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Abstract— Strategies for safe human-robot interaction (HRI),
such as the well-established Safe Motion Unit, provide a
velocity scaling for biomechanically safe robot motion. In
addition, psychologically-based safety approaches are required
for trustworthy HRI. Such schemes can be very conservative
and robot motion complying with such safety approaches should
be time efficient within the robot motion planning. In this
study, we improve the efficiency of a previously introduced
approach for psychologically-based safety in HRI via a Model
Predictive Control robot motion planner that simultaneously
adjusts Cartesian path and speed to minimise the distance to
the target pose as fast as possible. A subordinate real-time
motion generator ensures human physical safety by integrating
the Safe Motion Unit. Our motion planner is validated by two
experiments. The simultaneous adjustment of path and velocity
accomplishes highly time efficient robot motion, while consid-
ering the human physical and psychological safety. Compared
to direct path velocity scaling approaches our planner enables
28% faster motion execution.

I. INTRODUCTION

Safe human-robot interaction (HRI) requires physical in-
tegrity of the human and the state of the art offers several
approaches to human physical safety [1]–[10]. Nevertheless,
psychological safety limitations should also be considered
in the context of safe and trustworthy HRI [11]. Generally,
such psychological or physical safety constraints can be
integrated into motion planning or control [11]. Recently, a
control scheme for human physical and psychological safety
considerations was introduced that uses the robot real-time
control for velocity scaling [12]. While such control schemes
only react in case of a motion conflict, e.g. by reducing
the robot speed [1], safe online motion planning allows
to proactively avoid such conflicts and may improve the
human-robot team efficiency [11]. Model Predictive Control
(MPC) is one method which enables proactive path planning.
Based on a constrained optimisation problem, MPC predicts
and optimises future states using the current state and a
given system model [13]. Consequently, online MPC motion
planning allows avoiding safety conflicts of the robot motion
such as human-robot collisions [8], [9], [14]. The main
challenges for integrating MPC planning to safe robot motion
planning is the high degree of non-linearity which is required
for most safety functions, as well as the computational load
and ensuring reachable motions [8], [9], [15]–[18].

In our previous work, a distance-velocity based psycholog-
ical safety law was introduced that shall reduce the number
of triggered involuntary motions of the human [12]. Based on
this approach, in our current paper we present a robot control
loop featuring an MPC-based motion planner, minimising
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Fig. 1. Illustration of the planning problem. The objective of our proposed
motion planner is to ensure compliance to the safety restrictions and avoid
unnecessarily long (purple) or slow (blue) evasive motions (EMs). Instead
it shall find and execute the green highly time efficient EM.

the distance to the goal pose with simultaneous adjust-
ments of the Cartesian robot path and velocity profile. The
combination of the distance-velocity correlating constraint
and the simultaneous path-velocity adaption in an MPC
optimisation problem leads to highly time efficient evasive
motions (EMs) as depicted by Fig. 1. Using a physical safety
motion generator subordinate to the planner, we guarantee
human physical and psychological integrity.

The paper is structured as follows. Sec. II provides the
state of the art in robotic safety and MPC motion planning.
Subsequently, Sec. III addresses our approach in detail,
including the safety concept and the control loop with our
motion planner. Sec. IV describes and discusses the two
validation experiments. Finally, Sec. V gives a conclusion
to this work.

II. STATE OF THE ART

For ensuring human physical safety in HRI various strate-
gies were introduced, based on velocity scaling [1]–[7] or
separation monitoring [1], [8]–[10]. As the strategies often
maintain a predefined path which can become outdated and
slow in dynamic environments [4], [6], [7] or consider
exclusion zones which the robot may not enter [8], [19],
they result in a reduction of the robot motion efficiency.
A continuous and thus online (re)calculation of Cartesian
path and velocity within an optimisation problem can re-
solve this reduction while safety is ensured by constraints.
For constraint optimisation problems MPC is used e.g. in
autonomous driving [20], [21] and mobile robot motion
planning [14], [22]. Furthermore, for robot manipulators,
it is often applied to so-called trajectory planners which
require a fixed and predefined path to calculate a velocity
profile [6], [7] or to task-specific control [23]. Full and
general MPC motion planners adjusting the path and velocity
simultaneously online, however, are less common in the
literature due to the immense computational cost caused
by the high number of degrees of freedom (DoFs), non-
linearities, and strict real-time constraints [19]. To the best
of the authors’ knowledge such full MPC motion planners
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TABLE I
CONTRIBUTION COMPARED TO OTHER FULL MPC MOTION PLANNERS

Feature [8] [15] [16] [17] [18] [9], [19] Our approach

Orientations are planned as well ✓ ✓ ✓ ✓
Considers safety constraints in motion planning ✓ (✓) (✓) (✓) ✓
Smooth Cartesian EMs ✓ ✓
Time efficiency optimisation ✓ ✓ ✓
Technical feasibility shown in demonstration ✓ ✓ ✓ ✓ ✓ ✓

can only be found in [8], [9], [15]–[19]. While no safety
aspects are considered in [15] and [17], [8] and [18] define
safety exclusion zones where the robot may not intrude. The
planners from [16] and [9], [19] feature a more dynamic
obstacle avoidance based on non-linear distance constraints,
which can be considered as a safety feature to some extent.
In [16], these non-linear constraints are directly implemented
to a non-linear MPC algorithm, whereas Avanzini et al. [9],
[19] suggest an efficient linearisation strategy for them to
enable the use of linear MPC. In this way, [9], [19] create a
technically feasible system able to comply with the real-time
constraints.

Besides the human physical safety, safe and trustworthy
HRI requires psychological well-being [4], [24]. This holds
particularly true for the emerging field of social robots.
Previous research found that the robot velocity [25] and the
distance between human and robot [26] influence the human
perception of safety. Based on this, a safety approach named
Expectable Motion Unit (EMU) was introduced to implement
human expectation understanding to robot motion design
[12]. Such a safety approach allows a robot path-velocity
optimisation.

We use the psychological safety constraints from our
earlier work and embed them into an online full MPC
motion planner for robot manipulators. Table I summarises
the contribution of our approach compared to the mentioned
ones. The implementation and features of our approach are
discussed in the next section.

III. MPC APPROACH FOR SAFE AND
TRUSTWORTHY HRI

In the following, we propose an online MPC motion plan-
ner for time efficient, safe, and human-aware robot motions.
At each time step, the planner simultaneously recalculates
the Cartesian robot path and speed while maintaining the
desired safety constraints. The MPC motion planner results
in human-aware robot EMs that reduce the robot motion
time. To this end, we embed two safety approaches in a
hierarchical structure:

a) the psychologically-grounded distance-velocity map-
ping called EMU introduced in [12] which we embed
in the MPC planner and

b) the well-established real-time capable Safe Motion Unit
(SMU) to ensure human physical safety.

By combining the velocity-distance mapping with the simul-
taneous Cartesian path-velocity recalculation in the optimisa-
tion problem we gain safe planning, smooth Cartesian EMs,
and improve the robot motion time efficiency.

We use a linear MPC design to reduce the computational
cost and thus linearise all non-linear constraints online at

each time step. However, the MPC planner is still computa-
tionally expensive and needs to run at lower frequency than
real time. Since the EMU concept requires Cartesian position
information, we apply a Cartesian motion planner. Joint
space motion planners on the contrary require a non-linear
coordinate transformation which conflicts with the Cartesian
safety law and causes the optimiser to fail in deriving smooth
Cartesian EMs.

To implement the real-time capable physical safety inter-
face, we cascade the control loop structure with an outer and
inner loop, as depicted by Fig. 2. At the end of each non-
real-time motion planning step both loops are synchronised,
enabling real-time motion generation. The inputs to the
outer human-aware Cartesian MPC motion planner are the
Cartesian target pose xtar ∈ R6 and the human position
matrix Ph = [ph,0|k, . . . ,ph,Np|k] ∈ R3×Np+1 containing
current measured values ph,0|k and predicted values ph,i|k
with i ∈ N between 1 and Np which is the length of the
MPC prediction horizon. The current robot pose and velocity
x, ẋ ∈ R6 of the end effector are fed back to the motion
planner which determines the desired pose and velocity
xd, ẋd ∈ R6. Subsequently, the SMU motion generator in
the inner loop checks for physical safety and determines
the desired safe velocities ẋd,safe. The design of the motion
planner and that of the motion generator are described in the
following.

A. Human-Aware Cartesian Motion Planner

Our motion planner shall fulfill reachability constraints
discussed later and the EMU-function

∥ṗ∥ ≤ m∥p− ph∥+ n , (1)

where m and n denote, based on [12], the adjustable slope
and y-intercept of the safety function while p ∈ R3 repre-
sents the Cartesian position of the robot end effector, ṗ ∈ R3

its velocity, and ph ∈ R3 is the position of the human wrist
as observed in [12]. Since p, ṗ, and ph vary over the MPC
prediction horizon, the EMU constraint must be formulated
flexibly. Therefore, we use the MPC index notation i|k which
corresponds to the ith predicted variable in the current time
step k. The EMU constraint for the Cartesian space motion
planner can now be written as

∥ṗi|k∥ ≤ m∥pi|k − ph,i|k∥+ n ∀i = 1 . . . Np. (2)

The MPC discretisation step size ∆tMPC needs to be larger
than ∆treal-time = 1ms of the SMU motion generator to cope
with the computational cost of the optimisation problem and
thus create a technically feasible system. In order to obtain
a sufficiently long prediction horizon without generating a
large amount of prediction steps Np, we choose ∆tMPC =
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Constraint
linearisation

Linear
MPC Interpolator

SMU
motion

generator

Robot
manipulator

Human-aware Cartesian MPC motion planner

ẋd,safez⃗(k), u⃗(k) xd, ẋd

q, q̇,T(q),M(q)

x, ẋ

z⃗(k − 1), u⃗(k − 1)

G(k),b(k)

xtar

Ph

Fig. 2. Our cascaded control loop with the human-aware Cartesian MPC motion planner in the outer and the SMU motion generator in the inner one.

25ms. The different step sizes of inner and outer loop, how-
ever, require a synchronisation and the nonlinear constraints
require a linearisation. Thus, the resulting structure of the
human-aware Cartesian motion planner is separated into
three parts shown in the green box of Fig. 2.

At each time step k ∈ N, the constraint linearisation block
ensures linearity for all constraints based on the matrix Ph

and the latest MPC solution which consists of the optimal
state series z⃗(k − 1) and the optimal input series u⃗(k − 1),
such that the constraints can be formulated as

G(k)u⃗(k) ≤ b(k) . (3)

Here, G(k) ∈ RNcNp×NpNu is the constraint matrix which
needs to be determined and b(k) ∈ RNcNp is the correspond-
ing constraint vector. G(k) and b(k) are fed to the linear
MPC block which determines z⃗(k) = [zT1|k, . . . , z

T
Np|k]

T ∈
RNzNp and u⃗(k) = [uT

0|k, . . . ,u
T
Np−1|k]

T ∈ RNuNp . The
used variables Nc, Nz , and Nu correspond to the number of
constraints, the number of states, and the number of inputs.
From the MPC solution continuous trajectories are generated
and subsequently resampled with real-time frequency by the
interpolator to obtain xd and ẋd. A detailed description of
the motion planner elements depicted by Fig. 2 is provided
in the following sections.

1) Linear MPC: For the MPC optimisation problem, we
first define the state vector zi|k ∈ R12 and the input vector
ui|k ∈ R6 based on the Cartesian pose of the robot end
effector xi|k ∈ R6 as

zi|k =

[
xi|k
ẋi|k

]
, ui|k = ẍi|k ∀i, k ∈ N0 . (4)

Then, we describe the system model as a linear kinematics

zi+1|k =

[
I6 I6∆tMPC
06 I6

]
zi|k +

[
1
2I6∆t2MPC
I6∆tMPC

]
ui|k , (5)

where I6 ∈ R6×6 is the identity matrix, and 06 ∈ R6×6 is
the zero matrix.

The cost function J of the motion planner is defined as

J(z0|k, u⃗(k)) =
1

2
∥z⃗(k)− z⃗ref∥2Qs

+
1

2
∥u⃗(k)∥2Rs

+

1

2
∥u⃗(k)− u⃗≪Nu

(k − 1)∥2Ss
,

(6)

with the weighting matrices Qs, Rs, and Ss. Here, Qs and
Rs contain cost terms penalising the state error and the input,
while Ss penalises the difference between the the current
optimal series and the one from the latest time step. It aims
at reducing oscillations caused by a possible cost minimum
that exploits the linearisation of the constraints by choosing
strongly divergent consecutive input variables. To enable this
operation, the input series of the latest time step is shifted

by the size of Nu such that e.g. u1|k meets u2|k−1. This is
indicated by ≪. By repeatedly inserting the system model (5)
into the state z, one obtains the cost function which depends
only on the known current state z0|k and the input series
u⃗(k) to be determined.

To ensure reachable robot motion, reachability constraints
are formulated as

plb ≤ ∥pi|k∥ ≤ pub ,
φlb ≤ ∥φi|k∥ ≤ φub ,
ṗlb ≤ ∥ṗi|k∥ ≤ ṗub ,
φ̇lb ≤ ∥φ̇i|k∥ ≤ φ̇ub ,
p̈lb ≤ ∥p̈i|k∥ ≤ p̈ub ,
φ̈lb ≤ ∥φ̈i|k∥ ≤ φ̈ub ,

p
...
lb ≤

∥p̈i|k∥ − ∥p̈i−1|k∥
∆tMPC

≤ p
...
ub ,

φ
...
lb ≤

∥φ̈i|k∥ − ∥φ̈i−1|k∥
∆tMPC

≤ φ
...
ub .

∀i =1 . . . Np ,

(7)
The next section describes how the constraints (2) and (7)

are linearised for our linear MPC.
2) Constraint Linearisation: The linearisation assump-

tions of the motion planner are based on those used in [9],
[19] and defined as

[
z0|k−1

z⃗(k − 1)

]
≪Nz

=


z1|k−1

z2|k−1

...
zNp+1|k−1

 ≈


z0|k
z1|k

...
zNp|k

 =

[
z0|k
z⃗(k)

]
, (8)

u⃗≪Nu
(k − 1) =


u1|k−1

u2|k−1

...
uNc|k−1

 ≈


u0|k
u1|k

...
uNc−1|k

 = u⃗(k) . (9)

Accordingly, we assume that a state or input predicted for a
certain point in time will not change in the next time step. By
shifting all entries of the state and input series by Nz and
Nu respectively, a vector zNp+1|k−1 is created at the end
of the state series and a vector uNp|k−1 at the end of the
input series for which no values have yet been predicted. To
resolve this problem, we assume no change between uNp|k−1

and the previous known input uNp−1|k−1. Subsequently,
we determine xNp+1|k−1 based on the assumed values for
uNp|k−1, the known state xNp|k−1 and the system model
(5). The assumptions (8) for z⃗(k) and (9) for u⃗(k) shall be
inserted into the non-linearities of the constraints as often as
necessary until they become linear. To do so, we change the
notation of the norm function to a product formulation as

∥a∥ =
√
a21 + a22 + a23 = aTo a , (10)
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with the index o indicating the normalisation of the vector
to the length of one. We now insert (8), (9) and (10) into
the constraints (2) and (7) to obtain their linearisation. As an
example, the linearised absolute translational velocity ∥ṗi|k∥
results in

∥ṗi|k∥ ≈ ṗT
o,i+1|k−1ṗi|k , (11)

where the first part of the product ṗT
o,i+1|k−1 is constant and

known from the previous solution of the MPC algorithm.
The second part ṗi|k is the yet unknown and to be optimised
end effector velocity. The approximate absolute end effector
velocities, thus, depend linearly on the vectors ṗi|k which are
part of z⃗(k). To obtain linear constraints depending on u⃗(k)
only, the system model (5) is substituted into the constraints
as e.g.

ṗlb ≤ṗT
o,i+1|k−1ṗi|k ,

ṗlb ≤ṗT
o,i+1|k−1Eṗ,i(Asz1|k−1 +Bsu⃗(k)) ,

∀i = 1 . . . Np

(12)
where As and Bs are stacked versions of A and B satisfying
Asx0|k +Bsu⃗(k) = x⃗(k) and Eṗ,i is an extraction matrix
fulfilling ṗi|k = Eṗ,ix⃗(k). A final rearrangement of (12) and
a subsequent comparison of coefficients provides the entries
of G(k) and b(k) for the Np columns constraining the lower
velocity bound. The described procedure needs to be repeated
for all Nc = 17 constraints. Then, the resulting columns are
stacked to obtain the full constraint matrix G(k) and the
constraint vector b(k). Note that the number of constraints
of the optimisation problem is Np times higher than the
number of constraints of the MPC algorithm Nc. Since the
constant terms as ṗT

o,i+1|k−1 change in each time step, the
linearisation has to be performed online at each iteration.

3) Interpolation: The different frequencies of the motion
planner and the SMU motion generator require a synchro-
nisation which our control loop performs by interpolation
of the discrete MPC solution u⃗(k), z⃗(k) and a subsequent
resampling with the frequency of the SMU motion gen-
erator. To ensure reachability of the continuous trajectory,
we use two times continuously differentiable cubic splines
for each of the six dimensions of the end effector pose.
The discrete MPC solutions serve as grid points. After each
MPC iteration, new splines are calculated that update the
old ones. To ensure a smooth transition between the old and
the new splines, the current measured end effector pose x
and velocity ẋ are defined as constraints for the first spline.
Since the splines are updated in each MPC iteration it is
sufficient to only calculate two consecutive splines for each
dimension. Thus, only the first Ni = 3 states and inputs of
the MPC solution are used as grid points and fewer splines
are required.

B. SMU Motion Generator

We ensure physical safety with a real-time motion gener-
ator that implements the SMU introduced in [2] and, thus,
checks whether the desired motion xd, ẋd is safe. In case
the velocity is unsafe, the motion generator scales down the
velocity to obtain ẋd,safe. Fig. 3 gives a visual summary to
our safety concept, in which the EMU function considered in
motion planning is illustrated by blue circles and the physical
safety considered in the SMU motion generator during HRI

SMU

EMU

Fig. 3. Visualisation of the safety concept. When the human enters the
shared workspace, the SMU checks the planned trajectory for safety. The
blue circles represent the contour lines from the EMU considered in motion
planning.

TABLE II
PARAMETERS USED IN THE EXPERIMENTS

Parameter Symbol Value

Number of states Nz 12
Number of inputs Nu 6
Number of constraints Nc 17
Discretisation step size ∆tMPC 0.025 s
Length of the prediction horizon Np 18
Slope of the safety inequality m 0.8 1

s
y-intercept of the safety inequality n 0.01 m

s
State cost terms [cx cẋ] [100 0]
Input cost cẍ 0
Oscillation cost cosc 15

tasks is highlighted by the green box representing the shared
workspace.

The control scheme is embedded in C++ to the Franka
Emika (FE) Panda robot using qpOASES [27] and experi-
mentally evaluated in the following section.

IV. EXPERIMENTAL EVALUATION
This section describes the validation experiments for the

proposed MPC motion planner and SMU motion generator.

A. Experimental Procedure
We use a FE Panda robot and conduct two experiments

using the experimental setup depicted by Fig. 3. The human
hand position information for the EMU concept and the
SMU safety control law inside the defined human-robot
workspace are applied. The weighting matrices Qs, Rs and
Ss, validated in simulation, are chosen to be diagonal with
the corresponding four different costs cx, cẋ, cẍ, and cosc
for the position error, velocity, acceleration, and oscillation
reduction. For stability, the terminal stage cost at the end
of Qs is chosen to be the solution to the algebraic Riccati
equation [13]. Table II lists the planner parameters used in
our experiments.

The experiments serve to verify the compliance to the de-
fined safety thresholds, execution time, computational time,
and compare the time efficiency with a velocity-scaled direct
path based on real-time velocity scaling. The first experiment
evaluates the compliance of our MPC planner to the EMU,
its time efficiency, the generated EMs, and the required com-
putational time. Four handovers between robot and human
at different workspace positions are performed where the
robot passes the human in close proximity and, thus, applies
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Fig. 4. Logged end effector motion of the first experiment. The traversed
paths are dyed according to the absolute velocity.
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∥ṗ
∥

in
m s

EMU constraint direct path
Robot velocity direct pathRobot velocity

EMU constraint

t1 t2

Fig. 5. Illustration of the EMU constraint during the motion from xtar3 to
xtar4. The result of our experiment (solid lines) is compared with a velocity
scaled straight-line motion. The advantage of the simultaneous adjustment
of path and velocity over velocity scaling is shown by the more constant
velocity and the shorter path execution time.

EMs. The second experiment is a collaborative assembly
task where the robot supplies the human with components to
assemble and our proposed MPC planner is cascaded with the
safe SMU motion generator. In this experiment, we observe
the feasibility of the cascaded control loop for a collaborative
pick-and-place task and its compliance to the SMU.

B. Results
The trajectories traversed by the robot end effector in our

first experiment are depicted by Fig. 4. All trajectories are
reachable and feature EMs which are executed with higher
velocities for greater human-robot distances according to the
EMU function. The yellow colored motion in close proximity
and the red ones with further distance illustrate this behaviour
vividly. In this experiment, the average computational time
for each motion planner iteration is 2.26ms. The maximum
observed computation time of 6.91ms is still significantly
smaller than the discretisation step size of ∆tMPC = 25ms,
proving our motion planner’s feasibility. Also, all generated
trajectories comply with the EMU constraint as exemplary
depicted by Fig. 5 for the motion xtar3 to xtar4.

In our second experiment the MPC planner is cascaded by
the SMU and applied for a collaborative pick-and-place task.
The safe and trustworthy EMs with time efficient paths and
velocities traversed by the robot end effector are depicted
by Fig. 6. We can claim again that all trajectories are
reachable. The experiment shows that our cascaded control
loop complies with the SMU.

Both experimental results indicate the practical stability of
our cascaded MPC planner for real-world applications.
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Fig. 6. Logged end effector motion of the second experiment. The traversed
paths are dyed according to the absolute velocity.

C. Discussion

The motion generated by our proposed motion planner
finishes after about 6 s while a simulated direct path motion
with velocity scaling takes 8.44 s; see Fig. 5. As a result, our
MPC motion planner for online generation of safe human-
aware motion enables 28% faster motions than a straight-
forward velocity scaling approach, due to the simultaneous
path-velocity adjustment during optimisation.

Our MPC planner constrains absolute values for the phys-
ical limits (see Eq. (7)). On the contrary, previous research
[8], [17] constrains each dimension or direction separately.
As a result, our definition of the reachability constraints
allows the maximum reachable motion speed during the
whole motion even for space-diagonal motions where the
distances to the target in x-, y-, and z-directions are not
equal, while the previous approach applies only a fraction of
the desired motion speed in these cases. Consequently, our
approach results in faster motion and greater time efficiency.

As all robot motions are reachable and compliant with the
EMU constraint, the applied linearisation strategy does not
influence the effect of the constraints and our linearisation
assumptions are acceptable. Although the linearisation leads
to short calculation times enabling feasibility of the motion
planner, they are not short enough for the robot real-time
frequency of 1 kHz. Thus, to guarantee physical safety we
cascaded our MPC planner with a real-time capable imple-
mentation of the SMU.

In the experiments we successfully embedded our pro-
posed MPC planner to a Panda robot and observed stable
task execution. However, an analytical stability analysis is
prospect for future work. For real-time human detection,
the system needs to be expanded e.g. with a 3D camera
measuring the absolute position and an inertial measurement
unit (IMU) to obtain additional acceleration data of the
human hand. For this, we propose fusing both sensors for
a more accurate human position and velocity estimation and
apply predictor approaches like [24] or [28].

Lastly, the positive effect of the embedded EMU principle
in our MPC planner on human involuntary motion occurrence
[12] needs to be verified in user studies.
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V. CONCLUSION

In this paper, we proposed a general Cartesian MPC
motion planner for robot manipulators which allows safe
and trustworthy robot motion by applying constraints for
psychologically-grounded safety. The planner was cascaded
with the SMU in a robot motion generator and implemented
to the FE Panda robot. Our experiments show that the closed-
loop online motion planner generates reachable trajectories,
which fulfill the given constraints and can be applied e.g. for
pick-and-place applications. By simultaneous adjustments of
Cartesian path and velocity in the constrained and predic-
tive optimisation problem of the MPC planner, highly time
efficient and human-aware motions are obtained, which are
2.44 s faster in the experiment than a common direct path-
velocity scaling approach using the same constraints. Future
work will focus on integration of the planner with human
observers and validation studies on the planner’s positive
effect on team efficiency in HRI.
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