-LMPC which, as a consequence,
outperforms the other methods of comparison. For the sake of
space, we only show the trajectories corresponding to the path
following task. Please, refer to the accompanying multimedia
material for further details and simulations.

B. Point-to-point motion
The objective is the stabilization of an equilibrium point

(w.l.o.g. the origin in our case), in the state space of the vehicle
whose kinematics is expressed in polar coordinates [23]:

p = —pcosaw

(/3 = sinow

& =sinow —w
where £ = [p, ¢, o], w = v/p where v is the forward
velocity and w is the angular velocity. Let us consider now
the following positive definite Lyapunov candidate V(&) =
2(A1p? + A20? + o) with A\; and A, positive parameters, and
by choosing

wep(€) = k1 cosa, with ky >0
wrp(€) = ks sina g ala + A2¢) + koo, with ko >0

[e3%

we obtain V({) = —A1k1p? cos? a — koo which is negative
semi-definite. Nevertheless, by using the Krasowski-Lasalle
principle, we are able to conclude on the G.A.S. of the origin.

Since the state of the robot is unknown, also in this case,
the control inputs have to be computed by using é (t) instead
of £(t). After some algebra, the first two moments of V (£, £)
are

E {V(E,é’)} = —\k1p? cos? a — kaa?,

. N . ~ 2 _ _
e{ (Ve -e{ieo})’} - pPD”
with D = —[=Aip?cosa+ Apgsina +asina —a| D

and D = [D,, Dw]T. To conclude, for this task, the stability
constraint (14) to be included in the LMPC is:

(24)

(=A1p®cosa + Aagsina + asina)wss — awsp < 0. (25)

Notice that, also for this case, gp,,;, and urg.s, are equal to
zero in (22).

The vehicle is equipped with a sensor that provides range
measurements w.r.t. two markers located in (0, +-2). The initial
robot configuration is gy = [5.1 m, —2.94 rad, 0.2 rad]
and Py = diag([0.72, 0.25%, 0.3%]). Moreover, T = 6 s,
ki = ke = 18 and Ay = 1 and Ay = 0.5. Finally,
0<wpp+wpr <2and -3 <wypp +wypp < 3.

In Fig. 4, the estimation errors and the task execution perfor-
mances are shown. In Fig. 4(a), the estimation errors for the
LMPC do not converge to zero even if it does not diverge as
for the path following case. Moreover, from Fig. 4(b) the task
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(a) LCL.

(b) LMPC.

(c) I-.LMPC.

Fig. 3. Robot real/estimated trajectories on the plane of motion for the path following task. The trajectories correspond to one of the 100 simulations. The
real robot trajectory from the real robot configuration g(¢o) = [0, 5, 3.14}T is plotted in blue, the estimated robot trajectory from the estimated configuration

do = [0, 5.64, 3.61]7 is in red and the desired straight line path in black

error for the state variable ¢ converges to zero only if the I-
LMPC is used. As a consequence, the use of an active sensing
control strategy as a feedforward component guarantees the
best execution of the task. Fig. 4(c) shows the trend of the
smallest eigenvalue of P~ where the estimation uncertainty
is consistently reduced with the proposed I-LMPC. Finally,
the Wilcoxon test shows statistical differences, confirming
that the use of the proposed I-LMPC allows guaranteeing
the best performance in terms of task execution. The average
computation time for iteration with standard deviation is
8 £ 2 ms for LMPC and 17 £ 9 ms for I-LMPC.

C. Trajectory tracking

The objective is to design a Lyapunov-based control law
that allow the unicycle to track a leader unicycle that starting
from an initial configuration q; = [z;, v;, 6;]7 moves on a
desired trajectory with linear and angular velocity, v; and wy,
respectively.

Let us hence consider the kinematic of the tracking error

T
e=[r—x,y—y,0—0]",
é1 U + esw — V] COoS e3
é= |éy| = | —ejw+ysines (26)
é3 w— wp

and the following positive definite Lyapunov candidate
V(e) = 1(ef+e€3)+ K(1—coses) with K > 0. By choosing
the following control law

vrp(e) = vy coses — Kjeq
wyp(e) = wy — By — Agsines

with A, Mo, K > 0, we obtain V(e) = —\e} —
KXssin®e3 < 0 and then by using the Krasowski-Lasalle
principle, the G.A.S. of the equilibrium e = 0 can be
demonstrated.

However, again, since the control law is computed by using
the estimated state, the first two moments of V(e, é) are

E {V(e, é)} = —Aie? — XK sin? es,

E { (V(e,é) —E {V(e,é)}>2}

= (~[e1 Ksines])) DPD" (~[e1 Ksin 63])T

27

with D = [D, D,]T. For this task, the Lyapunov con-
straint (14) becomes:

e1vpp + Ksineswyp < 0. (28)

Notice that, for this case, . = @ and urqask = [v7,wi]T
in (22).

The vehicle exploits the range measurements w.r.t. two
markers located in (0,2) and (0,0). The initial configuration

of the leader unicycle is g,y = [~1m, Om, Orad]” , and
moves with v; = 0.5 m/s and w; = 0.5 rad/s. The initial
configuration of the real robot is q; = [~1m, 1m, Orad]”

and Py = diag([0.22, 0.22, 0.12]). Moreover, T = 30 s,
K = 0.8 and \; = Ay = 0.6. Finally, 0 < vy, +v < 3 and
—3 <wypp+w < 3. In Fig. 5(a), the estimation errors converge
for all the cases. Notice that, even if the estimation errors are
comparable, by using the LMPC the real robot performs the
task quite better reaching the leader first with the smallest
task error. However, in Fig. 5(c) the estimation uncertainty for
the [-LMPC is the smallest one as the smallest eigenvalue of
P! is the largest for the most of the simulation time. Coming
to the uncertainties evaluation, the Wilcoxon test shows that
the trajectories obtained with our methodology are statistically
more informative than the others, and hence the I-LMPC can
be considered more reliable than both the LCL and the LMPC.

For this test case the average computation time for iteration
with standard deviation is 6 = 1 ms for LMPC and 9 + 1 ms
for I-LMPC.

IV. CONCLUSIONS AND FUTURE WORKS

This paper proposed a feedback-feedforward Information-
aware LMPC control scheme that combines the benefits of
an online active sensing control strategy and a Lyapunov-
based control strategy. The smallest eigenvalue of the Con-
structability Gramian was adopted to quantify the richness
of the acquired information. We showed in simulations on
a unicycle vehicle that our methodology guarantees better
estimation performance, and hence a better task execution in
general. It is worthwhile to note that the I-LMPC generates
predicted trajectories that are apparently less task-oriented than
those obtained for the LCL and LMPC. This is because the
Lyapunov constraint is imposed for the next control step, while
the remaining steps maximize only the information acquired
along the path. Hence, by considering the Lyapunov constraint
applied for longer time intervals, we can ensure better stability
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Fig. 4. Statistical results in terms of average value and standard deviations
for the point-to-point task. The results obtained for the LCL are plotted in
red, for the LMPC in green, for the proposed I-LMPC in blue.
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Fig. 5. Statistical results in terms of average value and standard deviations
for the trajectory tracking task. Statistical results in terms of average value
and standard deviations for the path following. The results obtained for the
LCL are plotted in red, for the LMPC in green, for the proposed I-LMPC in
blue.
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properties and have more task-oriented trajectories, a promis-
ing direction that will be explored in next investigations. Our
methodology also presents oscillations in the control inputs,
due to the negative effects of the measurement noise, and
some sharp maneuvers, due to the persistent requirement of
information maximization. The latter aspect will be solved
in future works by considering an adaptive cost index that
disconnects the feedforward part when the estimation uncer-
tainty is below a desired threshold. Moreover, additional future
works will deal with the extension of our methodology to
more complex Lyapunov control techniques, as e.g., adaptive
control as well as more complex robots (e.g., quadrotors) in
real time on a real experiment, also considering the degrading
effects of actuation noise. We also plan to use our method as a
risk-aware control scheme where the feedforward component
maximize the information on the surrounding risks while the
feedback component is used for the task execution in a risky
environment.
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