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Abstract— Advances in sensing and learning algorithms have
led to increasingly mature solutions for human detection by
robots, particularly in selected use-cases such as pedestrian
detection for self-driving cars or close-range person detection
in consumer settings. Despite this progress, the simple question
which sensor-algorithm combination is best suited for a person
detection task at hand? remains hard to answer. In this paper, we
tackle this issue by conducting a systematic cross-modal analysis
of sensor-algorithm combinations typically used in robotics. We
compare the performance of state-of-the-art person detectors
for 2D range data, 3D lidar, and RGB-D data as well as selected
combinations thereof in a challenging industrial use-case.

We further address the related problems of data scarcity in
the industrial target domain, and that recent research on human
detection in 3D point clouds has mostly focused on autonomous
driving scenarios. To leverage these methodological advances
for robotics applications, we utilize a simple, yet effective multi-
sensor transfer learning strategy by extending a strong image-
based RGB-D detector to provide cross-modal supervision for
lidar detectors in the form of weak 3D bounding box labels.

Our results show a large variance among the different
approaches in terms of detection performance, generalization,
frame rates and computational requirements. As our use-case
contains difficulties representative for a wide range of service
robot applications, we believe that these results point to relevant
open challenges for further research and provide valuable
support to practitioners for the design of their robot system.

I. INTRODUCTION

The ability of robots to detect people in their vicinity is
of great importance in consumer, industrial and automotive
application domains. Use-cases range from pedestrian pre-
diction for driverless cars, user recognition for consumer
robots, to safety-critical operator detection for collaborative
manipulators. They vary in requirements and constraints –
examples include minimal accuracy, cost of false positives,
computational budget, privacy constraints or maximal system
cost –, and it comes as no surprise that solutions differ
strongly across and within application domains and com-
munities. This variety means that

1. Progress in one domain cannot be readily transferred to
another due to domain gap issues (e.g. indoor/outdoor,
different sensor resolutions or mounting positions).

2. The availability of annotated data is very domain- and
sensor-specific and far from uniform (e.g. plenty of
image data sets for autonomous driving vs. few 3D data
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Fig. 1: Which sensor-algorithm combination is best suited
for a person detection task at hand? Example scene from our
data set seen by an RGB-D sensor (RGB and color-encoded
depth image in first row + colored point cloud), a 2D safety
laser (blue points) and a 3D lidar (points in rainbow colors).
Boxes are detections in different modalities (see Figure 6),
grey crosses visualize groundtruth centroids.

sets in typical service robot scenarios). This makes de-
tector retraining and comparisons of approaches across
sensory modalities and domains a difficult task.

3. With a person detection task at hand, characterized by
such requirements and constraints, it is hard to navigate
the large space of sensor-algorithm combinations and
identify the most promising options.

The latter point is of large practical importance. Given,
for example, a cost-sensitive consumer robot without GPU,
how do state-of-the-art detectors for low-cost range cameras
and 2D lidars compare relative to the required accuracy, or
do classical CPU-based machine learning methods suffice?
Or given a hospital delivery robot, does the gain in privacy
from using a 3D lidar over an RGB-D camera justify the
higher sensor cost and drop in detection performance?

To address those issues within a robotics scope, this paper
makes the following contributions:

We conduct a cross-modal analysis of sensor-algorithm
combinations typically used in robotics. We compare the
performance of state-of-the-art person detectors for the com-
monly used 2D lidar, 3D lidar and RGB-D sensors as well
as selected combinations thereof. For each modality, we also
consider a classical GPU-free learning baseline. Although a
large body of literature on multi-model sensor fusion for



human detection exists, to the best of our knowledge, a
comparison of this breadth has not been done before.

Our second contribution addresses points 1 and 2: We
extend our RGB-D YOLO [1] method capable of real-time
detection of human 3D centroids in RGB-D data to regress
3D oriented bounding boxes. We learn 3D bounding box
estimation in RGB-D YOLO solely from synthetic data to
obtain an accurate 3D human detector. We then demonstrate
that such a detector trained without manual 3D annotations
can be utilized to transfer knowledge across sensors and
improve detectors on the target domain via weak supervision.

For evaluation, we collected data in a warehouse using a
mobile platform equipped with the mentioned sensors. The
environment contains difficulties typical for service robot
use-cases: people in varying densities and body poses, in
narrow and open spaces, in proximity and interaction with
objects and walls, uniform clothing, and in occlusion from
foreground objects and other people, see Figs. 5 and 6.

II. RELATED WORK

There is a large body of literature on human detection in
robotics and related fields whose discussion is beyond the
scope of this paper, see e.g. the surveys [2], [3]. We discuss
methods that are part of our evaluation in section III. Multi-
modal approaches such as [4], [5], [6], [7], [8] typically
combine two or more sensors with a focus on sensor/detector
fusion, performance maximization or domain adaptation.
Here, on the other hand, we strive for an unbiased cross-
modal comparison systematically covering relevant modali-
ties and baselines for robotics.

Existing benchmarks and datasets only partly support this
goal. Either because they are single-sensor datasets [9], [10],
[11] or due to domain gap issues mentioned in section I.
Large-scale automotive benchmarks such as KITTI [12],
Waymo Open [13] or NuScenes [14] consider sensor setups
and operating conditions different from typical service robot
use-cases. An exception is JackRabbot [15], a multi-modal
robotic benchmark and dataset collected on a university
campus indoors and outdoors. As here we focus on industrial
use-cases we do not consider this interesting dataset and
leave its inclusion to concurrent [16] and future work.

Creating domain specific datasets with manual 3D anno-
tations for supervised learning requires extensive resources.
Transfer learning is one of the tools to reduce this effort
and address the domain adaptation challenge. While it can
take a variety of forms (e.g. sim-to-real), in this work we
focus on transferring real-world knowledge across sensors.
The domain gap exists even across different sensor models
of the same modality and has been addressed in prior
works [17], [18] where 3D lidar-to-lidar supervision is used
for object detection and semantic segmentation tasks. In
contrast to these methods, we investigate transfer learning
across different modalities. [19] and [20] apply cross-modal
transfer from RGB to 3D lidar, but for semantic and instance
segmentation, as opposed to 3D human detection considered
in this paper. Our strategy is inspired by previous work on
multi-sensor transfer learning [21]. However, in our case, we

use a very strong, deep learning-based RGB-D detector as
teacher network, making the entire pipeline much simpler as
no complex tracking and outlier rejection is required.

III. EVALUATED MODALITIES AND APPROACHES

In the following, we provide an overview of the human de-
tection approaches that are part of our comparison, grouped
by sensor modality.

A. 2D laser detectors

Many service robots are equipped with 2D safety laser
scanners at floor level for localization, obstacle avoidance
and safety. A recent approach to person detection in 2D
range data has been presented by Beyer et al. [11], which
introduced a novel CNN-based method called DROW3x that
can fuse information from temporally consecutive frames to
recognize typical human leg motion. On a dataset from an
elderly care facility, the method clearly outperformed sev-
eral existing approaches that rely on handcrafted geometric
features and classical machine learning techniques (random
forests or AdaBoost). However, the latter methods have an
advantage in terms of hardware requirements, since they
are able to run efficiently on a CPU. Therefore, besides
DROW3x, we also include the classical methods by Arras et
al. [22] and Leigh et al. [23] in our comparison. The latter
follows a similar approach as [22] but detects individual legs
and associates them over time using a simple Kalman filter-
based tracker. While not strictly a detection-only approach,
we treat it here as such and rely on its data association stage
to obtain human centroids for evaluation (see sec. V-B).

Very recently, a more efficient version of DROW3x,
dubbed DR-SPAAM [24], has been proposed, which we also
consider in our evaluation. By replacing the expensive voting
grid with a non-maximum suppression step and by using
a recurrent update scheme instead of explicit odometry-
based multi-scan alignment for temporal fusion, it achieves
significantly higher frame rates and is suitable also for
deployment on embedded platforms (e.g. Nvidia Jetson).

B. 3D lidar-based approaches

For 3D lidar-based human detection we use the approach
by Yan et al. [21] as a classical machine learning baseline
which does not require accelerator hardware for real-time
performance. It uses an SVM classifier with handcrafted ge-
ometric features after proposal generation through Euclidean
clustering.

The deep learning-based 3D approaches in our comparison
have so far been evaluated mostly in autonomous driving
use-cases. We selected methods based on their suitability
for our use-case by taking into account their pedestrian
detection performance in the KITTI benchmark [12] and
their computational requirements. To facilitate integration
and avoid strong implementation bias, we used the best-
performing methods available at the time of our experiments
within the MMDetection3D framework [25]: SECOND [26],
SECOND with Dynamic Voxelization [27], PointPillars [28],
and PartA2-Net [29].



SECOND performs voxelwise feature extraction as in
VoxelNet [30], before feeding the intermediate representation
into a sparse convolutional middle extractor that converts
sparse 3D data into a 2D birds-eye view image. Finally,
an SSD-like head [31] outputs oriented 3D bounding boxes.
SECOND with Dynamic Voxelization overcomes the possible
information loss due to stochastic point dropout in fixed
voxelizations and yields deterministic voxel embeddings and
more stable detection outcomes. In AD scenarios, the method
achieves higher accuracy at approximately the same runtime
cost as [26]. PointPillars is a faster variant of SECOND with
a relatively small GPU memory footprint. It replaces 3D
convolutional layers with dense 2D convolutions by learn-
ing a representation of point columns (pillars). PartA2-Net
consists of two stages. The first, part-aware stage generates
3D proposals with corresponding point-wise features and
predicted object point locations relative to the oriented 3D
bounding box. This information is aggregated in the second
part-aggregation stage to retrieve final object detections and
refined 3D bounding boxes.

C. RGB-D methods

Our recent work [1] investigated the task of 3D human
detection using data from a time-of-flight RGB-D camera for
robotics applications. It provides a comprehensive overview
of the state-of-the-art approaches and compares them on an
intralogistics dataset, which is a subset of the data used in
this evaluation. In the same work we proposed an image-
based detection approach, RGB-D YOLO, which extends the
YOLO v3 architecture with a 3D centroid loss and mid-
level feature fusion to exploit complementary information
from both RGB and depth modalities. We also introduced
an efficient transfer learning strategy to benefit from both
pre-training on large-scale 2D image datasets such as MS
COCO [32], and highly randomized synthetic RGB-D data
with accurate 3D groundtruth [33]. The experiments showed
that the proposed method achieves higher detection accuracy
in 3D space than state-of-the-art baselines.

In this study, besides RGB-D YOLO, we include further
top performing baselines from [1]. A naı̈ve image-based
method [34] lifts detected 2D bounding boxes into 3D space
by sampling depth values within the bounding box from
the registered depth image. While such an approach can
yield good results in simpler cases, there exist cases where
e.g. the majority of all valid depth pixels inside the 2D
bounding box belong to entirely different foreground or
background objects, leading to wrong depth estimates. As a
CPU-only method we chose the work by Munaro et al. [35],
which combines HOG features with an SVM classifier after
performing a head-based subclustering in the point cloud. It
performed reasonably well in comparison to deep learning
methods on the benchmark in [1]. Mobility Aids [36] applies
Euclidean clustering on the 3D point cloud for proposal
generation, followed by a CNN-based classifier on the RGB
or depth images. RGB-D Pose 3D [37] predicts 2D human
keypoints in a bottom-up fashion using OpenPose [38], then
lifts the body into 3D space by retrieving depth values at
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Fig. 2: Multi-sensor transfer learning by using the RGB-D
YOLO detector, extended to provide oriented 3D bounding
boxes, for learning lidar-based human detection in the target
domain without extensive need for manual 3D labeling.

pre-defined body joint locations (e.g. neck), before centering
a 3D voxel occupancy grid on the body to predict 3D joint
locations. Both deep learning-based methods [36] and [37]
utilize a geometric 3D point cloud representation, which
comes with certain drawbacks, e.g., the 3D stage could fail
to detect objects in locally sparse point clouds.

IV. MULTI-SENSOR TRANSFER LEARNING

Our initial experiments indicated that the 3D LiDAR-based
detectors, when trained on automotive datasets [12], would
significantly underperform in certain scenarios compared to
2D laser-based methods, which is unexpected due to their
significantly higher resolution in the vertical dimension. The
most likely reason for this is the domain gap that results
from different sensor resolutions, mounting heights, and our
focus on indoor environments, which we aim to address
by retraining them on the target domain. However, manu-
ally labeling 3D point clouds with 3D oriented bounding
boxes (3D OBB) is time-consuming. Given the availability
of approximately time-synchronized RGB-D frames from a
time-of-flight camera like the Kinect v2, we instead propose
to exploit a strong RGB-D detector to provide cross-modal
supervision in the form of weak groundtruth box labels, as
indicated in Figure 2. Unlike other approaches [21], [39],
we do not rely on any additional tracking or explicit outlier
rejection stage and do not use 2D bounding boxes as an
intermediate representation with resulting information loss.

A. Extension of RGB-D YOLO for 3D OBB supervision
To this end, as shown in Figure 3, we extend our

RGB-D YOLO v3 approach to regress not only human cen-
troids (pelvis joints), but also oriented 3D bounding boxes
(x, y, z, d, w, h, θ) with centroids (x, y, z), extents (d,w, h)
and yaw angles θ. For 3D box centroids, we use the same
2.5D keypoint loss with normalized pixel coordinates u, v
and metric depth z as in [1], in addition to the regular 2D box
center, scale and objectness losses, while directly regressing
metric 3D extents using an l1 loss. For the yaw angle, we
use a biternion representation (cos θ, sin θ) as in [40], [41]
with a cosine similarity loss. The resulting combined loss
term for training is then

L = Lcentroids + Langle + Lextents + L2D. (1)
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Fig. 3: Extended RGB-D YOLO architecture with regression
of 3D body keypoints including pelvis joints, orientation
angles and 3D bounding boxes.
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Fig. 4: Pipeline for weakly supervised 3D lidar detector
training without need for manual annotations by using ori-
ented 3D bounding boxes from the extended RGB-D YOLO
detector (trained with synthetic data) as supervision signal.

To obtain groundtruth 3D box labels in RGB-D, we rely
on our synthetic training data generation pipeline [33] and
learn this aspect solely from synthetic data.

B. Transfer learning approach

We then directly transfer the 3D box labels from the
extended RGB-D YOLO detector to lidar point clouds via the
existing extrinsic sensor calibration. We do not include any
additional tracking stage, which could induce false positives
due to delayed track deletion. Since during lidar detector
training, that we restrict to the Kinect v2 field of view
and then extend it back to full 360 degrees using rotation
augmentation, groundtruth boxes without any lidar points are
discarded as positive samples, the few wrongly localized 3D
boxes that our teacher network still produces often have no
negative impact on the training process. Figure 4 provides
an overview of the proposed training pipeline.

V. EXPERIMENTS

A. Industrial dataset from an intralogistics warehouse

To evaluate human detectors in industrial environments,
we recorded over 55 hours of data with our mobile robots in
different intralogistics scenarios over a timespan of several
weeks. For the purpose of this first comparison, we hand-
selected and manually labeled two challenging multimodal
sequences, that are representative of commonly observed
scenarios, with 3D person centroid trajectories. They span
three minutes in total and originate from a robot within a
food factory warehouse environment. Both scenes have been
recorded using the sensor setup in Figure 5. Sequence (a),
NCFM Dynamic, has a higher person density with a larger
number of temporary occlusions, e.g. due to persons pushing

ToF RGB-D 
(Kinect v2)

3D lidar
(VLP-16)

2D safety 
laser (S300)

Main driving
direction

Fig. 5: Multimodal sensor setup used in our evaluation

carts and pallet trucks, and has been recorded with a static
sensor platform in an open space with a lot of highly
dynamic motion and including also non-standing poses.
Instead, Sequence (b), NCFM Storage Room, was acquired
with a moving robot in a narrow storage room with only 1–2
persons that are always in upright poses and often in close
proximity to shelves, walls or the robot.

B. Experimental setup

We evaluate all previously described methods, that are rep-
resentative of different types of approaches on the respective
sensor modality, with regard to their detection performance
in 3D space. We report average precision (AP), i. e., the
area under the precision-recall curve over varying detection
thresholds, and the peak-F1 score at a single confidence
threshold, which represents a reasonable compromise be-
tween detector precision and recall. To compute these met-
rics, we perform ground truth association using the estimated
centroids over the ground plane, which is the most common
representation to all approaches and modalities. For a fair
comparison, we ignore centroid height above ground1. We
consider a person as correctly detected if a detection falls
within 0.5 m of the closest ground truth centroid, discount
ground truth annotations that are heavily occluded in the 3D
lidar point cloud (containing less than 7 lidar returns), and
only evaluate detections within the (most limited) field of
view of the Kinect v2 RGB-D sensor, which is necessary
for a fair comparison because the sensor modalities differ
fundamentally in their horizontal field of view.

For each method, we use models trained on the dataset
reported in parentheses behind the method name in Figure 6.
For 3D lidar detector models trained on KITTI, we transform
our input point clouds to compensate for different sensor
mounting heights and normalization of lidar intensities in
order to reduce the domain gap. For multi-sensor transfer
learning on our ILIAD intralogistics dataset, we add unla-
beled, temporally disjoint data from the same environment
as the two evaluation sequences. For this, we sample around
27k additional frames in a KITTI-like format. For training,
we adapt the maximum range to 15m as our point clouds
contain no useful data beyond this distance.

To examine if detection results improve by (naı̈vely) fusing
detections of the best-performing detectors across different

1Note that the 2D laser-based approaches do not output 3D bounding
boxes and do not provide estimates of the centroid height over ground.



sensor modalities, we perform nearest-neighbor association
of nearby detections from different detectors in Euclidean
space with a gating distance of 0.5 m.

VI. RESULTS AND DISCUSSION

Quantitative results of our cross-modal detector compari-
son are shown in Figure 6. For each of the two scenes, we
present the precision-recall curves of all detectors in addition
to the previously mentioned detection metrics.

A. 2D laser detectors

Not surprisingly due to their sparseness, the approaches
based on 2D laser data are overall the weakest methods in our
evaluation. Our sensor mounting height close to the ground,
which is required for 2D safety lasers, frequently leads to
heavy occlusions by objects (e.g. pushcarts, brooms) or forks
of other vehicles, partially explaining the weak results in the
Dynamic scene (which additionally has people in challenging
sitting and kneeing poses). However, particularly on the less
crowded Storage sequence, the strongest 2D laser methods
can outperform all but the latest-generation 3D lidar and
RGB-D detectors – even without retraining on the target
domain. This is remarkable and likely due to that scene being
more favorable for detection in 2D laser, with subjects mostly
in upright poses, and no other forklifts occluding the sensor.

We also notice that state-of-the-art deep learning ap-
proaches [11], [24] clearly outperform the earlier, classical
method [22] that only considers a single 2D laser scan, which
is in line with results in the elderly care scenario of Beyer
et al. [11]. However, the method by Leigh et al. [23], which
is a non-DL approach but like DR-SPAAM [24] considers
temporal information2, without retraining comes surprisingly
close to both DL methods (−2% and −4% in peak-F1 over
the combined sequences); for resource-constrained robots
equipped with a 2D safety laser, this could be a reasonable
choice over e.g. a resource-hungry DL-based detector if only
medium-level detection accuracy is required. While the DL-
based methods reach almost 50 Hz with GPU acceleration,
our 2D safety laser provides raw data at only 12.5 Hz,
thereby limiting the effective maximum detection rate.

B. 3D lidar-based approaches

The 3D lidar detectors SECOND and its variant with
dynamic voxelization, PointPillars, Part A2-Net and the Ob-
ject3D Detector suffer less from occlusion by other vehicles
due to their higher vertical resolution compared to 2D laser,
while being able to cover 360 degrees around the robot with
a single sensor and detector instance3. However, the deeply-
learned 3D approaches reach real-time performance at lower
frame rates (7–11 Hz) than in 2D laser while at the same
time requiring a more powerful GPU, whereas the Object3D
Detector only requires a CPU to achieve a similar frame rate.

2In the implementation by [24] that we used, DROW3x is run in a
single-frame configuration (T=1) with non-maximum suppression instead
of a voting grid to achieve fast real-time frame rates. It outperformed the
original implementation [11] in terms of AP on our dataset.

3This clear benefit of the 3D lidar methods is not reflected in our metrics
since we limit the evaluation to the smaller Kinect v2 FOV.

Among all DL methods, PointPillars has the smallest GPU
memory footprint, which makes it interesting for robotics ap-
plications which often deploy multiple networks in parallel.

The performance of 3D lidar detectors is mostly consistent
across both sequences except for the Object3D and PartA2-
Net detectors. Both of these methods perform well in the
open-space Dynamic scene in Figure 6 (a), but their perfor-
mance significantly degrades on the narrow Storage Room
scene in Figure 6 (b). The Object3D detector attains very low
recall in the latter sequence due to the proposal generation
through Euclidean clustering breaking down when persons
are either close to a wall or to the handle bar of the ego-
vehicle. In contrast, PartA2-Net retains the high recall, but
loses precision due to an increased number of false positives.
This could indicate that the method fails to generalize from
open outdoor scenes to cluttered indoor environments.

SECOND achieves better detection results than PointPil-
lars on both sequences, thereby demonstrating better gen-
eralization capabilities after training on KITTI. This is an
interesting finding since PointPillars outperformed SECOND
on both the KITTI and nuScenes [14] benchmarks. The
results of SECOND are further improved by the addition
of dynamic voxelization (SECOND-DV), which helps to
preserve more information from the relatively sparse VLP-16
scans. This combination leads to the second best performance
among all of the modalities without additional training on the
target domain. It falls short (by −7.5% in AP and −6% in
peak-F1 score on the combined sequences) only to the results
of the RGB-D YOLO method, which we use as a teacher
during multi-sensor transfer learning on our target domain
to further improve detection performance of SECOND-DV.
These results will be discussed in subsection VI-D.

C. RGB-D methods

The RGB-D approaches are most limited in their of field of
view, due to the Kinect v2 camera only covering around 86◦

horizontally. On the other hand, they can in theory provide
detections at high sensor frame rates of up to 30 Hz. The
latter does not apply in practice for RGB-D Pose 3D [37],
which runs only at single-digit FPS on a GPU in the publicly
available implementation.

In comparison to other modalities and methods,
RGB-D Pose 3D, YOLO v3 with naı̈ve depth and
RGB-D YOLO attain very high precision on the Storage
Room scene. However, only RGB-D YOLO manages to
achieve a similar level of performance also in the Dynamic
sequence, which contains significant occlusion and persons
frequently leaving and entering the field of view of the
sensor. The naı̈ve YOLO v3 detector provides inaccurate 3D
localization under partial occlusion due to its inability to
distinguish between foreground and background depth values
within the detected 2D bounding box. RGB-D Pose 3D,
PCL+HOG-SVM and Mobility Aids rely on point cloud data
and therefore struggle with missing depth measurements
at the image boundaries that lead to reduced recall.
RGB-D YOLO implicitly combines both modalities in
image space and is less affected by corruptions in either of
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(b) NCFM Storage scene

Modality
Method and training data

(if not specified: proprietary training set)

Horiz.

FOV ◦

FPS

(Hz)

VRAM

(MiB)

AP[0.5m] ↑
in %

Peak-F1 ↑

(a) (b) (a)+(b) (a) (b) (a)+(b)

�� Arras [22] as in [11] (DROW) 25 - 56.0 47.4 50.7 0.58 0.60 0.59

2D laser �� Leigh [23] as in [11] (DROW) 180 22 - 67.4 84.6 72.2 0.71 0.87 0.75

�� DROW3x, T=1 (DROW) [11] + NMS [24] 49 827 72.7 91.3 78.4 0.72 0.88 0.77

�� DR-SPAAM (DROW) [24] 48 829 74.4 91.2 79.8 0.75 0.88 0.79

�� Object3D SVM Detector [21] 8 - 77.1 12.6 52.6 0.83 0.24 0.63

�� PartA2-Net (KITTI) [29] 7 5183 87.8 67.0 83.5 0.89 0.64 0.79

3D lidar �� PointPillars (KITTI) [28] 360 11 1217 77.5 72.8 76.3 0.83 0.75 0.80

�� SECOND (KITTI) [26] 9 4999 82.3 87.5 84.1 0.86 0.82 0.85

�� SECOND-DV (KITTI) [27] 9 4979 82.9 90.4 86.0 0.88 0.87 0.88

�� SECOND-DV (ILIAD), transfer learning 9 5025 94.4 97.9 93.9 0.88 0.94 0.87

�� PCL + HOG-SVM [35] 21 - 70.7 67.9 69.6 0.73 0.71 0.72

RGB-D �� Mobility Aids [36] 23 1576 54.4 52.6 54.4 0.71 0.68 0.70

(Kinect v2) �� RGB-D Pose 3D [37] 86 1 4055 60.3 92.8 71.4 0.75 0.95 0.82

�� YOLO v3, naı̈ve depth (COCO) [34] 28 1081 68.7 93.1 74.7 0.80 0.92 0.84

�� RGB-D YOLO (COCO + synthetic 3D) [1] 24 3269 91.1 99.0 93.5 0.92 0.99 0.94

2D, 3D, RGB-D : Detection fusion
DR-SPAAM + SECOND-DV (ILIAD) + RGB-D YOLO

360 9 9123 - - - 0.87 0.92 0.89

3D, RGB-D : Detection fusion
SECOND-DV (ILIAD) + RGB-D YOLO

360 9 8294 - - - 0.91 0.96 0.93

3D, RGB-D : Detection fusion
Same, but fuse 3D lidar only outside RGB-D FOV

360 9 8294 - - - 0.92 0.99 0.94

Fig. 6: Cross-modal comparison of different human detectors on two distinct sequences from our data set in an industrial
environment. Evaluation using 3D centroid annotations with a distance threshold of 0.5m is restricted to the Kinect v2 FOV
for a fair comparison and performed on a 3.5 GHz Intel Quad-Core CPU with GTX 1080 GPU. “ILIAD” denotes our own
intralogistics training data from the same environment.



them. It shows the best performance across all modalities
and test sequences, which demonstrates the importance of
both semantically rich RGB and geometrically accurate
depth data. In terms of generalization, it is noteworthy that
it has learned all 3D aspects (centroids, oriented bounding
boxes) solely from synthetic training data [33], without any
fine-tuning on real-world data from our target domain.

Qualitatively, the RGB-D methods appear to be the only
ones that are robustly able to detect humans in any kind
of body pose (e.g. sitting, kneeing, lying on the floor). Even
though their limited field of view could be extended by com-
bining several sensors, multiple instances of the Kinect v2
driver alone would incur a very high GPU and CPU load,
leading to very high power consumption that might be unsuit-
able for mobile use-cases. Due to the additional availability
of visual appearance cues, having at least one RGB(-D)
sensor onboard could be valuable for service robotics use-
cases that require person re-identification capabilities, for
instance for person guidance or following [5]. At the same
time, privacy concerns should be taken into consideration,
which are less of a problem with 2D laser and 3D lidar.

D. Multi-sensor transfer learning results

We now compare the domain-adapted SECOND-DV 3D
lidar detector, which we trained completely from scratch on
data from the target domain using our multi-sensor transfer
learning approach, to the earlier discussed variant trained
on the KITTI dataset. We can see in Fig. 6 that even
with our rather simplistic approach without tracking, due
to using a strong RGB-D detector as teacher, we obtain
very promising results for SECOND-DV that outperform
the original model trained on hand-labeled KITTI data in
terms of AP on both scenes (by up to +11.5%, or +6.9%
combined) and in peak-F1 score on the second scene (+7%),
without having manually annotated a single lidar point cloud.
Weak supervision led to a significant improvement in AP due
to higher maximum recall, with a slight drop in precision
only in the Dynamic scene. There, the adapted lidar model
achieves an even higher recall than its teacher network.
The increased peak-F1 score on the Storage Room sequence
suggests a better adaptation to cluttered indoor scenes.

E. Detection fusion of best-performing detectors

As can be seen in the last three rows of Figure 6,
naı̈vely combining detections from multiple sensors can
improve recall, but at the cost of reduced precision as
the weaker sensor/detector combinations introduce additional
false positives. Therefore, more complex voting schemes or
detection-to-track fusion (after calibrating detector scores)
should be utilized. Under the current setup, when using a
strong detector in combination with a time-of-flight RGB-D
camera, it appears reasonable to fuse 3D lidar only outside
the RGB-D camera’s field of view for 360-degree coverage.

VII. CONCLUSION

In this paper, we performed a cross-modal analysis of
human detection approaches with experimental focus on

industrial environments – an important robotics use-case that
is underrepresented in current benchmarks. We also showed
that already a relatively simple multi-sensor transfer learning
approach can effectively address training data scarcity in our
target domain, and improve detector performance.

The main conclusions from our experiments are as fol-
lows: Recent state-of-the-art detectors, which have been de-
veloped and tested on other domains (e.g. automotive, elderly
care facilities), are in general also the top-performing ones
in our industrial target domain. In particular, strong RGB-D
methods work well even when learning 3D localization just
from synthetic data, and have no problems with detecting
persons in unusual protective clothing if pre-trained on large-
scale, real-world 2D image datasets such as MS COCO.
Instead, 3D lidar-based approaches show a larger domain
gap that can be mitigated by retraining on data from the
target domain – for example using the presented transfer
learning approach. There, it is noteworthy that if we learn 3D
localization and bounding box estimation in RGB-D YOLO
from synthetic data, after multi-sensor transfer learning we
obtain a 3D lidar detector model that outperforms other
models (from a different domain) on real-world data. The
domain gap that exists without domain adaptation suggests
that currently available public datasets for 3D lidar are
too small or not diverse enough to make deep learning
approaches generalize well to robotics scenarios like ours.

Finally, we want to revisit the two example robots from
Section I from a practical point of view: For the cost-sensitive
consumer robot without GPU in a moderately complex use-
case, a very promising combination appears to be a (low-
cost) 2D lidar and the classical ML approach by Leigh
et al. [23]. In our experiments, its performance was close
to the best deep learning approach for this modality and
surprisingly decent in comparison to the other much richer
sensors. For the hospital delivery robot, a strong drop in
performance from RGB-D to 3D lidar was not confirmed
in our experiments. The combination of an RGB-D camera
with our approach [1] was the best one overall, but relatively
closely followed by 3D lidar and SECOND-DV, if retrained
on the target domain using the presented transfer learning
strategy. If privacy were a concern in the use-case, therefore
3D lidar might be the preferred choice.

These findings point into several directions for future
work. The observed generalization issues of the 3D lidar
detectors, which apparently suffer more from a deployment
gap than RGB-D methods, highlight the importance of
dedicated data sets in robotics applications domains. Along
that line, we will consider the JackRabbot data set [15]
and a re-evaluation as soon as data with next-generation
sensors becomes available, such as the Azure Kinect. A
more profound exploration of detection fusion also appears
a promising direction.
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