
High-Level Planning for Object Manipulation with Multi Heterogeneous
Robots in Shared Environments

Alessandro Palleschi∗, George Jose Pollayil∗, Mathew Jose Pollayil∗, Manolo Garabini∗, Lucia Pallottino∗

Abstract— Multi-robot systems are becoming increasingly
popular in warehouses and factories, since they potentially
enable the development of more versatile and robust systems
than single robots. Multiple robots allow performing complex
tasks with greater efficiency. However, this leads to increased
complexity in planning and dispatching actions to robots. In
this paper, we tackle such complexity using a hierarchical
planning framework: the task is first planned at an abstract
level and then refined by local motion planning. We propose
a framework based on a state-transition system formalism
that abstracts the problem by removing unnecessary details
and, hence, considerably reduces planning space complexity.
Forward search from an initial state allows the robot to find
a sequence of actions to accomplish the assigned task. These
actions can be planned at a lower level employing any motion
planning technique available in the literature. The proposed
method is validated through experiments in several operating
conditions and scenarios.

I. INTRODUCTION

The surge in e-commerce demands and the Industry
4.0 revolution are changing warehouses towards increasing
automation [1]. This will promote multiple heterogeneous
robots being employed in the same warehouse to increase
performance in tasks, such as handling and moving goods.
When deploying multi-robot systems, guaranteeing efficient
operations requires the ability to plan, coordinate, and
dispatch actions so as to accomplish desired goals. Such a
class of problems is known as task and motion planning
(TAMP) [2] and involves planning operations for robots
sharing the same environment while interacting with objects.

A major challenge in TAMP lies in the high complexity
of the planning problem itself. Indeed, traditional motion
planning techniques, such as the ones relying on random-
sampling-based algorithms or constrained optimizations [3],
struggle when the planning space has to be augmented to
include the state of several robots and of other objects in
the environment [2]. Some authors try to overcome the
complexity of the problem by exploiting its modal structure
[4]: feasible changes belong to submanifolds of the full space
(the modes). This leads to the definition of a hybrid search
problem. At first, a sequence of discrete modes is planned.
Then, a continuous set of mode parameters and motion paths
to connect the different modes are found [5].

This work has received funding from the European Union’s Horizon 2020
research and innovation program under agreements no. 73273 (ILIAD) and
no. 101017274 (DARKO), and from the Italian Ministry of Education and
Research (MIUR) in the framework of the CrossLab project (Departments
of Excellence).

∗Centro di Ricerca E. Piaggio and Dipartimento di Ingegneria
dell’Informazione, Università di Pisa, Largo Lucio Lazzarino 1, Pisa,
Italy {alessandro.palleschi, georgejose.pollayil,
mathewjose.pollayil}@phd.unipi.it,
manolo.garabini@gmail.com, lucia.pallottino@unipi.it

Corresponding author: Alessandro Palleschi

Research in TAMP also tries to integrate artificial
intelligence (AI) approaches into robotic motion and multi-
modal planning, since they can efficiently carry out task
planning in large discrete spaces [6], [7].

Classical task planning has been exploited in manipulation
planning for single robots: e.g., see [8]. Such approaches
do not easily extend to multi-robot setup. A possible
solution is shown in [9], which presents a TAMP
method for heterogeneous multi-robot systems dedicated to
transportation-like tasks. Other works focus on bridging
high-level task planning and control. For instance, [10]
divides manipulation tasks into sequences of sub-tasks
using contact as the core element to build a contact
graph, but it considers only manipulators. In [11],
an autonomous manipulation framework for multi-robot
planning is presented. It uses a semantic graph, where nodes
derive from a discretization of grasp poses and workspaces,
and arcs represent elementary actions that the robots can
perform. However, a limiting assumption is that objects can
be successfully grasped in order to be moved, which might
not always be the case, e.g., for heavy or bulky objects that
need to be pushed or pulled [12] or when direct grasping
is hindered by environmental constraints [13]. Nonetheless,
there are still many challenges to be faced when dealing with
the different levels of abstractions and devising solutions to
effectively pass information among them [14].

In this paper, we propose a framework for object
manipulation planning with a team of multi heterogeneous
robots. It is based on a multi-level structure that
decomposes the problem over several levels of abstractions.
We characterize the planning domain using an abstract
representation of the world in which the robots are working.
A formalization of this level through a state-transition system
and a set of basic entities is presented. These entities
model the states of the objects-agents system and the
admissible actions so that the proposed high-level structure
is both scenario and platform independent. Our approach
autonomously generates a high-level plan to move the goods
to the desired locations, combining the skills of the robots.
The plan is then passed to the lower levels for refinement and
execution. We propose a flexible structure that does not make
any assumption nor has specific requirements on the class of
search or planning algorithms used for the different levels of
the hierarchy. In addition, we also propose interfaces between
the highest abstract layer and the lower levels, to handle
possible feasibility issues and failures, eventually finding
alternative high-level plans with backtracking strategies. The
framework has been tested through experiments on three
different multi-robot systems.

II. PLANNING DOMAIN

We wish to address high-level task planning for multi-
robot objects manipulation: i.e. to find the sequence in
which the robots should be used, which actions they should
perform, and in which areas the actions should take place to
move each object to the specified locations.

We model the problem through a state-transition system

Σ = ⟨States, Actions, ϕ⟩, (1)

where, States is a representation of the system composed
by objects and robots, Actions represents the finite set of
actions that can be performed by the robots on the objects,
and ϕ is a state-transition function.

The States representation is carried out by modeling
a set of entities, and their specific properties, which are
used for planning purposes. To formalize the state-transition
system (1), three finite sets are introduced and defined in the
remainder of the section:

• E: a set of entities with the associated mathematical
constants to represent their properties;

• Ψ: a set of rigid relations between the entities
representing the constant properties of the system;

• Ξ: a set of state variables representing the changing
properties of the system;

In this work, we use the classical planning assumptions
provided in [6]: i) the environment is finite and static: the
sets of states and actions are finite, and changes occur only in
response to specific actions; ii) there is no specific model of
time; iii) the system is deterministic, i.e., the state produced
by applying a particular action in a given state is predictable
and known.

Entities: For the problem of manipulating objects with
multi-robot systems, we define three basic entities: Objects,
Agents, and Sectors.

1) Objects: a set O of objects that can be moved by means
of manipulation actions.

2) Agents: a set A of autonomous systems and parts
of the environment that can be exploited for manipulating
the objects. We classify the agents in A into robot,
transport, and passive surface. The class robot represents
the typical autonomous manipulation systems such as robotic
manipulators (with both fixed or mobile base). The class
transport includes mobile devices, such as AGVs or
conveyor belts, that can be used to move and transport
the object, or even surfaces such as pallets. The class
passive surface contains surfaces that can be exploited as
statically stable support during object manipulation

It is noteworthy that, unlike robot agents, transport
agents are not able to directly transfer an object from/to
another agent. Moreover, passive surfaces can only be used
as support for an object while performing hand-off operations
or non-prehensile manipulations, e.g., pushing, tilting, or top
sliding. This type of agent cannot move an object by itself.

Given the three types of agents, the following subsets of
A can be defined: R = {a ∈ A | a = robot}, T = {a ∈
A | a = transport}, P = {a ∈ A | a = passive surface}.

3) Sectors: a set S of regions in which the agents
operate. A sector σ ∈ S is an area of the global workspace
in which a given subset of the agents can work and interact
with an object. In summary, while the agents model the
entities that can interact with each other and with the objects,
sectors model the areas in which interactions can occur.

Having defined the above basic entities, the set E of the
entities is defined as E = O ∪ R ∪ T ∪ P ∪ S ∪ {null}.

It is worth remarking that an exhaustive definition of the
entities is crucial for the planning problem to be well-posed.
It is good practice to define as passive surface any planar
surface that is reachable by at least one robot, while the
sectors should cover any part of the working area that is
reachable by at least one robot or transfer agent. Thus, any
area where object manipulation is possible is included into
the state space.

Rigid Relations: Given the entities E, we introduce the
following rigid relations among them:
A) Adjacency: spatial adjacency relation between ordered

pairs of sectors. Adjacent sectors are in adj ⊆ S ×S ;
B) Reachability: the reachability relation is between a

sector σi ∈ S and a transport agent or a robot
that can reach σi. Entities in reachability relation are
in canAct ⊆ {(a, σ)|a ∈ {R ∪ T }, σ ∈ S };

C) Stability: the stability relation is between a set of agents
A ⊆ A and an object, that can be statically supported
when in contact with agents in A. Entities in stability
relation are in stable ⊆ {O ×A|A ⊆ A , A ̸= ∅};

D) Transportability: the transportability relation is
between a passive surface and a transport agent,
that can move the surface, e.g., an automated forklift
moving a pallet. Entities in transportability relation are
in canMove ⊆ {T × P} ∪ {null}.

Finally, the overall set of rigid relations is defined as Ψ =
{adj, canAct, stable, canMove}.

State Variables: The state variables formally describe
the present condition of the system, specifying the contacts
between the objects and the agents and the sectors in which
they are currently located

• hold[a] ⊆ O∅: the set of objects o ∈ O that are in
contact with the agent a ∈ A ;

• onA[o] ⊆ A : the set of agents a ∈ A in contact with
the object o ∈ O;

• load[t] ∈ P∅: the passive surface p ∈ P loaded on
the transport agent t ∈ T ;

• onT[p] ∈ T∅: the transport agent t ∈ T on which the
passive surface p ∈ P is loaded;

• at[o] ∈ S : the location σ ∈ S of each object o ∈ O;
• at[a] ∈ S : the location σ ∈ S of each agent a ∈ A ;

where S∅ ≡ S ∪ {null}.
Thus, the state variables are:

Ξ = {hold[a], onA[o], load[t], onT[p], at[a], at[o]

| a ∈ A , t ∈ T , p ∈ P, o ∈ O}.
(2)

For taming the complexity, we assume that a robot can only
contact one object at a time; therefore hold[r] = o if the
robot r ∈ R is in contact with the object o ∈ O , otherwise
hold[r] = {null}. Instead, we allow passive surfaces and

TABLE I
ACTION DEFINITIONS FOR THE PROPOSED PLANNING DOMAIN.

name moveF moveP moveOnP moveH

ent (a, σ) ∈ A ×S (p, t) ∈P × T , σ ∈ S o ∈ O, (R, p) ∈ ℘(R)×P, σ ∈ S o ∈ O , (A, σ) ∈ ℘(A)×S

pre

adj(at[a], σ)
canAct(a, σ)
hold[a] = null
at[a] ̸= σ
a /∈P

adj(at[p], σ)
canAct(t, σ)
onT[p] = t
hold[p] = hold[t] = null
at[t] ̸= σ, σ /∈ at[p]

canAct(R, σ)
σ ∈ at[p]
onA[o] = {R, p}
hold[r] = o∀r ∈ R
at[r] = at[o] ̸= σ ∀r ∈ R

adj(at[o], σ)
canAct(a, σ) ∀a ∈ A
onA[o] = A
hold[a] = o ∀a ∈ A
at[a] = at[o] ̸= σ ∀a ∈ A

eff at[a]← σ at[t],at[p]← σ at[r],at[o]← σ at[o],at[r]← σ ∀r ∈ R

name transport transportOnP pickFromP pickFromT loadP

ent
t ∈ T
σ ∈ S

(p, t) ∈P × T
σ ∈ S

o ∈ O
(p,R) ∈P × ℘(R)

o ∈ O
(t, R) ∈ T × ℘(R)

p ∈P
t ∈ T

pre
canAct(t, σ)
hold[t] ̸= null
at[t] ̸= σ

canAct(t, σ)
hold[p] ̸= null
hold[t] = null
onT[p] = t
at[t] ̸= σ, σ /∈ at[p]

hold[p] = o
hold[r] = o∀r ∈ R
isStable(o,onA[o] \ {p})

hold[t] = o
hold[r] = o∀r ∈ R
isStable(o,onA[o] \ {t})

at[p] = at[t]
hold[t] = null
load[t] = null
onT[p] = null

eff
at[t]← σ
at[oi]← σ ∀oi ∈ hold[t]

at[t],at[p]← σ
at[oi]← σ ∀oi ∈ hold[p]

hold[p]← hold[p] \ {o}
onA[o]← onA[o] \ {p}

hold[t]← hold[t] \ {o}
onA[o]← onA[o] \ {t}

load[t]← p
onT[p]← t

name placeOnP placeOnT positionR removeR unloadP

ent
o ∈ O
(p,R) ∈P × ℘(R)

o ∈ O
(t, R) ∈ T × ℘(R)

o ∈ O
r ∈ R

o ∈ O
r ∈ R

p ∈P
t ∈ T

pre

hold[r] = o∀r ∈ R
at[r] ∈ at[p] ∀r ∈ R
onA[o] ∩P = null
onA[o] ∩ T = null

hold[r] = o ∀r ∈ R
at[t] = at[r] ∀r ∈ R
o /∈ hold[t]
onA[o] ∩P = null
onA[o] ∩ T = null

hold[r] = null
r /∈ onA[o]
at[o] = at[r]

hold[r] = o
r ∈ onA[o]
isStable(o,onA[o] \ {r})

onT[p] = t

eff
hold[p]← hold[p] ∪ o
onA[o]← p

hold[t]← hold[t] ∪ o
onA[o]← t

hold[r]← o
onA[o]← onA[o] ∪ r

hold[r]← null
onA[o]← onA[o] \ {r} load[t]← null

We have used the notation S(x) to indicate x ∈ S and ℘(S) for the powerset of S

transport agents to be in contact with multiple objects.
Hence, the variables hold[p] and hold[t] are the lists, possibly
empty, of objects in contact with a passive surface agent
p ∈ P and a transport agent t ∈ T , respectively. On the
other hand, an object needs to be in contact with at least
an agent to be statically stable. Thus, onA[o] is the non-
empty list of agents that are in contact with an object o. The
variable onT[p] is the transport agent t ∈ T , if any, that is
holding the passive p. Finally, the state variables at[·] gives
the current location of objects and agents.

To summarize, a state of our system represents a
particular configuration of the objects and agents in which
each object o is in contact with a subset of the agents in a
sector σ.

Actions and State-Transition Function: The set Actions
in (1) is a representation of the finite set of actions that can
be performed by the agents in A on the objects in O .

Action models can be derived using action templates [6].
An action template for States can be defined as a tuple
α = ⟨name, ent, pre, eff⟩. Here, name is the name of the
action and ent ∈ E is a set of entities involved in the action.
The preconditions pre are a set of conditions that must be
verified for the action to be applicable. Finally, the predicted
outcome of the action is specified by the effect eff , e.g.,
the state variables that are affected by the action and their
newly assigned values. The state resulting from an action
can be computed using the state-transition function ϕ(s, ν).
This function takes as inputs a state s and the action ν, and
checks the preconditions in pre for the parameters in ent. If
pre are verified, ϕ outputs a new state specified by eff .

For our problem the list of actions that captures the
basic object handling capabilities for a large class of multi

heterogeneous robot systems is the following:

• moveF: Move an agent, being it a robot or a transport
agent, that is not holding an object.

• moveP: Move a passive surface (with the aid of a
transport agent) that is not holding an object.

• moveH: Move an object while it is held by an agent (or
a group of agents).

• moveOnP: Move an object on a passive surface with
the aid of a robot in such a way that contact with the
surface is maintained.

• transport: Transport an object while it is placed on a
transport agent.

• transportOnP: Transport an object while it is on a
passive surface with the aid of a transport agent.

• pickFromP/pickFromT-placeOnP/placeOnP:
Pick/place an object from/on a passive surface or
a transport agent.

• positionR/removeR: Position/remove contacts of a robot
with an object.

• loadP/unloadP: Load/Unload a passive surface with a
transport agent.

Table I provides the formal definitions of the fields of the
template α for the above basic actions. It is also possible to
associate a cost to each action. This would clearly depend
on the particular action and the entities involved.

Planning problem: Having defined all the components of
our planning domain Σ in (1), the task planning problem
P is defined as a triple ⟨Σ, s0, Gs⟩, where s0 ∈ States is
the initial state of the system, and Gs ⊆ States represents
the set of goal states. The solution of P is a task plan, i.e., a
finite sequence of actions π = {ν1, . . . , νN}, applicable from
s0 and such that ϕ(s0, π) ∈ Gs. We recall that a sequence

of actions is said to be applicable in a generic state s if
there exists a finite sequence of states {s0, . . . , sN} such
that ϕ(si−1, νi) = si for i = 1, . . . , N [6]. The initial state
s0 needs to be identified from the scenario by means of
lower level sensing, or might even be given as an input by a
human operator. Now, given a set of final desired positions
of the objects to be moved, there are multiple approaches
that can be pursued to choose the goal set Gs. A simple
choice would be to set Gs as the subset of States such that
the locations of the objects are in the required sectors, i.e.,
at[o] ∈ SGs ⊆ S .

III. TASK PLANNING AND EXECUTION

In this section, we first describe how the planning problem
P, presented in Sec. II-.3, can be solved in order to
find a high-level plan π for the multi-robot system. Then,
considerations on how to relate the plan π to motion planning
and low-level control, are reported.

Task Planning: A straightforward approach to solve P is
to use state-space search. We focus our attention on forward-
search of which many deterministic implementations exist
[15]. These can be broadly categorized into two classes:
uninformed methods, such as breadth-first or Uniform Cost
Search, do not consider any prior information on the goal
location; heuristic-based methods, such as A* or greedy best-
first, exploit a heuristic function h(s) to guide the search by
selecting the most promising states.

In general, if optimality is not required, a valid solution
might be to use a greedy best-first method. Instead, if optimal
solutions are needed, it might be better to employ A*-like
algorithms. Note that one can either use optimality to obtain
plans with minimum number of actions or consider different
costs for each action and state. Costs can take into account
several aspects, such as energy consumption, robustness of
manipulation, and physical properties of the object. The
specific choice for the search algorithm will influence the
retrieved plan, in terms of number of actions and used agents.

Simultaneous actions: In this work, we are implicitly
constraining only one agent to take an action at each
step. Even though this approach has the advantage of
reducing planning complexity, the solutions found do not
allow concurrent execution of actions typical of multi-robot
systems. A possible way to lift this constraint is to allow each
agent to execute at most one action at each step. Clearly,
it should be ensured that the combinations of simultaneous
actions are not in conflict, i.e., the preconditions of an action
νj executed by an agent ai are not violated by the effects of
a simultaneous action νk by an agent ah, and vice versa.

This can be achieved by augmenting the set of actions to
include all possible combinations of feasible simultaneous
actions. The preconditions, entities, and effects of these new
actions would be the union of the preconditions, entities, and
effects of each action, while the cost could be the sum of
the single costs. Another approach is to inspect the plan π
returned by the planner so as to identify sequences of actions
that can be executed simultaneously. As stated previously,
these can be identified by checking the preconditions and
effects of consecutive actions so as to find the ones that can
be executed concurrently.

Plan Refinement: Once the employed state-space search
algorithm has solved the planning problem, the solution π
will be a sequence of symbolic actions, as those presented in
Table I, that the agents should execute to achieve a desired
goal. These high-level actions should be passed to lower-
level solvers to actually plan the motion of the robots.

While the presented high-level framework retrieves long-
horizon plans, the other levels of the hierarchy will deal, on
shorter horizons, with all the low-level constraints, which
cannot be considered at an abstract level. Examples are
the presence of possible obstacles, the characteristics of
the robots and their kinematics. Indeed, w.r.t. the classic
formalism, in TAMP the actions template is augmented to
include continuous parameters and a set of constraints on
them that specify whether a certain transition is feasible
[2]. These parameters and constraints are not explicitly
reported for the sake of space. For instance, the initial
and goal configurations of the robots and the trajectories
connecting them should be continuous and collision-free, or
fulfill kinematic constraints if the robots are in contact with
objects. These can be found by solving constraint satisfaction
problems (CSP) [2], or with learning methods [16]. Even
though the development of an integrated framework for task
and motion planning (TAMP) is beyond the scope of this
paper, hereafter, we present some considerations on how
the symbolic actions in π can be planned at lower levels.
We use the sequencing first approach, in which a complete
plan skeleton π is first found by our high-level framework,
and then this sequence of actions is passed to lower-level
solvers for execution. The plan π is decomposed into a
series of subplans π = {π0, . . . , πL−1} that are planned
and then executed. Each subplan is associated to the relative
subsequence of actions πi = {νi1, . . . , νiNi

} and the relative
subset of states States(πi) = {si0, . . . , siNi

}, where si0 ≡
si−1
Ni−1

∀i = 0, . . . L− 1.
In general, low values of L correspond to longer planning

horizon and longer (w.r.t the size of the overall plan) sub-
sequences of actions to be planned and executed. This could
raise the computational effort and planning times. Besides, a
higher number of L corresponds to shorter action sequences
that might be faster to be processed by the lower-level
solvers. However, these local solutions are unaware of the
rest of the plan, and the chance of ending up in configurations
affecting the feasibility of the next subplans increases.

We propose the following procedure to decompose π
into subplans. Starting from the first action ν1, inspect the
actions νi of π until a νf equal to placeOnP, placeOnT, or
removeR is found. Then, search the remaining actions until
a νf+j different from a removeR is found, or the plan is
terminated. These are actions where an object is placed on a
passive surface - e.g., for regrasping - or on a mobile base -
e.g., to move it to another sector - and all the agents that will
not be used for the following manipulations are removed. The
resulting states are good candidates for separation between
subplans. Thus, the set of actions {ν1, . . . , νf , . . . , νf+j} is
the first subplan π0. The next ones are constructed iterating
the same procedure from νf+j+1.

The lower planning of a subplan πi starts only when
the previous subplan πi−1 has been planned and correctly

Algorithm 1 Backtracking Procedure
1: procedure BACKTRACKING(sik−1, s

i
Ni

, νi
k,method)

2: curr_state← sik−1, plan← ∅
3: actions← curr_state.applicable_actions \ {νi

k}
4: while true do
5: if curr_state = siNi

then
6: return plan
7: if not actions then
8: return NONE
9: action← choose_action(actions,method)

10: plan.append(action)
11: curr_state← predict_state(curr_state, action)
12: actions← curr_state.applicable_actions

Algorithm 2 Replanning Procedure
1: procedure REPLAN(si0, siNi

, Gs,method)
2: curr_state← si0, plan← ∅
3: siNi

.applicable_actions← ∅
4: while true do
5: if curr_state ∈ Gs then
6: return plan
7: actions← curr_state.applicable_actions
8: if not actions then
9: return NONE

10: action← choose_action(actions,method)
11: plan.append(action)
12: curr_state← predict_state(curr_state, action)

executed. However, it might not be always possible to convert
every high-level subplan into feasible low-level solutions or a
feasible solution might not be correctly executed by an agent.
We will denote these two different scenarios as planning
failures and execution failures, respectively. In the following,
we discuss some solutions to recover from such failures.

Planning Failures: This type of failure occurs when one
of the low-level planners finds a generic action νij ∈ πi to
be unfeasible. In this case, we implement a backtracking
strategy (Algorithm 1), as common for other top-down
approaches [17], to find an alternative sequence of high-
level actions. More in detail, after identifying the unfeasible
action νij and the previous state sij−1, our high-level planning
module is invoked to find an alternative sequence of actions
connecting the last feasible state and the final state (sij−1

and siNi
) associated to πi. To avoid ending up with a plan

equal to πi, the search is executed removing νij from the
admissible actions when in sij−1. If such a sequence exists,
it is appended to the feasible part of the plan πi, and the
new subplan π̃i is sent to the low-level planners.

If it does not exist, we mark the action νij−1 as unfeasible
(since it would lead only to unfeasible paths). Hence, we
perform the same backtracking procedure starting with sij−2

as initial node and siNi
as goal and removing νij−1 from

the admissible actions from sij−2. Backtracking is performed
until a feasible subplan is found or no more actions are left
to be checked in πi, i.e., sij−k = si0. It is worth remarking
that the proposed solution allows in principle to reduce the
complexity of the search, since we replan only the part of
policy π which is currently unfeasible, without the need to
find a whole new plan. In the worst case, the procedure will
explore all the paths connecting si0 to siNi

.
It might also occur that a low-level feasible plan from si0

to siNi
does not exist. In this case, the high-level planner is

asked to find a new plan π̃ starting from si0 to a state s̃N ∈
Gs, that does not include siNi

. As reported in Algorithm
2, all the actions in siNi

are marked as not admissible, i.e.,
making its frontier empty. Clearly, it is not possible to have
guarantees on the optimality of the new plan, or even that a
solution exist, depending on the initial state si0.

Execution Failures: As specified in Sec. II, we consider
a deterministic system; the state produced by an action is
unique and known. However, in many practical cases, an
action may either succeed or fail when executed because
of, e.g., incorrect or partial information on the environment,

execution failures, or unmodelled events. Thus, the execution
may lead to one among a set of different states. It could
still make sense to use a deterministic model as long as
the system is able to monitor the action execution and
detect a failure, and use failure-recovery mechanisms (e.g.,
by replanning or by re-acting). This can be achieved by
providing the agents with the capability of sensing/estimating
the actual state resulting from executing actions. If the
perceived state is different from the expected one, it is
necessary to call again the high-level planner to find a
new plan updating the initial conditions accordingly to the
information gathered at execution time.

Nonetheless, an erroneous execution of an action could
theoretically steer the system into a configuration, which is
not part of the created state space, thereby precluding the
possibility of finding a solution to the planning problem.
However, as mentioned in Sec.II, an exhaustive definition of
the entities should include any configuration where object
manipulation is possible in the state space. In this way,
only the configurations in which manipulation actions are
not possible (e.g., because the area is not reachable by any
agent) are left out of the state space.

Discussion on plan refinement: Given the proposed high-
level framework and the mechanisms to connect it to the
lower layers of the planning structure, specific choices of
the lower planning and control algorithms will influence the
performance and the robustness of the overall architecture, or
even the possibility of devising a feasible plan. Indeed, using
inefficient low-level strategies will increase failures, whereas
effective and/or reactive methods will increment robustness
and the chances of correctly planning and executing the
computed high-level strategy. Nevertheless, these kinds of
issues are specifically dependent on the environment, the
employed robots, the used planning and control algorithms,
and even the sensors the robots are equipped with.

IV. VALIDATION

In this section, we report the validation of the
proposed framework on three different robotic systems:
(A) Two-robot system for picking and palletizing - an
autonomous guided forklift and a bimanual manipulation
system; (B) Three-robot system for pick and place - two
manipulators and a mobile base; (C) One-robot system for
rearrangement planning - a bimanual manipulation system.

The high-level plans are retrieved using three different
and largely used search algorithms [15]: i) Breadth-first:

(a) Setup. (b) Planned Task. (c) Plan Execution.

Fig. 1. Task A: Task plan using Uniform Cost Search and execution for picking and palletizing operations in a warehouse.

an uninformed search algorithm that does not consider the
costs, ii) Uniform Cost Search (UCS): an uninformed search
algorithm that does consider the costs, and iii) A*: an
informed search algorithm. For A*, the used heuristics h(s)
is equal to the number of state variables in s that are different
from a goal state g. The search algorithms were implemented
in MATLAB on a Laptop PC equipped with an Intel Core i7
Processor (6x2.20 GHz) and 16 GB DDR4 RAM.

The different computation times (average time over 1000
runs), length and cost of the retrieved plans, and the number
of visited states for each algorithm are reported in Table II. In
the table we report the plans’ nominal times, length, and cost,
while between brackets the actual values considering also
possible backtracking procedures. The number of asterisks
∗ specifies the number of backtracking operations. The plan
retrieved with UCS is then refined by the low-level solvers
and executed. The average time needed by each agent to plan
an action is finally reported in Table III.

(A) Two-robot system for picking and palletizing: Here,
we model and plan a picking and palletizing operation.

Planning Domain: In this scenario, we have four agents:
an automated forklift, called t; two pallets, called p1 and
p2; a fixed base dual-arm robotic platform, WRAPP-up [18],
designed to perform autonomous picking and palletizing
operations, called r. We have a single object, O = {o}, and
three sectors, i.e., S = {σ1, σ2, σ3}, as shown in Fig.1a.

The set of rigid relations Ψ is given by adj = {(σ1, σ2),
(σ2, σ1), (σ1, σ3), (σ3, σ1), (σ2, σ3), (σ3, σ2)},
canAct = {(r, σ3), (t, σ1), (t, σ2), (t, σ3)},
stable = {(o, r), (o, p1), (o, p1, r), (o, p2), (o, p2, r)}
canMove = {(t,p1), (t,p2)}.
This planning domain corresponds to a state-space of
dimension 375.

Planning and Execution: The initial state has the object
on the pallet p1, with both pallets in sector σ1, the
unloaded forklift in σ2, the manipulator in σ3. This formally
corresponds to the state:

s0 = {hold[r] = null, hold[p1] = o, hold[p2] = null,

hold[t] = null, load[t] = null, onA[o] = p1, onT[p] = null,

at[o] = σ1, at[r] = σ3, at[p1] = σ1, at[p2] = σ1, at[t] = σ2}.

In the desired final configuration the object is on p2, with
both pallets in sector σ1, the unloaded forklift is in σ2. This
matches the set of goal states Gs given by Gs = {s ∈
States | hold[p2] = o∧at(o) = σ1∧at(p2) = σ1∧at(p1) =
σ1 ∧ at(t) = σ2 ∧ onT[p2] = null ∧ load[t] = null}.

For this case, the three algorithms return the same high-
level plan (depicted in Fig. 1b), with Breadth-first being
faster than UCS and A*. A* is the one exploring fewer states,

as its search is guided by the heuristics to estimate how close
a state is to the goal. Fig. 1b shows also the two subplans
in which the plan is separated. As expected for this simple
case, the output of the planner first commands the forklift to
move to the correct sector to load the pallet with the object to
pick. Then, the forklift moves the pallet to the robot station,
where the robot picks the object. To plan at the lower level
the picking action, we use the reactive planner described in
[18] and [19], which allows robust and efficient picking and
placing operations for cuboids and cylinders. The average
times needed to plan an action for the two agents (t and r)
are reported in Tab. III. The robot holds the object, waiting
for the forklift to unload the pallet and load the other one.
Eventually, the robot places the object on the target pallet and
the forklift unloads it in the target sector. A photo sequence
of an execution of this plan is reported in Fig.1c.

(B) Three-robot system for pick and place: We
now consider the task of moving an object, a roll of duct
tape, between non-adjacent surfaces in presence of two
manipulators and a mobile platform (see Fig. 2).

Planning Domain: In this scenario, we have six agents:
three passive surfaces, called p1, p2, and p3; two robots, a
Panda arm by Franka Emika and a Universal Robot UR10e,
both equipped with the Pisa/IIT SoftHand, called r1 and
r2; one transport agent called t, a Robotnik SUMMIT-XL
STEEL. There is one object to move O = {o}, and four
sectors, i.e., S = {σ1, σ2, σ3, σ4}, as shown in Fig.2a.

The set of rigid relations Ψ is given by adj = {(σ1, σ2),
(σ2, σ1), (σ2, σ3), (σ3, σ2), (σ3, σ4), (σ4, σ3), (σ4, σ1), (σ1,
σ4)}, canAct = {(r1, σ1), (r1, σ2), (t, σ2), (t, σ3), (r2, σ3),
(r2, σ4)}, stable = {(o, r1), (o, r2), (o, r1, r2), (o, p1), (o,
p2), (o, p3), (o, p1, r1), (o, p2, r2), (o, p3, r1), (o, t), (o, t, r1),
(o, t, r2)}, canMove = {null}.
This planning domain corresponds to a state-space of
dimension 84.

Planning and Execution: Initially, the object is on the
surface p3 corresponding to the initial state

s0 ={hold[r1] = null, hold[r2] = null, hold[p1] = null,

hold[p2] = null, hold[p3] = o, hold[t] = null,

onA[o] = p3, at[o] = σ1, at[r1] = σ1, at[p1] = σ1,

at[p2] = σ4, at[t] = σ2, load[t] = null}, .

Since we want to move the object to p2, the set of goal states
is Gs = {s ∈ States | hold[p2] = o ∧ hold[r2] = null}.

Again, the three algorithms return the same solution,
shown in Fig. 2b, with breadth-first being the fastest. Also,
the algorithms explore the same number of states. We also
highlight in Fig. 2b the two subplans in which the plan has
been divided. As a classic hand-over of the object is not

(a) Setup. (b) Planned Task. (c) Plan Execution.

Fig. 2. Task B: Task plan using Uniform Cost Search and execution for moving an object with two robots and a transport agent.

(a) Setup. (b) Planned Task. (c) Plan Execution.

Fig. 3. Task C: Task plan using Uniform Cost Search and execution for the objects’ rearrangement case.

TABLE II
HIGH-LEVEL PLANNING: STATISTICS

Breadth-First Uniform Cost Search A*
T [ms] Visited Lπ Cost T [ms] Visited Lπ Cost T [ms] Visited Lπ Cost

A 0.09 326/375 14 22 0.14 319/375 14 22 0.16 257/375 14 22
B 0.09 78/84 12 36 0.11 78/84 12 36 0.13 76/84 12 36
C 0.07* (0.14) 61/64 11* (13) 62* (71) 0.08* (0.16) 61/64 15* (17) 44* (53) 0.12* (0.23) 60/64 15* (17) 44* (53)

TABLE III
LOW-LEVEL PLANNING: STATISTICS

A B C
r t r1 r2 t r

Times 12.1ms 37.3ms 9.20ms 10.2ms 21.1ms 11.2ms

possible, the robot r1 has first to grasp the tape and place
it on the mobile platform. The platform moves to bring the
object to a sector reachable by r2 (σ3), that eventually picks
it from the platform and places it on the table p2. The grasp
poses for the manipulators were generated using [20], the
motion of the manipulators were planned using the RRT-
Connect [21] algorithm provided by OMPL with MoveIt!
[22], while for the mobile platform a classical point-to-point
navigation is used. The average time needed by each agent
to plan an action using RRT-Connect is reported in Tab. III.
We chose RRT-Connect for planning the motion of the two
manipulators as it is, in general, more efficient than RRT
[21], and faster than RRT* [23]. RRT would require, in
average, 0.0092s and 0.013s for planning an action for r1 and
r2, respectively. RRT* takes instead 5.003s and 5.004s. All
the algorithms had a maximum planning time of 5 seconds.
A photo sequence of the plan execution is shown in Fig.2c

(C) One-robot system for rearrangement planning:
Here, we consider a scenario in which three objects must
be rearranged with a bimanual system (see Fig. 3) with the
need for backtracking procedure from the lower-level to the
high-level planner, due to unfeasibility of subplans.

Planning Domain: In this scenario, we have two agents:
one passive surface, called p; a dual-arm robotic platform,
WRAPP-up, called r; three objects O = {o1, o2, o3}; and
two sectors, i.e., S = {σ1, σ2}, as in Fig.3a.

The rigid relations are adj = {(σ1, σ2), (σ2, σ1)},
canAct = {(r, σ1), (r, σ2)}, canMove = {null},

stable = {(oi, r), (oi,p), (oi,p, r)} ∀oi ∈ O.
This planning domain corresponds to a state-space of
dimension 64.

Planning and Execution: Initially, all the objects are on
p in σ1, corresponding to the state

s0 = {hold[r] = null, hold[p] = O, onA[o1] = p,

onA[o2] = p, onA[o3] = p, at[o1] = σ1,

at[o2] = σ1, at[o3] = σ1, at[r] = σ1, at[p] = {σ1, σ2}}.

The set of goal states Gs corresponds to the rearranged
configuration of all the objects on p in σ2: Gs = {s ∈
States | hold[p] = O∧at(o1) = σ2∧at(o2) = σ2∧at(o3) =
σ2 ∧ hold[r] = null}.

The three search algorithms find the same picking
sequence (first pick o1, then o2, and eventually o3), but the
found path is different. Indeed, Breadth-first finds a shorter,
but more expensive, plan where all the objects are simply
moved on the table. Instead, both A* and UCS retrieve a plan
where o2 and o3 are picked from the table (the pickFromP
action), since this is less expensive than moving them on
the table due to the dimension (o2 is taller than larger) and
shape (o3 is a cylinder). Fig. 3b shows the composition of
the plan when UCS is used, where the three subplans π0,
π1, and π2 - obtained using the procedure described in Sec.
III - are highlighted. It can be noted that for the first object,
the planner initially derives a subplan π0 that would require
the robot to push it on the table in order to move it to the
correct location. However, the presence of the other objects,
which are acting as obstacles, does not allow the low-level
planner to find a feasible execution of the moveOnP action.

The first subplan and the associated initial and final states
are backtracked to the high-level planner to find a different

plan, which requires the robot to pick the object from the
table and place it on the correct sector. This plan is again
sent to the low-level planner of the robot that, this time,
is able to find a feasible execution for the planned actions.
A photo sequence of the correct execution of this plan is
reported in Fig. 3c.

The total time took by the high-level planner to find a
feasible solution and the actual cost of the path after the
backtracking are reported in Tab. II between brackets. The
plan obtained using Breadth-first was not actually executed,
but it would have certainly required at least one backtracking
action, as the first subplan is equal for the three algorithms.
Hence, we reported the planning time and the cost of the
plan also considering this replanning.

Discussion on validation: For tasks (A) and (B), no
differences can be noted on the high-level plan, except for
different time performances of the three search algorithms.
Instead, the plan retrieved by breadth-first for (C) (even after
the first replanning) is more expensive than the ones retrieved
by UCS and A*. In general, a search algorithm that considers
costs might find plans that are indeed longer, but composed
of actions that are perhaps less risky and expensive, and thus
more robust. This can reduce the risk of failures both in
planning and execution, and reduce the calls to the high-
level for retrieving new plans. Informed algorithms (such as
A*) can be meaningful if a good heuristic function is defined.
Otherwise, it might be better to use UCS, as we did.

In all the considered scenarios, the use of different low-
level approaches - e.g., changing algorithm in OMPL for
(B) - did not produce significant effects or influence on the
higher level. Indeed, we did not encounter low-level planning
or execution errors that required high-level replanning.

Notwithstanding the above considerations, general
conclusions cannot be drawn regarding the choice of
certain high- or low-level algorithms over others from the
three presented examples. In order to be able to draw
general conclusions, it would be necessary to collect
statistically meaningful data and analyze them. An extensive
experimental campaign could be carried out in a significantly
high number of cases, using several more robotic systems,
and changing multiple low-level planners and search
algorithms.

V. CONCLUSION

In this paper, we presented an attempt towards an
autonomous high-level planning framework for material
handling using multi-robot systems. The planning domain
contains only the strictly necessary details for finding a
sequence of actions to be performed by the robots on the
objects in order to move them. The produced high-level
plan is easier to be refined by state-of-the-art lower level
motion planners. Experiments show the applicability of our
approach to real case scenarios. Some aspects, such as a more
integrated task and motion planning strategy, and formal
guarantees of the high-level algorithm still need further
investigation.

REFERENCES

[1] Nils Boysen, René De Koster, and Felix Weidinger. Warehousing in
the e-commerce era: A survey. Eur. J. Oper. Res., 277, 2018.

[2] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon
Kim, Tom Silver, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
Integrated task and motion planning. Annual Review of Control,
Robotics, and Autonomous Systems, 4:265–293, 2021.

[3] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal,
Henry Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter
Abbeel. Motion planning with sequential convex optimization and
convex collision checking. Int. J. Rob. Res., 33(9):1251–1270, 2014.

[4] Jennifer Barry, Kaijen Hsiao, Leslie Pack Kaelbling, and Tomás
Lozano-Pérez. Manipulation with multiple action types. In
Experimental Robotics, pages 531–545. Springer, 2013.

[5] K. Hauser and V. Ng-Thow-Hing. Randomized multi-modal motion
planning for a humanoid robot manipulation task. Int. J. Rob. Res.,
30(6):678–698, 2011.

[6] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning
and acting. Cambridge University Press, 2016.

[7] Erez Karpas and Daniele Magazzeni. Automated planning for robotics.
Annu. rev. control robot. auton. syst., 3(1):417–439, 2020.

[8] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling.
Ffrob: Leveraging symbolic planning for efficient task and motion
planning. Int. J. Rob. Res., 37(1):104–136, 2018.

[9] James Motes, Read Sandström, Hannah Lee, Shawna Thomas, and
Nancy M Amato. Multi-robot task and motion planning with subtask
dependencies. IEEE Robot. Autom. Lett., 5(2):3338–3345, 2020.

[10] Esmaeil Najafi, Anuj Shah, and Gabriel AD Lopes. Robot contact
language for manipulation planning. IEEE/ASME Trans. Mechatron.,
23(3):1171–1181, 2018.

[11] H. Marino, M. Ferrati, A. Settimi, C. Rosales, and M. Gabiccini. On
the problem of moving objects with autonomous robots: A unifying
high-level planning approach. IEEE Robot. Autom. Lett., 1(1):469–
476, Jan 2016.

[12] F. Ruggiero, V. Lippiello, and B. Siciliano. Nonprehensile dynamic
manipulation: A survey. IEEE Robot. Autom. Lett., 3(3):1711–1718,
2018.

[13] George Jose Pollayil, Giorgio Grioli, Manuel Bonilla, and Antonio
Bicchi. Planning robotic manipulation with tight environment
constraints. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 9385–9392, 2021.

[14] Masoumeh Mansouri, Federico Pecora, and Peter Schüller. Combining
task and motion planning: Challenges and guidelines. Front. Robot.
AI, 8:133, 2021.

[15] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[16] Anthony Simeonov, Yilun Du, Beomjoon Kim, Francois R. Hogan,
Joshua Tenenbaum, Pulkit Agrawal, and Alberto Rodriguez. A long
horizon planning framework for manipulating rigid pointcloud objects.
In Conf. Rob. Learn., 2020.

[17] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling.
Sampling-based methods for factored task and motion planning. Int.
J. Rob. Res., 37(13-14):1796–1825, 2018.

[18] Manolo Garabini, Danilo Caporale, Vinicio Tincani, Alessandro
Palleschi, Chiara Gabellieri, Marco Gugliotta, Alessandro Settimi,
Manuel Giuseppe Catalano, Giorgio Grioli, and Lucia Pallottino.
WRAPP-up: A dual-arm robot for intralogistics. IEEE Robot. Autom.
Mag., 28(3):50–66, 2021.

[19] Alessandro Palleschi, Marco Gugliotta, Chiara Gabellieri, Dinh-Cuong
Hoang, Todor Stoyanov, Manolo Garabini, and Lucia Pallottino. Fully
autonomous picking with a dual-arm platform for intralogistics. In
2020 I-RIM Conference, pages 109–111. I-RIM, 2020.

[20] C. Gabellieri, F. Angelini, V. Arapi, A. Palleschi, M. G. Catalano,
G. Grioli, L. Pallottino, A. Bicchi, M. Bianchi, and M. Garabini. Grasp
it like a pro: Grasp of unknown objects with robotic hands based on
skilled human expertise. IEEE Robot. Autom. Lett., 5(2):2808–2815,
2020.

[21] J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient approach
to single-query path planning. In Int. Conf. Robot. Autom. (ICRA),
volume 2, pages 995–1001, 2000.

[22] S. Chitta, I. Sucan, and S. Cousins. Moveit![ros topics]. IEEE Robot.
Autom. Mag., 19:18–19, 03 2012.

[23] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for
optimal motion planning. Int. J. Rob. Res., 30(7):846–894, 2011.

	Introduction
	Planning Domain
	Objects
	Agents
	Sectors

	Task Planning and Execution
	Validation
	Conclusion
	References

