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Abstract— Mobile manipulator throwing is a promising
method to increase the flexibility and efficiency of dynamic
manipulation in factories. Its major challenge is to efficiently
plan a feasible throw under a wide set of task specifications.
We show that the mobile manipulator throwing problem can
be simplified to a planar problem, hence greatly reducing the
computational costs. Using machine learning approaches, we
build a model of the object’s inverted flying dynamics and the
robot’s kinematic feasibility, which enables throwing motion
generation within 1 ms for given query of target position.
Thanks to the computational efficiency of our method, we show
that the system is adaptive under disturbance, via replanning
on the fly for alternative solutions, instead of sticking to the
original throwing plan.

I. INTRODUCTION

Throwing, as one form of dynamic manipulation [1], [2],
can not only augment the feasible work space of the robot,
but also increase the efficiency of object manipulation. This
is highly desirable in applications such as logistics and
handling of goods. However, automated robot manipulation
with human-level speed is generally difficult to achieve and
good solutions need to be hand-tuned for specific tasks [3],
which is a common drawback of model-based methods. On
the other hand, with the emergence of machine learning,
there is a growing popularity on using model-free methods
that distill skills from offline training. With sufficient data
coverage, the robot is able to handle a wide set of tasks once
deployed. Despite impressive empirical result [4], model-
free methods in the literature lead to algorithms which are
difficult to generalize to new tasks and can not ensure
successful task execution.

We take a approach that combines the strength of model-
based methods and model-free methods: model-free learning
to model the complex non-linear object flying dynamics [5]
and model-based approach to formulate throwing as a feasi-
bility problem. To design an architecture that combines these
two modules in harmony, we start by asking the following
questions:

• What is an appropriate task representation for throwing?
• How to separate mundane computation offline while en-

suring reliable and efficient online solution generation?
To answer the above questions, we conduct an analysis on
the structure of mobile manipulator-throwing problem, and
design a data structure that enables efficient online query for
throwing configurations. As a result, we propose a framework
for mobile manipulator throwing that is able to generate
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Fig. 1: Snapshots of a mobile manipulator throwing.

TABLE I: Classification of approaches on robot throwing.

ad-hoc throwing generic throwing

model-based [6]–[8], [10], [11], [13]
Optimization [14], [15]

Sampling [16]
Ours

model-free [9] End-to-end Learning [4]

throwing motion within 1 ms1. We demonstrate a sample
throw using a mobile manipulator in Fig. 1.

Related Work

Previously, several approaches have been proposed to
solve robot throwing problem [4], [6]–[12]. We notice that
besides the dichotomy of model-based methods [6]–[8],
[10]–[12] and model-free methods [4], [9] in the literature,
there also exists a large difference on Operational Design Do-
main (ODD) among different works. We roughly categorize
them into two types of ODDs: ad-hoc throwing with narrow
ODD and generic throwing with wide ODD, see Table I.

Most early works on robot throwing have been designed
on a very narrow ODD with ad-hoc throwing solutions [6]–
[11], [13]. They either worked on simple robots with low
degrees of freedom [6]–[9], [13] or had a specific object to
throw [10], [11].

Among the works aiming for generic throwing, many tried
to accurately model the flying dynamics of objects as well as
the robot dynamics and determine the optimal robot throwing
trajectory via numerical optimization [14], [15]. However, as
we shall see later in the paper, the optimization problem
for throwing is hard to solve because of the nonconvex
constraints. In [15], it takes 0.5s to generate feasible throwing
trajectory for a 3−DOF robot. Therefore, it presumably
needs at least several seconds for our mobile manipulator

1The source code for our algorithms and simulations is available at:
https://github.com/epfl-lasa/mobile-throwing
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Fig. 2: The Backward Reachable Tube models the set of valid
throwing configurations, given object’s flying dynamics.

with 7−DOF arm, which is not suitable for online motion
generation.

Another approach for generic throwing is using sampling-
based methods [16] such as Probablistic Roadmap
(PRM) [17] or Rapidly-exploring Random Trees (RRT) [18].
Although sampling-based methods provide probabilistic
completeness, Zhang et al. [16] reported that it takes up to 1
minute to get a throwing trajectory, which is far from human-
level speed.

Recently, TossingBot [4] offered an end-to-end learning
approach for throwing. The throwing configuration is gener-
ated from throwing velocity predicted by trained model given
throwing query and object image. The solution is generic and
can handle a large set of objects and multiple target positions
in the training set. However, the performance degrades for
unseen query during training. While one could retrain the
robot with new data, it is not clear how fast the robot can
learn to throw new objects.

Summary of Contribution

Our approach complements the state-of-the-art by present-
ing a method for efficiently computing feasible throwing
configurations and motions for mobile manipulators. In par-
ticular, we offer a comprehensive analysis on the problem of
mobile manipulator throwing, including:

• A geometric analysis, which exposes the independent
variables and hence the task manifold of mobile manip-
ulator throwing;

• A data structure for offline robot kinematic analysis that
enables fast online query of throwing configurations.

With the above analysis, our framework enables the system
to:

• Throw a rigid-body object given its flying dynamics;
• Throw towards an arbitrary target position;
• Guarantee robot-feasibility and throwing-validity;
• Generate solutions within 1 ms and achieve adaptive

throwing.

II. METHOD

Given a throwing task specified by object flying dynamics,
target landing position and possibly landing velocity range,
there is a set of valid throwing configurations (throwing
position and throwing velocity) varied in landing velocity and

A
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(a) Top view (throwing triangle)
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(b) Side view (throwing plane)

Fig. 3: Visualization of throwing triangle and throwing plane.

TABLE II: Notations for geometric modeling in Fig. 3.

A Manipulator base
E End effector
B Target box
△AEB Throwing triangle
ϕ Throwing yaw angle
r Throwing range
z Throwing height
ṙ Horizontal throwing velocity
ż Vertical throwing velocity
v Throwing speed
γ Throwing pitch angle

flying time. We call the set of valid throwing configurations
Backward Reachable Tube (BRT). As shown in Fig. 2, our
idea is to bring the object towards the BRT and release the
object once the robot end-effector enters the BRT.

A. Geometric modeling

The geometric relationship between robot mobile manipu-
lator and task throwing is shown in Fig. 3a and Fig. 3b. The
notations are introduced in Table II.

We observe that there exist geometric equivariance struc-
tures in mobile manipulator throwing, namely:

• Mobile manipulator alone is equivariant in horizontal
position because of the mobile base with omnidirec-
tional wheels.

• Throwing alone is equivariant in incident direction.
• Mobile manipulator throwing can be described by

throwing triangle △AEB, which is equivariant in rota-
tion around Z-axis at target box B.

Above analysis showed that to find out the joint config-
uration for throwing, we only have to determine △AEB.
Furthermore, the triangle family around B could also be
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Fig. 4: Tradeoff between small yaw angle and large throwing
velocity. For configurations with large feasible Cartesian
velocity (large maximum singular value), the maximum
velocities tend to be perpendicular to arm stretching direction
(small dot product value). See Subsection II-B for detailed
explanation.

useful to avoid obstacle or communicate robot intent. These
insights are crucial to our efficient and reliable solver.

B. Consideration of yaw angle

The essence of throwing is to move the object to some-
where not reachable by the robot end-effector. A typical
choice in the literature [4], [7], [9], [14] is to assume that the
throwing yaw angle ϕ is zero, i.e., throwing velocity direction
is aligned with end-effector horizontal direction

−→
AExy and

hence the throwing triangle △AEB is degenerated to a
line. However, we observe that throwing yaw angle ϕ = 0
is not necessarily a good choice. Intuitively, if the arm
is horizontally stretched, it is hard to generate velocity
along the arm yet easy to generate velocity perpendicular
to the arm. This hypothesis is validated in the following
manipulabability analysis.

We sample 1 million joint configurations for a 7 DoF
manipulator. For each sampled joint configuration q, we cal-
culate their corresponding end-effector horizontal positions−→
AExy(q) and Jacobian in XY plane Jxy(q). Then we group
the 1 million data according to two attributes:

• Maximum singular value of Jxy , denoted as s1(Jxy),
approximates the maximum horizontal velocity of the
end-effector with unit joint velocity limit;

• The dot product between
−→
AExy and the singular vector

associated with s1(Jxy), approximates the “alignment”
between maximum horizontal velocity direction and
arm stretching direction

−→
AExy , note that these two

directions are aligned when the dot product is 1 and
are perpendicular when the dot product is 0.

The resulting 3D histogram is shown in Fig. 4.

One can observe that indeed there exists a tradeoff be-
tween small yaw angle and large throwing velocity, and
if we predetermine ϕ = 0, a lot of appropriate throwing
configurations are filtered out. Therefore, in this paper, we
leave the throwing yaw angle as a decision variable and let
the solver handle this tradeoff automatically.

C. Backward Reachable Tube

In the throwing plane, we denote the object flying state as
x = [r, z, ṙ, ż]⊤. The flying dynamics is described by a first
order differential equation ẋ = f(x), x ∈ R4. We denote the
flying trajectories of f starting from state x0 as ζf,x0(t) :
[0,+∞]→ R4. We assume that a user is giving the robot a
landing target set Xl ⊆ R4, describing the allowed landing
position slack and allowed range of landing velocities.

If there exist a position along the object flying trajectory
that enters the landing target set, then any state on the tra-
jectory segment before the entering state is a valid throwing
configuration. Hence, if we aggregate all the trajectories that
eventually enter the target landing set, we get the set of
valid throwing configurations, which we call the Backward
Reachable Tube (BRT).

Mathematically, the BRT is defined as:

BRTf,Xl
= {x0 | ∃ t ≥ 0, ζf,x0(t) ∈ Xl}.

The BRT can be generated from object flying dynamics
as follows:

1) Choose landing target set Xl: the landing target set can
be simply specified as “position box” and “velocity box”.
Note that the horizontal velocity bound can be regarded as a
limit to avoid flip out of the box and vertical velocity limit
can be regarded as a limit to avoid object damage.

2) Generating data inside BRT: exact reachability anal-
ysis is generally computationally difficult for nonlinear dy-
namics. Our idea is to approximate BRT by sampling data
inside it. Our observation is that flying dynamics is not mem-
oryless and hence its corresponding Ordinary Differential
Equation (ODE) can be solved backwards in time. Therefore,
we sample landing configurations from landing target set
Xl, and solve the flying dynamics backwards in time as a
Initial Value Problem (IVP) and then aggregate the ODE
solutions. This is much more efficient than otherwise naive
Boundary Value Problem (BVP) and hence can generate the
BRT dataset quickly.

In this paper, the flying dynamics of an object is consid-
ered to be known apriori. This is assumed to be derived from
state of the art system identification methods [19] or machine
learning techniques [5].

3) Learning-based implicit representation of BRT: with
gathered data inside BRT, we use a Neural Network (NN) to
represent the BRT as a level-set function fBRT (x) : R4 →
R, where:

• fBRT (x) > 0⇔ x ̸∈ BRT ;
• fBRT (x) ≤ 0⇔ x ∈ BRT ;
• fBRT (x) = 0⇔ x ∈ ∂BRT .
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D. Feasibility problem formulation

The BRT only provides valid throwing configurations
inside throwing plane in Euclidean space. To find throwing
configurations in robot joint space, there are two types of
nonlinear constraints to be considered:

• Equality constraint: the throwing triangle △AEB de-
fines a task manifold, i.e. for fixed

−−→
AB, the end-effector

position
−→
AE must lie in the throwing plane defined by−−→

EB, which imposes a nonlinear equality constraint in
the joint configuration q.

• Inequality constraint: joint position limit and joint ve-
locity limit.

These constraints can be expressed into the following
Throwing Feasibility Problem (TFP):

Find
¶
r, z, ṙ, ż,

−−→
EB,

−−→
AB, q, q̇

©

such that:



r =
∥∥∥−−→EBxy

∥∥∥
z = −

−−→
EBz

−−→
EB =

−−→
AB −

−→
AE

−→
AE = fkine(q)

v⃗ =

 vx
vy
vz

 =

 ṙ
−−→
EBxy∥∥∥−−→EBxy

∥∥∥
ż


q̇ = J†(q)v⃗

qmin ≤ q ≤ qmax

q̇min ≤ q̇ ≤ q̇max

fBRT (r, z, ṙ, ż) ≤ 0

(TFP)

where fkine(·) is the robot forward kinematics, and
−−→
EBz is

projection of
−−→
EB along vertical direction Z. TFP is difficult

to solve because of the nonlinear equality constraint. How-
ever, geometric analysis provides the following reasoning:

• Once (
−−→
AB, q) is fixed:

– △AEB is determined,
– (
−−→
EB, r, z) is determined,

– (ṙ, ż) is to be determined;
• Once (ṙ, ż) is further determined:

– q̇ = J†(q)v⃗;
• Independent variables: (

−−→
AB, q, ṙ, ż).

From the above analysis, we expose the “task manifold”
parameterized explicitly by (

−−→
AB, q, ṙ, ż) and hence elimi-

nated the manifold constraint in the naive formulation. Now
the problem reduces to the following formulation with only

inequality constrains:

Find
¶−−→
AB, q, ṙ, ż

©
such that:


qmin ≤ q ≤ qmax

q̇min ≤ J†(q)v⃗(
−−→
AB, q, ṙ, ż) ≤ q̇max

fBRT (r(
−−→
AB, q), z(

−−→
AB, q), ṙ, ż) ≤ 0

(TFP-Reduce)

E. Robot kinematics analysis

The reduced feasibility problem still suffers from the
nonconvex inequality constraint:

q̇min ≤ J†(q)v⃗(
−−→
AB, q, ṙ, ż) ≤ q̇max

The constraint is linear in (
−−→
AB, ṙ, ż) but nonlinear in q,

and it reflects different velocity capabilities at different arm
configurations of the robot. As q also determines end-effector
position, this makes the robot kinematics analysis intertwined
with throwing task.

To mitigate the difficulty of finding a suitable q to generate
desired velocity at desired position, we propose velocity
hedgehog2, a data structure that enables efficient online query
of robot configurations. The velocity hedgehog discretizes
the end-effector height z and throwing direction (ϕ, γ) into
cells. At each cell, it stores,

• The maximum feasible end-effector speed vmax at
height z along direction (ϕ, γ);

• The robot configuration q that enables vmax.
Later, velocity hedgehog is used to generate batches of initial
guesses for robot joint configurations in 1 millisecond. The
algorithm to generate the velocity hedgehog is shown in
Algorithm 1, where a Linear Program (LP) is solved as a
subroutine to get maximum speed along direction (ϕ, γ) at
robot configuration q in the following manner:

max
s

s

subject to:



q̇min ≤ J†(q)v⃗ ≤ q̇max

v⃗ = s

 cos γ cos (
−→
AEy
−→
AEx

+ ϕ)

cos γ sin (
−→
AEy
−→
AEx

+ ϕ)

sin γ


(LP)

A typical velocity hedgehog is shown in Fig. 5, indicating
that the feasible velocity set is not convex but appears as
needles with different lengths along different directions and
resembles a hedgehog.

F. Combining robot velocity hedgehog with BRT to deter-
mine throwing configurations

Here we introduce a simple method to combine robot
velocity hedgehog and BRT, resulting in an efficient method
to get qualitatively different initial guesses for (q, ϕ, x)
quickly. We first group the BRT data according to height

2The name comes from the spiky shape of the velocity distribution.
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Algorithm 1: Algorithm to get velocity hedgehog
Input : robot model with forward kinematics and

differential forward kinematics robot
Output : max_z_phi_gamma, q_z_phi_gamma
Data : robot joint position limit (qmin, qmax),

robot joint velocity limit (q̇min, q̇max),
joint grid size ∆q,
velocity hedgehog grids Z,Φ,Γ

/* Build robot dataset X */

1 Q ← ComputeMesh(qmin, qmax,∆q)
/* Filter out q with small singular value */

2 X ← FilterBySinguarV alue(Q)
/* Group data by Z */

3 {Xz} ← GroupBy(X , Z)
/* Initialize velocity hedgehog */

4 max_z_phi_gamma← zeros([#Z,#Φ,#Γ])
5 q_z_phi_gamma← arrays([#Z,#Φ,#Γ,#joints])
/* Build velocity hedgehog */

6 for [z, ϕ, γ, data] ∈ Z × Φ× Γ×Xz do
/* Get max. speed along (ϕ, γ) at joint

configuration q */

7 res← LP (ϕ, γ, data.q, robot, q̇min, q̇max)
8 if res > max_z_phi_gamma(z, ϕ, γ) then
9 max_z_phi_gamma(z, ϕ, γ)← res

10 q_z_phi_gamma(z, ϕ, γ)← data.q
11 end
12 end
13 return max_z_phi_gamma, q_z_phi_gamma

Algorithm 2: Algorithm to get initial guesses
Input : robot velocity hedgehog, BRT dataset
Output : Set of initial guess for joint configuration

and throwing configuration (q, ϕ, x)
1 Xz,γ ← GroupBy(XBRT , Z,Γ)
2 q_guess, ϕ_guess, x_guess← empty
3 idxs← where(max_z_phi_gamma > Xz,γ)
4 q_guess = q_z_phi_gamma[idxs]
5 ϕ_guess = Φ[idxs]
6 x_candidates = Xz,γ [idxs]
7 return q_guess, ϕ_guess, x_guess

z and throwing pitch angle γ. Then for BRT data in bin
indexed by ẑ and γ̂, the initial guesses for throwing state
are the BRT data whose flying speed is smaller than the
maximum feasible velocity at a certain (ẑ, γ̂) stored in
velocity hedgehog. From this matching operation, we can
also read out the corresponding joint configurations and
throwing yaw angles from velocity hedgehog, resulting in
initial guesses of (q, ϕ, x). The detailed algorithm is shown
in Algorithm 2. The obtained feasible initial guesses can be
fed into Problem TFP-Reduce to be further refined. With
(q, ϕ, x) determined, all the other decision variables can be
written in closed-form as shown in Problem TFP. As a result,

Fig. 5: Illustration of a typical velocity hedgehog. Red nee-
dles represents the feasible velocities along different throw-
ing pitch angles with fixed throwing height z and throwing
yaw angle ϕ, which are stored in velocity hedgehog. Given
certain throwing height and throwing direction (z∗, ϕ∗, γ∗)(z∗, ϕ∗, γ∗)(z∗, ϕ∗, γ∗)
query, velocity hedgehog gives maximum feasible velocity
v∗maxv∗maxv∗max and the joint configuration q∗q∗q∗ that enables v∗maxv∗maxv∗max.

the overall architechture to solve TFP efficiently and reliably
is shown in Fig. 6.

III. EXPERIMENT

We verify our method in the simulated environment Py-
Bullet [20] with following setups:

• Known accurate flying dynamics;
• Perfect grasping (object won’t fall off while on the way

to throwing configuration);
• Instant gripper opening;
• Perfect throwing trajectory tracking;
• Disabled collision checking between robot and box.

The object is a ball with radius 5 cm and the target box
dimensions are 5 cm × 25 cm × 25 cm. This paper’s em-
phasis is on finding valid joint space throwing configuration
in a reliable and computational efficient manner. Therefore,
the above assumptions are mild.

A. BRT data generation

We describe the data generation procedure for object flying
states inside BRT as defined in Subsection II-C. For the sake
of simplicity, we use pure projectile flying dynamics with
gravity g = 9.81 m/s2, i.e.:

ẋ = f(x) =
d

dt


r
z
ṙ
ż

 =


ṙ
ż
0
−g

 ,

with following target set Xl:

Xl =


r = 0
z = 0

0.2 ≤ ṙ ≤ 2.0
−5.0 ≤ ż ≤ −2.0

 .
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Fig. 6: Framework to obtain throwing configurations. The velocity hedgehog and BRT are obtained as described in Sections
II-E and II-C, respectively. The initial guess is obtained by combining them as outlined in Section II-F.

.

To approximate the BRT, we sample 2160 landing states
inside Xl, solve the flying dynamics backwards in time for 1
second to get the 2160 flying trajectories, then aggregate all
the data points on the trajectories, filter out the data with high
velocities that is for sure not feasible be the robot (|ṙ| > 5.0,
|ż| > 5.0), finally yield 75000 throwing configurations in
throwing plane coordinates.

B. Neural network-based BRT representation

From the pipeline of BRT data generation, we also obtain
80000 throwing configurations outside BRT via sample 2160
landing configurations outside target set Xl. These is treated
as negative data, together with the above 75000 positive
data as the dataset to train a neural network-based BRT
representation. To make sure the BRT is a dense 4D volume,
we augment the dataset by copying and shifting the data in
r and z directions. We split the dataset to 70% training data
and 30% testing data. The neural network contains 4 layers
with size 4-64-64-2 and sigmoid activation function. We use
Adam optimizer for training, and the training takes 2 minutes
for 10 epochs. The trained neural network achieved 97%
classification accuracy on the test set. The decision boundary
fBRT (x) = 0 of the neural network is illustrated in Fig. 7.

C. Robot velocity hedgehog generation

We denote a scalar array consists of values from a to b
with equal interval c as [a : c : b]. We discretize the throwing
height with grid Z = [0 : 0.05 : 1.2], the throwing yaw angle
with grid Φ = [−90 : 15 : 90] and the throwing pitch angle
with grid Γ = [20 : 5 : 70], yield 3289 cells of robot throwing
candidates. The robot velocity hedgehog is generated using
Algorithm 1 with 1 million joint state samples.

Fig. 7: Object flying trajectory family (rainbow) and bound-
ary of learned neural network-based BRT representation
(pink). Decision boundary strictly encompasses the flying
trajectories because neural network was trained with data
augmented in r and z directions.

D. Trajectory generation towards throwing configuration

Given initial state of the robot (q0, q̇0) and feasible throw-
ing configuration (qd, q̇d), we use Ruckig [21] to gener-
ate jerk-limited time-optimal trajectory to move the robot
towards throwing configuration. Then the robot opens the
gripper to release the object at the end of the trajectory.

IV. EVALUATION AND DISCUSSION

A. Computational Efficiency

Here we summarize the computation time of offline stage
in Table III and online stage in Table IV.
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TABLE III: Offline computation time.

Algorithm stage Running time

Velocity hedgehog generation 7 hours
BRT data generation 1 second
Training BRT neural network 2 minutes

TABLE IV: Online computation time.

Algorithm stage Running time per solution

Initial guess 20 µs
Full throwing configuration 250 µs
Trajectory generation 200 µs

Overall 500 µs

Although the algorithm takes a long time to generate
velocity hedgehog, it only need to run once for every robot
with the same geometry. In terms of new object, given its
flying dynamics, the algorithm is efficient (2 minutes) to be
ready to throw.

With our proper separation of offline computation and on-
line computation, the algorithm is quick to generate throwing
motion given throwing query.

B. Reliability of solver

Our throwing geometry analysis and robot velocity analy-
sis results in highly reliable solver, which provides batches of
throwing configurations. In comparison, generic solvers have
a hard time to find one feasible configuration, and they have
to be carefully tuned and be provided with good initial guess
by human. Table V demonstrates that our solver provides
ample of throwing configurations for various target heights.
In Fig. 8, we show three throws towards targets with different
heights. Furthermore, for the same target box, the solver is
able to find out qualitatively different solutions, as shown in
Fig. 9.

C. Throw success rate in simulation

We systematically assessed our algorithm’s ability to gen-
erate a valid throw for a set of target height queries in the
range of Z = [−1.2 : 0.1 : 0.9]. The algorithm generated
in total 10366 throwing trajectories from the same initial
configuration of the robot. We simulated the generated throw-
ing trajectories for validation. As a result, 10306 (99.4%)
throws were successful throw. As we observe the failure in
0.6% of the cases, they are all due to collision: ball collided
either with robot or box while flying. Considering the fact
that we do not handle collision avoidance explicitly, this is
anticipated.

D. On throwing configuration selection

The proposed algorithm outputs batches of throwing con-
figurations, which are valid (object will fly into the target
box) and feasible (throwing state satisfies robot joint position
and velocity constraints). However, at this moment, we
haven’t determine the final throwing configuration from the
solution set, which is to be executed by the robot. Selecting

TABLE V: Solver feasibility.

Target height z = −0.2 z = 0.0 z = 0.2 z = 0.5

Number of solutions 11955 10504 7118 2422

Fig. 8: Throw to three different target heights.

throwing configuration should consider broader context or
higher level specifications of the use cases. For example, if
one seeks for the time-optimal solution, the best throwing
configuration would depend on the initial configuration of
the robot. If one seeks for a solution with lower risk,
the throwing configuration selection procedure would bias
towards small-range throws. While here in this paper, we
emphasize on the guaranteed validity and feasibility of the
solver, throwing configuration selection is out of the scope
of this work.

E. Adaptive throwing

Our method also enables adaptive throwing. As shown in
Fig. 10, while the robot was moving towards the originally
planed time-optimal throwing configuration (red right), it
suddenly got disturbed to a different configuration during
execution (from red left to green left). There are two strate-
gies to handle this disturbance:
(a) Recalculate the trajectory from the disturbed configura-

tion to the original throwing configuration;
(b) Discard the originally planned throwing configuration,

sample 100 initial guesses obtained before execution
from Algorithm 2, find a new throwing configuration
that is closest in time to the disturbed configuration.

We summarize the computation time and duration of
obtained throwing trajectory in Table VI. As shown in
Table VI, strategy (b) trades 15 ms computation time for 670
ms task execution time, which is preferable. As a result, the
robot switched to another valid throwing configuration (green
right) that is actually closer to the disturbed configuration.

V. CONCLUSION

In this paper, we propose a solution to mobile manipulator
throwing. The merits of our method are:

• Ability to handle arbitrary rigid object given its flying
dynamics;

• Ability to handle arbitrary target position within the
robot kinematic limits;

• Capacity for adaptive throwing.
We validate our framework in simulation and the algorithm

is shown to be efficient and reliable. In the future, we
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Fig. 9: Two qualitatively different throwing configurations,
note the different heights of the end-effectors.

Fig. 10: Adaptive throw as the reaction to disturbance. See
Subsection IV-E for detailed explanation.

will implement our algorithm on the real robot platform
to test its effectiveness. Moreover, we plan to investigate
the influence of modeling error in flying dynamics and of
trajectory tracking accuracy on the real throwing set-up.
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