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Abstract. Monitoring workers’ status is crucial to prevent work-related muscu-
loskeletal disorders and to enable a safe human-robot interaction. This is typically
achieved relying on muscle activation recordings, commonly performed via wear-
able electromyographic EMG sensors. However, to properly acquire whole-body
muscular status, a large number of sensors is needed. This represents a limitation
for a real deployment of wearable acquisition systems, due to cost and wearability
constraints. To overcome this problem, we propose a solution to provide a reli-
able muscles estimation from a limited number of EMG recordings. Our method
exploits the covariation patterns between muscles activation to complement the
recordings coming from a reduced set of optimally placed sensors, minimizing the
estimation uncertainty. Using a dataset of EMG data recorded from 10 subjects,
we demonstrate that it is possible to reconstruct the temporal evolution of 10
whole-body muscles with a maximum normalized estimation error of 13%, using
only 7 EMG sensors.

Keywords: Ergonomics, Human motion control, EMG, Optimal Sensing

1 Introduction

Despite the increasing importance that human robot collaboration has gained for in-
creasing the quality of human work and decreasing the risk of injuries [1], more than
half of workers in the European Union (EU) report disturbances in carrying out daily
tasks, which often result in chronic Work-related MusculoSkeletal Disorders (WMSDs)
[6]. The most commonly identified issues are muscles-related pain, especially at the
back, upper limb and lower limb level [17]. WMSDs affect workers with different ages
and types of occupations, with high costs for companies and the healthcare systems
[7][13]. A possible way to reduce this problem is to monitor the biomechanical state of
the worker during the day through wearable technologies [1].

To solve this problem, many works in literature provide solutions for the assessment
of ergonomic indexes [15][11], fatigue quantification during working activities [4][16][8]
and to enhance human-robot interaction [12]. Most of these approaches are based on
recording of muscular activities to estimate fatigue and joints overload, relying on the
usage surface ElectroMyoGraphic (sEMG) sensors. However, for a real deployment of
this technology in large scale, it is important to recall that EMG sensors are usually
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expensive and, given the large number of muscles present in the human body, the amount
of sensors needed to obtain a complete measure of the biomechanical state could be very
large, with direct implications on costs and wearability of the sensing setup. Therefore,
to increase the usability and acceptability of sEMG sensing systems, it is important to
optimize the number and the placement of the sensor elements, without penalising the
quality of the sensing.

A possible way to tackle the problem of dimensionality reduction is to exploit the
concept of motor synergies. Introduced in [9], motor synergies are a set of strategies
performed by the nervous system to handle the complexity of human body. This concept
opens to the possibility to analyze the functional coordination of elemental motor
variables targeting the execution of a given tasks. At the muscular level, a seminal work
is [5], where authors found co-activation patterns during motion, usually named muscle
synergies. From an observability point of view, the concept of synergies can be associated
to the possibility to estimate the overall kinematic-muscular state in spite of a reduced
amount of sensory information, exploiting the commonalities shared by the motor units.
In [2], the authors presented a framework to estimate human arm biomechanical state
(sEMG signals and joint trajectories) during daily-living activities from a reduced number
of measurements. This approach relies on a Minimum Variance Estimation (MVE)
algorithm combined with a representation based on functional Principal Component
Analysis (fPCA) to exploit a dataset of recorded movements as a priori knowledge used
to complement the whole-state estimation from a reduced set of optimal signals that
minimize the estimation uncertainty in spite of scarce sensory information. However, the
authors focused only on the application of this approach for the estimation of the human
upper limb motion.

In this work, we validate the feasibility to generalize this approach to the estimation
of the whole-body muscular state. To do this, we used a dataset containing movements
performed during industrial tasks. Data were split in a priori and validation set. The first
was used to identify the optimal sEMG placement to minimize estimation uncertainty,
while the second was used to assess the performances of our method on data that were
not used to build the a-priori knowledge. Interestingly, our results demonstrate that,
starting from a set of 10 muscles, we can remove up to 3 sensors without substantially
worsening the estimate obtained.

The paper is organized as follows: we first summarize the theoretical foundations of
this method; then, we report the methods and the implementation of the optimization
procedure on the whole-body dataset; finally, we discuss the results obtained in the
reconstruction phase.

2 Theoretical Framework

As introduced in the previous section, the goal of this work is to provide an estimation
of muscle activation signals using a limited number of sensor elements. To achieve this
results we have choosen the Minimum Variance Estimation (MVE) approach to use
the knowledge of a priori information provided by a set of data recorded in advance.
However, to exploit the MVE approach, we need to represent movements in a static
domain instead of the temporal domain. The strategy used in this work to solve the
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problem is the one presented in [2]. It relies on 3 different phases: i) an encoding phase
to translate the signal from the time domain to a static representation obtained via
functional Principal Component Analysis; ii) an estimation phase, in which MVE is used
to estimate the missing information; and iii) a decoding phase to re-obtain the temporal
evolution of state from the static representation.

2.1 Encoding Phase

The encoding phase is based on functional Principal Component Analysis (fPCA), an
extension of Principal Component Analysis suitable to manage time-series. In a nutshell,
given a dataset of time-varying data, fPCA extracts a basis of function ordered by
importance (where the importance is represented by the explained variance of the dataset
itself).

Considering a sEMG signal m(t), its linear functional decomposition can be defined
as:

m(t)≃ m̄+S0(t)+
smax

∑
i=1

αiSi(t), (1)

where m̄ is the average of the signal, S0(t) is the average temporal muscular activation
profile through the whole dataset, Si(t) is the ith functional Principal Component (fPC)
and αi is the weight associated to the element Si(t).

The first component of the basis of function S1(t) can be extracted from the dataset
by solving the following problem:

max
S1

R

∑
j=1

(∫
S1(t)m j(t)dt

)2

(2)

subject to
||S1(t)||22 = 1. (3)

The other components Si(t) can be computed as:

max
Si

R

∑
j=1

(∫
Si(t)m j(t)dt

)2

(4)

subject to
||Si(t)||22 = 1∫ tend

0 Si(t)Sk(t)dt = 0,∀k ∈ {1, ..., i−1}
(5)

For practical details on the implementation, the interested reader could refer to [14].
This decomposition can be applied to each recorded muscle to express the temporal

activation profile into a set of weights. Given a set of M muscles, we can define an
extended static state xe representing a single trial as:

xe =
[
m̄1 α1,1 . . . α1,k | m̄2 α2,1 . . . α2,k | . . . | m̄M αM,1 . . . αM,k

]T
. (6)
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2.2 Estimation Phase

The extended state defined in (6) permits to apply MVE for the estimation of temporal
signals. In this section, we briefly summarize the principle behind the approach and we
refer the interested reader to [3] for more details.

Considering a set of d sensors to measure the state of the system x ∈ Rl , we can
assume a linear relation between the state and the output and define the vector of
measures y ∈ Rd as:

y = Hx+ν (7)

where H ∈ Rd,l is a full row rank measurement matrix and ν is the measurement noise.
In the case where d < l we have an infinite number of solutions defined as:

x = H†y+Nhξ (8)

where H† is the pseudo-inverse of H, Nh represents the null space of H and ξ ∈ Rl−d

is a free vector of parameters. Usually, the most common solution is to use the pseudo-
inverse which returns the least-squared solution. However, this is not always the best
solution in terms of error between the the real state and its estimation.

The solution proposed with the MVE is to exploit the covariation patterns between
the elements of the state to reduce the estimation error. The information used is organized
in a covariance matrix P0 defined as:

P0 =
(X − x̄)(X − x̄)T

N −1
(9)

where x̄ is a matrix whose columns contain the average µ0 of X . Given P0, the best
estimate x̂ of x is the vector which solves the following optimization problem:

x̂ = argmin
1
2
(x−µ0)

T P−1
0 (x−µ0) (10)

Assuming that ν is a zero mean Gaussian noise with covariance matrix R, the solution
of (10) can be found in closed form as:

x̂ = (HT R−1H +P−1
0 )−1(HT R−1y+P−1

0 µ0) (11)

We can also define the a posteriori covariance matrix as:

PP = (HT R−1H +P−1
0 )−1 (12)

This matrix is important because it returns information regarding the uncertainty of the
associated state estimation and can be used to select what element of the state has to be
measured to maximize the information. To solve the problem we can set the following
minimization:

Hopt = argmin
H

σmax(PP(H)) (13)

to find the optimal selection matrix Hopt and consequently the best set of muscle to be
recorded.
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2.3 Decoding Phase

After we computed the estimated extended state x̂e we want to re-obtain the temporal
evolution of the different signals represented by it. This step can be easily done using (1)
to combine the original fPCs and obtain the reconstructed signal in the time domain.

3 Optimal Sensor Setup

3.1 Dataset

To validate our approach to whole-body muscles estimation we used the dataset available
in [10], which consists of kinematic and muscular data of subjects performing different
industrial-like tasks. The three tasks taken into account are: 1) lifting and lowering boxes
with different weights from shelves at different heights; 2) drilling and 3) painting with
a lightweight tool. Every subject involved in this dataset perfomed three repetition for
each task condition. For the purpose of our study, we took into account only the post-
processed muscular data of the right-handed subjects (10 out of 12). Muscular activation
were recorded with a sEMG system (Delsys Trigno Wireless platform) and the signal
processing consists in: normalization w.r.t. the maximum voluntary contraction, filtering
with a 2nd order Butterworth low-pass filter (cut-off frequency 2 Hz), and rectification.
The list of the represented muscles can be found in Table 1. Given that each task is
represented by a different number of movements, we randomly discarded part of the
trials to create a task-balanced dataset.

Index Muscle
1 Anterior Deltoid
2 Posterior Deltoid
3 Biceps Brachii
4 Triceps Brachii
5 Trapezius Descendens
6 Erector Spinae
7 Gluteus Maximus
8 Rectus Femoris
9 Biceps Femoris
10 Tibialis Anterior

Table 1: List of muscles recorded during task execution.

3.2 Sensor Optimization

Given the particular structure of the extended state, the matrix H is composed of block
of k-dimensional diagonal matrices. To preserve this structure, we chose the genetic
algorithm as method to solve the optimization problem, where each candidate solution
is an N-element vector containing the N indexes of the muscles to be measured. In this
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way, given the single individual of the population, the matrix H can be easily computed
and, combining it with the a priori knowledge, we can obtain the a posteriori covariance
matrix PP through (12). The optimal EMG sensor selection was identified minimizing
the Shatten p-norm of PP defined as:

∥PP∥p :=
(
∑sp

n(PP)
) 1

p (14)

The minimization of this cost function leads to the minimization of the maximum singular
value of PP, and consequently to the minimization of the uncertainty of estimation. The
genetic algorithm was implemented using the software Matlab (Population size = 150,
Max number of generations = 200, Elite Count = 10).

To verify the stability of our estimation procedure, the dataset was split in 10 groups,
one for each subject, and a k-fold validation was implemented. For each iteration, one of
the subjects was selected as a validation set, while the remaining ones was used to build
the a priori knowledge. For each a priori dataset, we performed the fPCA to extract the
principal components and the associated weights. Then, weights were used to compute
the average µ0 and the a priori covariance matrix P0.

We performed the optimization for each fold with different number of sensors used
(from 1 to 9). The results obtained, in terms of best values of the cost function reached,
are reported in Fig. 1. We can observe that we can remove up to 3 sensors without

Fig. 1: Shatten Norm obtained for different subjects with different number of EMG
sensors used

noteworthy deterioration of the estimation uncertainty. These 3 cases (usage of 7,8 and
9 sensors respectively) return also a stable muscle selection through different subjects
used as validation set.
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We have evaluated also the stability of the representation obtained with fPCA across
different subjects. To do this, we performed the dot product to assess the similarity
between fPCs of the same order and of the same degree of freedom. We obtained median
values ranging from 0.998, for the first order component, to 0.952 for the fifth component.
More details are reported in Table 2.

fPC Order 0 1 2 3 4 5
Median 0.9947 0.9980 0.9937 0.9858 0.9765 0.9524

75th Percentile 0.9978 0.9996 0.9989 0.9970 0.9947 0.9899
25th Percentile 0.9817 0.9908 0.9646 0.9148 0.8420 0.5962

Table 2: Median, 25th and 75th percentile of similarity index between functional compo-
nents for each fPC order.

4 Results

To validate the reliability of our approach, we calculated the differences between the real
recorded signal and the estimation for all the validation sets. We used as metric the Root
Mean Square Error (RMSE). This procedure was repeated separately for the case with 7,
8 and 9 sensors used. In Fig. 2, the RMSE for all the muscles, in terms of percentage of

Fig. 2: RMSE (mean ± standard deviation) of optimal setup with different number of
sensors. In blue the muscles directly measured while in red the muscles estimated with
MVE

the maximum voluntary contraction, is reported as mean and standard deviation. Blue
bars represent the muscles directly measured, while the red ones stand for the muscles
estimated by the MVE. It is possible to observe that the estimation error made by the
MVE is similar to the one introduced by the fPCA decomposition in measured muscles
(which is the best achievable results given a fixed number of components used).
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We also normalized the RMSE of each muscle with the maximum range reached on
the dataset to compare the error with the muscle activation level of the tasks analyzed.
The results in term of mean and standard deviation are represented in Fig. 3. In this case,
there is a difference between recorded and estimated muscles. However, we can see that,
even in the worst case, the average estimation error for the muscles is always below 13%.

Fig. 3: RMSE normalized (mean ± standard deviation) with the maximum activation
range for each muscles. In blue the muscles directly measured while in red the muscles
estimated with MVE

However, these results can only inform on the average error of the reconstruction. To
verify the reconstruction accuracy in time, we also compared the reconstructed temporal
profile with the real data in time (see Figures 4 and 5). It is possible to notice that both
the values and the shape obtained are very similar to the reference even with a modest
sized sensory information available.

5 Discussions and Conclusions

Improve worker’s body sensorization is a key factor to enhance human-robot interaction
and assess its condition performing daily working activities. Obtaining a good estima-
tion of the biomechanical state of the worker’s body is essential to prevent injuries
and ailments that - in the long term - can lead to chronic conditions that may affect
the worker’s daily life. One of the data necessary to carry out this assessment is that
concerning the muscular activity which allows to monitor the state of fatigue of the
worker. However recording all the muscles present in human body can be expensive and
this type of measurement can be affected by different sources of noise. Furthermore, a
system with a large number of sensors would create impairments to the worker in his
activities, discouraging its use.

To reduce the number of sensor we took the Minimum Variance Estimation approach,
which exploit the information contained in a a priori dataset to compensate for noisy or
missing measurement, and we applied it to estimate whole body muscle activity. To do
this, we used a dataset containing a set of working-like movement performed by different
subjects.
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Fig. 4: Comparison between the real signal (black) and the MVE output using 7 (red),
8 (blue) and 9 (green) EMG sensors during a lifting action. The activation level is
normalized with the Maximum Voluntary Contraction of each muscle. The estimated
signals are Muscle 4 (for red, blue and green lines), Muscle 7 (for red and blue lines)
and Muscle 9 (red line)

Given the small size of the dataset, we performed a k-fold validation using each
subject as validation data. For each a priori set we performed an optimization to find the
optimal sensor setup for each number of sensor elements possible. We found that, starting
from a set of 10 sensors, we can remove up to 3 sensors without worsening the output.
We also tested the consistency of the functional Principal Components representation
through the different fold created. After that, we tested the goodness of the estimation
obtained with this method evaluating the reconstruction error, both in absolute and in
relative terms, for each validation set. The results obtained show that, in term of absolute
error, the estimated muscles reach a level of precision similar to measured ones. In terms
of relative error, the estimated muscles behave worst than the measured one. However
only the Gluteus Maximum reaches an error higher than 10% (13.1%), while for the
other 2 muscles the relative error is about 6%.

Despite the good result obtained, we believe that there is room of improvement for
this work. The first step is to increase the number of muscles taken into account in order
to obtain a more fine grained assessment of the entire body. However this approach
requires a number of trials contained in the a priori dataset much larger of the dimension
of the extended state and it is necessary to gather a new dataset containing an higher
number of recorded movements. With a sufficient number of trials in the algorithm
can be integrated also the kinematic data (as done in a previous work on human arm)
to achieve a complete biomechanical estimation necessary for ergonomic assessment.
Another point to be developed is the extension of this approach for real-time estimates.
In fact, based on the fPCA decomposition to move from the time domain to the weight
domain, it is necessary to have recorded the complete movement in time. An idea could
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Fig. 5: Detail on the estimated muscles for action represented in Figure 4

be to iteratively perform this approach in real time using the movement recorded up to
that moment. However, the feasibility of this solution is still under investigation.
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