
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/362067800

Efficient 2D LIDAR-Based Map Updating For Long-Term Operations in Dynamic

Environments

Conference Paper · July 2022

DOI: 10.1109/IROS47612.2022.9982047

CITATIONS

2
READS

932

4 authors, including:

Elisa Stefanini

Università di Pisa

5 PUBLICATIONS   9 CITATIONS   

SEE PROFILE

Alessandro Settimi

Università di Pisa

30 PUBLICATIONS   695 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Elisa Stefanini on 21 July 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/362067800_Efficient_2D_LIDAR-Based_Map_Updating_For_Long-Term_Operations_in_Dynamic_Environments?enrichId=rgreq-bb7e5f7c94b2033edadc3af15f7eb626-XXX&enrichSource=Y292ZXJQYWdlOzM2MjA2NzgwMDtBUzoxMTgwMTg1NzYwMTUzNjAzQDE2NTgzODk2MjA3MjI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/362067800_Efficient_2D_LIDAR-Based_Map_Updating_For_Long-Term_Operations_in_Dynamic_Environments?enrichId=rgreq-bb7e5f7c94b2033edadc3af15f7eb626-XXX&enrichSource=Y292ZXJQYWdlOzM2MjA2NzgwMDtBUzoxMTgwMTg1NzYwMTUzNjAzQDE2NTgzODk2MjA3MjI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-bb7e5f7c94b2033edadc3af15f7eb626-XXX&enrichSource=Y292ZXJQYWdlOzM2MjA2NzgwMDtBUzoxMTgwMTg1NzYwMTUzNjAzQDE2NTgzODk2MjA3MjI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elisa-Stefanini?enrichId=rgreq-bb7e5f7c94b2033edadc3af15f7eb626-XXX&enrichSource=Y292ZXJQYWdlOzM2MjA2NzgwMDtBUzoxMTgwMTg1NzYwMTUzNjAzQDE2NTgzODk2MjA3MjI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elisa-Stefanini?enrichId=rgreq-bb7e5f7c94b2033edadc3af15f7eb626-XXX&enrichSource=Y292ZXJQYWdlOzM2MjA2NzgwMDtBUzoxMTgwMTg1NzYwMTUzNjAzQDE2NTgzODk2MjA3MjI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita-di-Pisa?enrichId=rgreq-bb7e5f7c94b2033edadc3af15f7eb626-XXX&enrichSource=Y292ZXJQYWdlOzM2MjA2NzgwMDtBUzoxMTgwMTg1NzYwMTUzNjAzQDE2NTgzODk2MjA3MjI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elisa-Stefanini?enrichId=rgreq-bb7e5f7c94b2033edadc3af15f7eb626-XXX&enrichSource=Y292ZXJQYWdlOzM2MjA2NzgwMDtBUzoxMTgwMTg1NzYwMTUzNjAzQDE2NTgzODk2MjA3MjI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alessandro-Settimi-2?enrichId=rgreq-bb7e5f7c94b2033edadc3af15f7eb626-XXX&enrichSource=Y292ZXJQYWdlOzM2MjA2NzgwMDtBUzoxMTgwMTg1NzYwMTUzNjAzQDE2NTgzODk2MjA3MjI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alessandro-Settimi-2?enrichId=rgreq-bb7e5f7c94b2033edadc3af15f7eb626-XXX&enrichSource=Y292ZXJQYWdlOzM2MjA2NzgwMDtBUzoxMTgwMTg1NzYwMTUzNjAzQDE2NTgzODk2MjA3MjI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita-di-Pisa?enrichId=rgreq-bb7e5f7c94b2033edadc3af15f7eb626-XXX&enrichSource=Y292ZXJQYWdlOzM2MjA2NzgwMDtBUzoxMTgwMTg1NzYwMTUzNjAzQDE2NTgzODk2MjA3MjI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alessandro-Settimi-2?enrichId=rgreq-bb7e5f7c94b2033edadc3af15f7eb626-XXX&enrichSource=Y292ZXJQYWdlOzM2MjA2NzgwMDtBUzoxMTgwMTg1NzYwMTUzNjAzQDE2NTgzODk2MjA3MjI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elisa-Stefanini?enrichId=rgreq-bb7e5f7c94b2033edadc3af15f7eb626-XXX&enrichSource=Y292ZXJQYWdlOzM2MjA2NzgwMDtBUzoxMTgwMTg1NzYwMTUzNjAzQDE2NTgzODk2MjA3MjI%3D&el=1_x_10&_esc=publicationCoverPdf


Efficient 2D LIDAR-Based Map Updating
For Long-Term Operations in Dynamic Environments

Elisa Stefanini1,2, Enrico Ciancolini3, Alessandro Settimi3 and Lucia Pallottino1

Abstract— Long-time operations of autonomous vehicles and
mobile robots in logistics and service applications are still
a challenge. To avoid a continuous re-mapping, the map
can be updated to obtain a consistent representation of the
current environment. In this paper, we propose a novel LIDAR-
based occupancy grid map updating algorithm for dynamic
environments taking into account possible localisation and
measurement errors. The proposed approach allows robust
long-term operations as it can detect changes in the working
area even in presence of moving elements. Results highlighting
map quality and localisation performance, both in simulation
and experiments, are reported.

I. INTRODUCTION

Today, companies of all sizes use robots to improve their
productivity, and mobile robotics is becoming increasingly
important for future developments in the sector. In recent
years, we are witnessing a shift from Automated Guided
Vehicles to Autonomous Mobile Robots (AMR) in many
sectors like industry, logistics, and services [1]. To date, the
most common use of this type of robot is for transporting
materials within factories (e.g., to and from production,
assembly lines, and the warehouse) as this is a time-
consuming and non-value-added activity for most companies.
The characteristics of this type of robots also make their
application possible in other sectors such as the agricultural,
medical, personal care, and security. An AMR exploits
natural navigation and it is capable of redefining paths and
avoiding obstacles. Natural navigation implies Simultaneous
Localisation and Mapping (SLAM) techniques where the
robot maps the environment, navigates, and locates itself
by simply “looking” at this environment, without the need
of installing further hardware in the work place. The most
commonly used perception sensors used for localisation and
mapping in industrial environments are laser scanners [2].
Conventional SLAM is used to create an initial image of
an unknown environment, and it is not intended to be used
as a system for repeatedly updating the same area of the
map. This approach could lead to task failure in complex
production environments where changes in the map can
occur. Industrial environments are usually characterized by a
slow rate of change over time since semi-static objects such

1Centro di Ricerca “E. Piaggio” e Dipartimento di Ingegneria
dell’Informazione, Università di Pisa, Largo L. Lazzarino 1, Pisa, Italy.

2Soft Robotics for Human Cooperation and Rehabilitation, Fondazione
Istituto Italiano di Tecnologia, via Morego, 30, Genova, Italy

3Proxima Robotics s.r.l., Via Olbia 20, Cascina, Pisa, Italy
This work was supported in part by the European Union’s Horizon

2020 Research and Innovation Program under Grant Agreement Number
101017274 (DARKO), and in part by the Italian Ministry of Education
and Research (MIUR) through the CrossLab Project (Departments of
Excellence).

(a) (b)

Fig. 1: The CrossLab Lab. (a) and the relative map M1 (b)

as pallets, furniture, workstations could change their position
when the same task is performed at another time, be it a day
or two months later. During AMRs operations, small changes
in the environment are well handled by localisation and
local obstacle avoidance algorithms; however, as the robot’s
static map diverges from the current working area, becoming
obsolete, navigation performance degrades [3]. Considering
environmental changes due to semi-static objects can hence
increase the localisation performance of a robotic system [4]
through a life-long mapping approach that detects changes
in the environment and updates the map reflecting detected
changes. With an updated static map, the robot acquires a
priori knowledge of the environment, and its task execution
time is reduced since the navigation module doesn’t have
to keep adjusting the trajectory online. Moreover, the map
updating process has to consider long-term operation, and
the algorithm has to be computationally light and use limited
memory [5].
In this paper, we propose a system based on 2D
LIDAR measurements capable of detecting changes in the
environment over time and updating an existing map with a
memory-limited algorithm taking into account localisation
and measurement errors while neglecting highly dynamic
obstacles as humans. Our system is fully developed through
the Robot Operating System [6], using a 2D occupancy
grid map representation due to their widespread use in the
industrial field [7]. We are interested in taking as input
a 2D occupancy grid map built at any moment with any
available SLAM algorithm and producing a geometrically
and temporally consistent representation of the environment
suitable for any continued localisation algorithm based on
occupancy grid maps.
Occupancy grid-based representations are vastly popular
in robotics mapping thanks to their easy derivation from
range sensor measurements [8]. Indeed, companies such



as MiR1, BlueBotics2, Gaussian Robotics3, currently use
2D occupancy grid maps in their assets and this is an
indicator of the industrial readiness level of these technology
with respect to the others, and thus the need to make it
even more robust in the long run. Since many industrial
mobile robots are starting to use ROS and ROS2 as a
developing system [9], we selected this framework to develop
a new heuristic to allow such robots to autonomously
navigate in a dynamic environment with a map that reflects
the real-world configuration. Considering this framework,
there are many open-source SLAM systems available
to the robotics community to perform SLAM such as
Gmapping [10], HectorSlam [11], Google Cartographer [?],
and SLAM Toolbox [12]. However, they are not suitable
for lifelong mapping and, therefore, they would be affected
by aforementioned challenges of dynamic environments.
Regarding the Slam Toolbox lifelong Mapping, since it is
a graph-based method, it suffers from high computational
costs and memory usage required for the graph node removal
mechanism. In contrast, our approach exhibits reduced
hardware consumption and memory usage.

II. RELATED WORKS
In occupancy grid approaches, space is divided into

equally sized cells with associated binary random variable
representing the probability that the cell is occupied by
an obstacle (free, occupied, or unknown). Occupancy grid
map algorithms compute approximate posterior estimates of
the cell states and while all are derived from the Bayesian
filters [13], they differ on the posterior calculation. While
the problem of building a map of a static environment with
occupancy grid approach has been already solved [8], their
applicability in dynamic environment in long time operations
should be further investigated. Several approaches have
extended the occupancy grid map algorithms to deal with
dynamic semi-static environments [14]–[17]. Such methods
evaluate the occupancy of cells regardless of the kind of the
object detected and hence avoid the multi-object detection
and tracking issues related to data association [18]. However,
they mainly focus on accelerating the speed of the mapping
process but not on how to keep an initial occupancy grid map
up to date for a long time. On the other hand, there exist
grid based approaches oriented to lifelong mapping. A first
class of such algorithms are dedicated to updating only local
maps such as in [5], authors generate local maps containing
only the persistent variations detected through a weighted
recency averaging technique and perform local maps merging
with Hough Transformation. However, they assume that
dynamic objects are not allowed in the environment. In [19],
the authors provide local maps built at different times and
continuously update them online. However, this operation
requires a large amount of memory to update the maps
online. A solution to limit computational costs while keeping
efficiency and consistency by pruning redundant local maps
have been proposed in [20]. Unfortunately, those systems

1MiR,https://www.mobile-industrial-robots.com/about-mir/
2BlueBotics, https://bluebotics.com/
3Gaussian-Robotics, https://www.gaussianrobotics.com/

are not comparable with occupancy grid-based method like
ours because they are based on different map representations.
Other approaches are focused on life long mapping or life
long SLAM but are not based on occupancy grid maps and
hence not easily integrated and used in industrial systems. In
[21], authors propose a new technique that employs a set of
three maps to characterize the environment and implements a
probabilistic feature persistence model to predict the state of
obstacles and update the world model. Instead, in [22], they
formalize each cell’s occupancy as a failure analysis problem
and contribute temporal persistence modeling (TPM), an
algorithm for probabilistic prediction of the time that a cell in
an observed location is expected to be “occupied” or “empty”
given sparse prior observations from a task-specific mobile
robot. However, even if the idea is promising, the approach
is used to create a temporary map for motion planning and
does not provide an updated map of the whole environment.
On the other hand, many life-long SLAM systems in the
literature provide the entire system dealing with a dynamic
environment in long-term operations. Most of them rely on
an internal structure such as a graph due to their incremental
approach [23], [24]. However, even if they can provide an
occupancy grid map for general navigation use, they take as
input an existing graph structure and not a prior occupancy
grid map.

III. NOTATIONS AND BASIC CONCEPTS

In this paper, we assume that we already have a map of
the environment and only need to update it with changes
detected by lidar measurements. The occupancy grid map
divides the environment into individual cells cj(q) that
contain information about the areas located at their associated
positions q ∈ R2 in the space. Every cell cj is described by
a state that corresponds to the cell probability to be free
(probability equal to 0), occupied (probability equal to 1), or
unknown (otherwise). In our setup, the occupancy probability
in the occupancy grid map is updated from laser point clouds.
A laser range measurement Z(k) =

[
z1(k) . . . zn(k)

]T
with n laser beams at time k, uniquely identifies a point
cloud P (k) =

[
p1(k) . . . pn(k)

]T
, where pi(k) ∈ R2 is

the i-th hit point at time step k, i.e. the point in which the
i-th beam hit an object. Given a laser scan measurement and
the estimated robot’s pose, the point cloud P (k) (in fixed
frame) can be easily computed through4:

pi =

(
xi

yi

)
= p̃+ zi

(
cos(θ0 + i∆θ + θ̃)

sin(θ0 + i∆θ + θ̃)

)
, (1)

where xi, yi ∈ R are the coordinates of the i-th measured
hit point pi, p̃ ∈ R2 and θ̃ ∈ R are the robot estimated
position and orientation, θ0 ∈ R is the angular offset of the
first beam with respect to the orientation of the laser scanner
and ∆θ ∈ R is the angular distance between two adjacent
beams. Given a measured hit point pi, we define the set of
cells passed through by the i-th laser range measurement
zi corresponding to pi as Cpi

=
{
c1, . . . , cn

}
where

cn = c(pi) is the cell associated to pi.

4to ease the notation, the time dependence k is omitted

https://www.mobile-industrial-robots.com/about-mir/
https://bluebotics.com/
https://www.gaussianrobotics.com/


Fig. 2: System Overview: Measurements are classified as “detected change” or “non-detected change” with respect to the
initial map by the Beam Classifier. Based on this classification, a rolling buffer Bcj of each cell cj is filled by the Changed
Cells Evaluator and the Unchanged Cells Evaluator respectively through “changed” and “unchanged” flags. Finally, the
state of the cells is updated if the number of “changed” flags in the buffer is higher than a given threshold.

IV. MAP UPDATE METHOD

In this section, the map updating developed method is
described. Referring to the system overview in Fig.2, given
an initial occupancy grid map M and the robot pose
X(k), the basic idea is to update the state of the cells
according to the relevant changes in the environment detected
by the laser measurements Z(k). The system is built to
detect both the removal or addition of static objects while
neglecting the presence of dynamic obstacles, such as people,
vehicles, or other robots, that can be sources of disturbances.
Measurements are processed in two steps. First, the Beams
Classifier analyses the sensor readings zi(k) and classifies
them as “detected change measurement” or “non-detected
change measurement” according to their discrepancy with
respect to the initial map M as described in IV-A. Then
the Changed Cells Evaluator and the Unchanged Cells
Evaluator evaluate cells associated to measurements zi(k)
with respect to those in the initial map M to confirm the type
of detection. Indeed, confirmation procedures are required
to deal with possible localisation errors and noise that can
affect the measured information. Only for the purpose of the
measurements process, we consider all the unknown cells
in M as occupied to make it easier to detect the change.
Indeed, by reducing the number of states from three (free,
occupied, and unknown) to two (free and occupied), if a
cell changes its state the new one is uniquely identified. To
avoid false changes or undetected ones, we don’t change the
state of the cells based only on one measurement. Indeed,
for each cell, cj ∈ Cpi

, a rolling buffer, Bcj , of a fixed
dimension, Nb, is created and filled with the outcomes of the
evaluator blocks at different time instant. The Changed Cells
Evaluator takes as input only measurements zi(k) for which
the Beams Classifier has “detected” a change and fills the
buffer Bcj for each associated cell, cj , with a “changed” flag
only if the change is confirmed as described in IV-B. Instead,
the Unchanged Cells Evaluator analyses only measurements
zi(k) for which the Beams Classifier provides a “non-
detected” outcome and fills the buffer Bcj for each associated
cell, cj , with an “unchanged” flag only if the evaluation is
confirmed as described in IV-C. Finally, the state of evaluated
cells cj is changed from free to occupied (or vice versa) only
if a sufficiently high number of “changed” flags can be found
in the associated buffer, Bcj , as described in IV-D.

(a) (b)

Fig. 3: Example of a measured hit point pi (pink dot),
the associated estimated hit point pexpi (case a)) and the
associated set of expected measurements Pexpi with nexp = 3
(case b)) in green. In these maps, the red obstacle has been
removed.

A. Beams Classifier

Given the measurement zi(k) and the current robot pose
X(k), the measured hit point pi(k) of the corresponding
beam is computed as in (1). Such point must be compared
with the expected measurement that the robot, in the same
pose, would obtain if the environment fully correspond to the
initial map M . We hence define the expected measurement
zexpi(k) ∈ R+ as the expected value for the i-th range
measurement zi(k) in Z(k) computed from the initial
occupancy grid map M . The corresponding expected hit
point pexpi(k) ∈ R2 is computed as follows1 (based on a
ray casting approach [25]):

pexpi =

(
xexpi
yexpi

)
= p̃+ zexpi

(
cos(θ0 + i∆θ + θ̃)

sin(θ0 + i∆θ + θ̃)

)
, (2)

To detect a change, the euclidean distance between a
measured hit point pi and the expected one pexpi can be
considered. Indeed, as Fig.3a5 shows, a change leads to a
discrepancy between these two points. Actually, to improve
robustness, we consider a one-to-N comparison, i.e., each
measured point pi is not directly compared with pexpi but
with a set Pexpi , of 2nexp points in map M built from pexpi
itself. The expected hit points set Pexpi is computed by
adding a perturbation l to the angular components in the
pexpi computation (2):

Pexpi =
{
p
(−nexp)
expi , p

(−nexp+1)
expi , . . . , p

(0)
expi , . . . , p

(nexp)
expi

}
,

5In all the figures, the obstacles removed in the environment with
respect to the initial map M are in red, while those added are green.



(a) A new obstacle has been added in the
environment

(b) An obstacle has been removed from
the environment

(c) Two obstacles have been removed, and
a new obstacle has been added.

Fig. 4: Examples of ”detected change” measurements caused by a change in the environment corresponding to added and/or
removed obstacles. Laser beams are reported as pink lines, while the measured hit point is represented as a pink dot.

p(l)expi
= p̃+ z(l)expi

(
cos(θ0 + i∆θ + θ̃ + l∆θexp)

sin(θ0 + i∆θ + θ̃ + l∆θexp)

)
,

where z
(l)
expi ∈ R+ is defined in an analogous way as zexpi ,

∆θexp is the angular distance between adjacent expected
beams, and nexp ∈ N0 is a design parameter (nexp = 3 in
Fig.3b). Given this set, the i-th measurement detects a change
if the minimum distance between the measured point pi and
expected points p

(l)
expi belonging to Pexpi is greater than a

given threshold Dth. More formally, given a point cloud P
associated to a laser scan measurement Z, the change for a
measurement zi is detected if the following holds:

min
pexpi ∈Pexpi

∥pi − pexpi∥2 > Dth. (3)

It is worth nothing that the threshold can be chosen as a
linear function of the distance zi to take into account errors
due to localisation and measurement noise.

B. Changed Cells Evaluator
The Changed cells evaluator module confirms if a change

in a measurement zi by the Beam classifier, corresponds to a
change in the cells cj ∈ Cpi

associated to the measurement
itself. The module stores a “changed” flag in the buffers of
each cell with a confirmed change detection. In Fig.4 the
two possible events that lead to a change in the environment
are reported: the presence of a new obstacle (Fig.4a), and
the obstacle removal (Fig.4b). More complex cases are a
combination of these two (Fig.4c). In the next paragraphs,
we will analyse in detail how our method distinguishes the
two cases.

1) New obstacles detection: Let state(cj) be a variable
representing the occupancy state in the initial map M of the
cell cj . If a new obstacle is added, the state(c(pexpi)) of the
cell associated to the expected hit point is “free” in the initial
map M, while the measured hit point pi associated with
the “detected change” measurement zi identifies an occupied
cell. To confirm a new obstacle detection, we don’t compare
only the state of the cell concerning both the expected pexpi
and the measured hit point pi due to the localisation and
noise errors, but we also analyse the state of the cells close
to the examined one. Thus, given a measured hit point pi, a
new “changed” flag is added to the buffer of the c(pi) if the
state of each cell in the initial map M , identified by a point
belonging to a neighbourhood of pi, is free, i.e. if:

state(cj(q)) = free, ∀q ∈ R2 | ∥q − pi∥2 < tol(zi),

where q ∈ R2 is a point in the space and tol ∈ R+ is a
function of the measured range as Dth in (3).

2) Detection of obstacles removal: In this case,
considering the simplest case of Fig.4b, if a “detected
change” measurement is not coherent with the map due to
an obstacle disappearance, the laser beam passes through a
certain number of occupied cells until it reaches an occupied
cell in the initial map M . However, the measured hit point
pi is subject to localisation and noise errors leading to a
comparison with a cell in the initial map that may be different
from c(pi). Hence, to increase the algorithm robustness,
we don’t consider the final chunk of the laser beam by
investigating only the cells between the robot’s estimated
pose and a point pth, that lies on the laser beam (i.e. on
the segment with extremities p̃ and pi) and is at a fixed
distance from pi, as shown in Fig.5. We analyse only the
cells cj ∈ Cpi

that satisfies:

∥pth − pi∥2 < ∥pcj − pi∥2,
pth = mp̃+ (1−m)pi,

(4)

where m ∈ [0, 1] and pcj ∈ R2 is the point in the center of
the cell cj . If a cell cj satisfies (4) and its state is occupied,
a new “changed” flag is added to its buffer.

(a) (b)

Fig. 5: Example of change detection affected by localisation
and noise errors. The hit point pi (pink) can ends beyond
(case a)) or before (case b)) the real obstacle, hence only
cells up to pth (blue) are evaluated for a change detection.

Fig. 6: Example of a “non-detected change” measurement
affected by localisation and noise errors. The hit point (pink
dot) cell does not correspond to an occupied cell in M .



(a) (b) (c)

Fig. 7: Last check of “free” cells: (a) A rectangular obstacle
no longer in the real environment, (b) A part of the obstacle
is removed obtaining new “free” cells, (c) The unknown
frontier cells are marked as “occupied” during the last check
to reconstruct the edge.

C. Unchanged Cells Evaluator

The Unchanged Cells Evaluator examines the “non-
detected change” measurements provided by the Beam
classifier. If the “non-detected change” measurement doesn’t
identify an environmental change, then all the map cells
cj ∈ Cpi

associated to zi didn’t change their state with
respect to the initial map M . If this happens, an “unchanged”
flag is added to the buffer of those cells as follows:

1) Occupied cell: Since a change has not been detected
by the Beams Classifier, the cell c(pi) associated to the hit
point pi should be occupied in the map M . However, due to
localisation and noise errors, the measured hit point pi could
actually end up in a free cell in M (Fig.6) that should be
close to occupied ones. Based on such observation, we may
assume that given a “non-detected change” measurement,
there will always be an occupied cell near the one associated
to the hit point. Thus: if state

(
c(pi)

)
= free an “unchanged”

flag is added to the buffers of occupied cells adjacent to c(pi)
(if any). Otherwise, an unchanged flag is added to the buffer
of the cell c(pi).

2) Free cells: Each cell cj ∈ Cpi
\{c(pi)} should be free

in map M . However, due to localisation and noise errors
the hit point pi can end up beyond the obstacle and the
procedure to recognize the “unchanged” cells is similar to
that one described in IV-B.2:

1) Use ray casting to compute the cells that are passed
through by the laser beam;

2) Discard the cells close to the measured hit point.
3) Mark as unchanged the remaining free cells and ignore

the occupied ones.

D. Map Updating

The task of this module is to update the state of each
cell cj ∈ Cpi for all measurements zi, analysing the number
of “changed” flags in each cell buffer Bcj . Let Nb be the
size of the rolling buffers, let ncj ∈

{
0, . . . , Nb

}
be a

variable that counts the occurrences of the flag “changed”
in Bcj . The occupancy state of a map cell cj is switched
from free to occupied, or vice versa, only if ncj is larger
than a given threshold. The threshold is a trade-off between
the likelihood of mistakenly changing cells due to dynamic
objects and the speed of the map update resulting in the speed
of change detection. This threshold is a critical parameter to
be set, with also Nb representing measurement memory. The
bigger it is, the higher the number of flags it can memorise
by remembering old measurements. Thanks to this approach,

highly dynamic objects are first detected as changes in the
measurements but then discarded in the map update since
there are no sufficient “changed” flags in the buffer of
cells interested by the moving object. During this phase,
the “unknown” state for the cells of the initial map M is
taken into account, and the last check on the updated cells is
performed. This analysis is carried out to avoid situations in
which an obstacle is not completely removed from the map,
and therefore the localisation can be affected by the lack of
an edge. These cases can occur in complex environments
with objects very close to each other. For this purpose, for
each new free cell, its adjacent cells are further investigated
in map M , and if they are marked as “unknown”, their state
is changed to “occupied”. A meaningful example of how this
works is represented in Fig.7 where an obstacle is no longer
in the environment, Fig.7a, but only part of the obstacle has
been removed by updating the state of some of the occupied
cells to “free”, Fig.7b. During the further investigation, the
state of the unknown frontier cells are finally updated to
“occupied” and the edge is reconstructed, Fig.7c.

V. EXPERIMENTS

In this section, we present the results of our approach
both in simulation and on real-world data. To provide
a quantitative performance evaluation of the system, we
compared our updated maps with ground-truth ones using
several quantitative metrics. Moreover, we analysed the
localisation errors with and without our updated maps using
the Evo Python Package [26] in the simulation experiments.
The code use to realize the reported experiments can
be found at https://github.com/CentroEPiaggio/lidar based
map updating.

A. Map benchmarking metrics

In this work, we adopted the three following different
metrics to evaluate the quality of our updated map with
respect to the ground truth ones:
1) Cross-correlation (CC) [27]. The Cross-correlation
metric measures the similarity between two maps based on
means of occupancy probabilities of the cells. Let m(q) be
the occupancy probability of the cell that contains the point
q in the map M . The cross-correlation coefficient between
maps M and N , with n cells, is given by:

CC(M,N) = 100

(
⟨MN⟩ − ⟨M⟩ · ⟨N⟩

σ(M) · σ(N)

)
,

where

⟨M⟩ = 1

n

∑
m(q)∈M

m(q), ⟨MN⟩ = 1

n

∑
m(q)∈M
n(q)∈N

(m(q) · n(q))

σ(M) =

√√√√ 1

n

∑
m(q)∈M

(m(q)− ⟨M⟩)2

https://github.com/CentroEPiaggio/lidar_based_map_updating
https://github.com/CentroEPiaggio/lidar_based_map_updating


(a) W1 (b) W2 (c) W3

Fig. 8: Warehouse Gazebo environments.

2) Map score (MS) [27], [28]. The Map score metric
compares two maps on a cell-by-cell basis:

MS(M,N) = 100

(
1− 1

n

∑
m(q)∈M
n(q)∈N

(m(q)− n(q))2

)
, (5)

taking into account only cells that are occupied in at least
one map to avoid favoring the map with large free space.
3) Occupied Picture-Distance-Function (OPDF) [29]. The
Occupied Picture-Distance-Function metric compares the
cells of a map M to the neighbourhood of the corresponding
cells in the other map N and vice versa. The Occupied
Picture-Distance-Function can be computed as:

OPDFas(M,N) = 100

(
1− 1

no · r

no∑
i=1...no

di

)
, (6)

where no is the number of occupied map cells in M ,
di is the minimum between the search space amplitude r
(e.g., a rectangle of width wscpace and height hsspace,
r =

√
wsspace2 + hsspace2) and the Manhattan-distance of

each occupied cell of the first map M to the closest occupied
cell on the second map N . Since the distance function in (6)
is not symmetric, we consider the average of distances from
M to N and from N to M :

OPDF (M,N) =
OPDFas(M,N) +OPDFas(N,M)

2
.

B. Simulation experiments
The simulation experiments were performed on a laptop

with an Intel Core i7-10750HCPU, 16 GB of RAM, and
Ubuntu 18.04. We simulated an industrial warehouse of 290
m2 using the models provided by Amazon Web Services
Robotics [30] to build a world on the Gazebo simulator
[31]. The robot used is the Robotnik XL-Steel platform
equipped with two SICK s300 lidars [32]. We built four
different versions of the same environment by increasing the
changes to simulate how the placement of goods within a
warehouse can change over time. Due to space constraints,
we have omitted the last world simulation since we obtained
similar results and would therefore be redundant. In the first
environment W1, Fig. 8a, the robot was tele-operated to
build an adequate initial map M1. In the other environments,
reported in Fig.s 8b, 8c, with environments Wi, i ∈ {2, 3}
respectively, the robot autonomously performed the same
predefined trajectory simulating a material transport in the

warehouse. In each scenario Wi, with i ∈ {2, 3}, the
robot used the map Mi−1 as the initial map to localise
itself, and generated the updated map Mi with the proposed
updating method. To evaluate the quality of the method a
ground-truth maps Gi for each runi with i ∈ {1, 2, 3} has
been obtained with Slam Toolbox. Adaptive Monte Carlo
Localisation (AMCL) [33] from ROS have been used for
robot localisation. It is worth noting that, the same map use-
and-update approach and the evaluation metrics have been
used for a car parking scenario with humans; outcomes are
visible in the multimedia material and not reported here for
space limitations. Finally, an experiment on a real robot have
been performed to test the updating map method during
navigation in a partially-mapped place.

1) Updating Performance: The first map M1 related to
W1 and the planned trajectory are reported in Fig. 96

Fig. 9: Autonomous trajectory path (blue) in first map M1

(a) Ground truth. (b) Proposed Approach.

Fig. 10: Map comparisons

W2 W3
M1/G2 M2/G2 M1/G3 M3/G3

CC (%) 45.05 69.26 31.78 60.61
MS (%) 48.35 70.66 36.66 61.70

OPDF (%) 66.08 95.64 53.25 91.32

TABLE I: Quantitative maps evaluation.
A qualitative result of our updating method is depicted

in Fig.10 comparing ground-truth maps Gi, i ∈ {2, 3} and
corresponding updated maps Mi, i ∈ {2, 3}. Objects detected
in the first world and still present in the following ones
contain “unknown” states cells (in grey), while obstacles
added in subsequent worlds and not present in previous ones
contain free cells (in white). Indeed, since they are related
to objects’ internal parts, they are physically undetectable
by the robot’s lidar. Hence, we didn’t consider updating
those cells relevant for autonomous navigation purposes.
It is worth noting how obstacles no more present in the
environment have been entirely removed in the updated

6Maps have all dimension 13,95mx20,9m with 5 cm of resolution.



Fig. 11: Estimated AMCL pose comparison in W3. Blue
localisation with M1, green with last updated map, dashed
ground truth

maps. This qualitative comparison shows that our method
detects environmental changes, and each provided map
reflects the configuration during the simulation. Table I
shows the quantitative results obtained by comparing both
the initial map M1 and our updated maps Mi, i ∈ {2, 3}
with respect to the ground-truth maps Gi, i ∈ {2, 3} using
the metrics described in V-A where a 100% score is a full
correspondence of the two maps. A map comparison between
Mi−1 and Gi is performed to quantify differences between
current and previous environment (first column for each Wi).
According to each metric, the updated map Mi is always
better than the initial map Mi−1 of the run when compared
with the ground-truth. However, as shown in the second
column of each Wi, the first two metrics are affected by not
having updated the obstacles internal cells, while this does
not affect the third metric that reports more truthful results.
It is important to underline that the robot predefined
trajectory is not intended to explore the warehouse area but
only to transport material in it and hence measurements can
miss changes in the environment that are not visible along
the robot displacement.

2) Localisation Performance: To evaluate improvements
in localisation performance thanks to the use of updated
maps, we compared the AMCL pose estimate based on
both the initial map M1 and the last available updated map
with the reference ground truth obtained from the simulator.
Fig. 11 shows the comparison between the three trajectories
in W3: the trajectory performed based on localisation with
map M1 is in blue, the one obtained with map M2 is in green
while the ground truth is the dashed line. As expected, using
an updated map, the localisation error is greatly reduced.
On the other hand, employing an outdated map, the robot
has bumped into some objects. Quantitative results of the
localisation performance are reported in Tab. II where as
shown in the second line the localisation is drastically
improved thanks to the use of the updated map M2.

Max Mean Median Min RMSE SSS Std

W3
M1 1.05 0.31 0.08 0.03 0.50 113.90 0.35
M2 0.12 0.05 0.05 0.03 0.05 1.57 0.01

TABLE II: Localisation Performance comparison in W3

using both the initial map M1 and the last updated map
M2. RMSE = Root Mean Square Error, SSS = Sum Squared
Error

3) Hardware Resource Consumption: In this paragraph,
we report the hardware resources in terms of CPU percentage
and memory MB usage (computed through the ROS

(a) CPU Usage (b) Memory Usage

Fig. 12: Resource Consumption

package “cpu monitor”7 in the map updating and localisation
phases. Fig. 12a shows the percentage of CPU used while
Fig. 12b the one of memory usage for the map update.
The computational load is mainly due to the laser scan
measurements processing and it can be reduced by discarding
some range measurements from the processed laser scan. The
memory usage depends on the number of changed cells and
the size Nb of the buffers. Thus, the size of the environment
determines an upper bound on the required memory. In the
considered scenario and with a buffer size of 10, if all the
cells changed their state the memory usage would be at
most 150 MB. Thus, the proposed memory-limited solution
is suitable for life-long operation scenarios.

C. Real Experiments

To demonstrate the real-world applicability of the
proposed method, we conducted a set of experiments in the
lab, Fig. 1a, with a Summit-XL-Steel mobile platform with
two 2D-LIDAR Hokuyo-UST-20LX. We reproduced four
different environments with changes in obstacles position.
Due to space contraints, we have omitted the last scenario
since we obtained similar results and would therefore be
redundant. The testing environment is approximately 80
m2. The robot built the initial map M1 (Fig. 1b) and the
ground-truth ones Gi, i ∈ {2, 3} (Fig. 13a) where obtained
through Slam Toolbox during a tele-operation navigation
at 0, 15m/s. To test our algorithm and equally compare
the data in the different worlds, bag files with registered
sensor measurements and odometry topics during the robot
navigation have been used. Performance on map update and
hardware resource consumption have been quantified as in
the simulations. For the localisation performance, since no
ground-truth external tracking system was available, it was
not possible to provide valid and scientifically acceptable
localisation performance results.

1) Updating Performance: The qualitative and
quantitative results are shown in Figure 138 and Table III.
Considerations in Sub-section V-B.1 regarding the metrics
results are still valid here. However, even in the case of
noisy real data, with greater localisation errors, the proposed
method always produces updated maps that are better than
the initial one by comparing them with ground truths and
showing to be able to remove and add obstacles in real time
without shifting or removing the walls.

7cpu monitor, https://github.com/alspitz/cpu monitor
8Maps have all dimension 10,5mx8,55m with 5 cm of resolution.

https://github.com/alspitz/cpu_monitor


(a) Ground truth. (b) Proposed Approach.

Fig. 13: Map comparisons

W2 W3
M1/G2 M2/G2 M1/G3 M3/G3

CC (%) 69.69 75.98 63.77 68.80
MS (%) 54.63 64.53 51.44 57.36

OPDF (%) 84.61 95.05 78.92 90.77

TABLE III: Quantitative maps evaluation.

2) Hardware Resource Consumption: The CPU and
memory usage are lower respectively from 15% to 5% and
from 55-58Mb to 51-54Mb with respect to the simulated
environments because of the decrease in no. of updated cells
since the real environment is smaller than the simulated one.

VI. CONCLUSIONS

In this paper, we proposed a method based on occupancy
grid maps to deal with dynamic environments for long term
operations. The goal was to update the map robustly with
respect to localisation and measurement errors, neglecting
humans, and limiting memory storage. The approach has
been tested in simulation and with real world experiments.
The updated maps do not show signs of drift or inconsistency
even when the localisation error is relatively large, moreover
they reflect the environment configuration and increase the
AMCL localisation performance in simulations. In both cases
memory storage has been shown to be limited. As future
work, we plan to validate the localization performance in a
real environment with an external tracking system.

REFERENCES

[1] T. A. Styleintelligence, “Market report: Agv &
amr robotics 2021,” 2021, november 2021. [Online].
Available: https://www.styleintelligence.com/collections/the-reports/
products/agv-amr-robotics-2021

[2] T. Chong, et al., “Sensor technologies and simultaneous localization
and mapping (slam),” Procedia Computer Science, vol. 76, pp. 174–
179, 2015.

[3] M. Dymczyk, et al., “Map summarization for tractable lifelong
mapping,” in RSS Workshop, 2016.

[4] D. Meyer-Delius, et al., “Temporary maps for robust localization in
semi-static environments,” in 2010 IEEE/RSJ Int. Conf. Intell. Robots
Syst. IEEE, 2010, pp. 5750–5755.

[5] F. Abrate, et al., “Map updating in dynamic environments,” in ISR
2010 (41st International Symposium on Robotics) and ROBOTIK 2010
(6th German Conference on Robotics). VDE, 2010, pp. 1–8.

[6] M. Quigley, et al., “Ros: an open-source robot operating system,”
vol. 3, 01 2009.

[7] F. Amigoni, et al., “A standard for map data representation: Ieee
1873-2015 facilitates interoperability between robots,” IEEE Robotics
Automation Magazine, vol. 25, no. 1, pp. 65–76, 2018.

[8] S. Thrun, et al., Probabilistic robotics. Cambridge, Mass.: MIT Press,
2005.

[9] R. Tellez, “Top 10 ros-based robotics companies in 2019,” 2019,
july 22, 2019. [Online]. Available: https://www.therobotreport.com/
top-10-ros-based-robotics-companies-2019/

[10] G. Grisetti, et al., “Improved techniques for grid mapping with rao-
blackwellized particle filters,” IEEE transactions on Robotics, vol. 23,
no. 1, pp. 34–46, 2007.

[11] S. Kohlbrecher, et al., “A flexible and scalable slam system with full
3d motion estimation,” in Proc. IEEE Int. Symp. Saf. Secur. Rescue
Robot.(SSRR). IEEE, November 2011.

[12] S. Macenski and I. Jambrecic, “Slam toolbox: Slam for the dynamic
world,” J. Open Source Softw., vol. 6, no. 61, p. 2783, 2021. [Online].
Available: https://doi.org/10.21105/joss.02783

[13] S. Thrun, “Robotic mapping: a survey,” 2003.
[14] D. Meyer-Delius, et al., “Occupancy grid models for robot mapping

in changing environments,” in AAAI, 2012.
[15] Q. Baig, et al., “A robust motion detection technique for dynamic

environment monitoring: A framework for grid-based monitoring of
the dynamic environment,” IEEE Robot. Autom. Mag., vol. 21, no. 1,
pp. 40–48, 2014.

[16] D. Nuss, et al., “A random finite set approach for dynamic occupancy
grid maps with real-time application,” The Int. J. Rob. Res., vol. 37,
no. 8, pp. 841–866, 2018.

[17] J. Huang, et al., “An online multi-lidar dynamic occupancy mapping
method,” in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2019, pp. 517–522.

[18] A. Llamazares, et al., “Detection and tracking of moving obstacles
(datmo): A review,” Robotica, vol. 38, no. 5, p. 761–774, 2020.

[19] P. Biber and T. Duckett, “Dynamic maps for long-term operation of
mobile service robots,” in Robotics: Science and Systems, 2005.

[20] N. Banerjee, et al., “Lifelong mapping using adaptive local maps,” in
2019 European Conference on Mobile Robots (ECMR). IEEE, 2019,
pp. 1–8.

[21] M. L. Pitschl and M. W. Pryor, “Obstacle persistent adaptive map
maintenance for autonomous mobile robots using spatio-temporal
reasoning*,” in 2019 IEEE 15th Int. Conf. Autom. Sci. Eng.(CASE),
2019, pp. 1023–1028.

[22] G. Tsamis, et al., “Towards life-long mapping of dynamic
environments using temporal persistence modeling,” in 2020 25th
International Conference on Pattern Recognition (ICPR), 2021, pp.
10 480–10 485.

[23] M. T. Lázaro, et al., “Efficient long-term mapping in dynamic
environments,” in 2018 IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS). IEEE, 2018, pp. 153–160.

[24] M. Zhao, et al., “A general framework for lifelong localization and
mapping in changing environment,” in 2021 IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS). IEEE, 2021, pp. 3305–3312.

[25] J. Amanatides and A. Woo, “A fast voxel traversal algorithm for ray
tracing,” Proceedings of EuroGraphics, vol. 87, 08 1987.

[26] M. Grupp, “evo: Python package for the evaluation of odometry and
slam.” https://github.com/MichaelGrupp/evo, 2017.

[27] O. Sullivan, “An empirical evaluation of map building methodologies
in mobile robotics using the feature prediction sonar noise filter and
metric grid map benchmarking suite,” Master’s thesis, University of
Limerick, 2003.

[28] M. C. Martin and H. P. Moravec, “Robot evidence grids.” Carnegie-
Mellon Univ Pittsburgh Pa Robotics Inst, Tech. Rep., 1996.

[29] K. Baizid, et al., “Vector maps: A lightweight and accurate map format
for multi-robot systems,” in Int. Conf. Intell. Robots Syst. Springer,
2016, pp. 418–429.

[30] A. W. S. Robotics, “aws-robomaker-small-house-world,” https://
github.com/aws-robotics/aws-robomaker-small-house-world.

[31] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IEEE Cat. No.04CH37566), vol. 3, 2004, pp. 2149–2154.

[32] RobotnikAutomation, “Robotnik xl-steel simulator,” https://github.
com/RobotnikAutomation/summit xl sim.

[33] D. Fox, et al., “Monte carlo localization: Efficient position estimation
for mobile robots,” 01 1999, pp. 343–349.

View publication stats

https://www.styleintelligence.com/collections/the-reports/products/agv-amr-robotics-2021
https://www.styleintelligence.com/collections/the-reports/products/agv-amr-robotics-2021
https://www.therobotreport.com/top-10-ros-based-robotics-companies-2019/
https://www.therobotreport.com/top-10-ros-based-robotics-companies-2019/
https://doi.org/10.21105/joss.02783
https://github.com/MichaelGrupp/evo
https://github.com/aws-robotics/aws-robomaker-small-house-world
https://github.com/aws-robotics/aws-robomaker-small-house-world
https://github.com/RobotnikAutomation/summit_xl_sim
https://github.com/RobotnikAutomation/summit_xl_sim
https://www.researchgate.net/publication/362067800

	INTRODUCTION
	RELATED WORKS
	NOTATIONS AND BASIC CONCEPTS
	MAP UPDATE METHOD
	Beams Classifier
	Changed Cells Evaluator
	New obstacles detection
	Detection of obstacles removal

	Unchanged Cells Evaluator
	Occupied cell
	Free cells

	Map Updating

	EXPERIMENTS
	Map benchmarking metrics
	Simulation experiments
	Updating Performance
	Localisation Performance
	Hardware Resource Consumption

	Real Experiments
	Updating Performance
	Hardware Resource Consumption


	CONCLUSIONS
	References

