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Abstract—Human motion trajectory prediction, an essential
task for autonomous systems in many domains, has been on
the rise in the recent years. With a multitude of new methods
proposed by different communities, the lack of standardized
benchmarking and objective comparison between them has been
a major limitation for assessing the capabilities of the state-of-
the-art systems. In this paper we present the Atlas benchmark
which encompasses a large variety of heterogeneous datasets,
representing usual human motion behaviors in different places
and cultures. The Atlas benchmark offers tools, such as metrics,
data preparation and filtering, calibration and visualization to
overcome several limitations of existing benchmarking, thus
sustaining the enduring development of better algorithms.

I. INTRODUCTION

Benchmarking motion prediction algorithms is a challeng-
ing task. The evaluation outcome can be affected by various
factors, and the properties of the methods can sometimes be
exposed only in elaborate experiments. For instance, such
factors include prediction horizon, which defines how far into
the future predictions are made, and the procedure used to
extract testing scenarios from raw datasets (labeled detections).
Even when evaluating the simplest constant velocity model
using the same dataset, metrics and prediction horizon, the
evaluation results still vary in [1] and [2] due to the differences
in testing scenario generation and data pre-processing.

In this paper we present the Atlas benchmark as the first
step towards automated benchmarking and evaluation of the
motion prediction methods with systematic variation of param-
eters. Atlas includes heterogeneous datasets of human motion
trajectories, and is capable of automatically extracting valid
testing scenarios, interpolating, downsampling and smoothing
the missing and noisy detections. Compared to the prior art
(e.g. TrajNet++ [3]), it offers many tunable parameters like the
observation period and prediction horizon, import of semantic
maps and other relevant information such as the coordinates
of goals in the map, evaluation of the probabilistic prediction
results, and robustness testing with added noise to the original
data. Unlike TrajNet++, our benchmark is especially suited
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Fig. 1. Atlas benchmark design

for studying how prediction parameters influence the results,
in contrast to fixing the main parameters for producing ranking
scores in a specific challenge.

II. BACKGROUND

Generally speaking, trajectory prediction aims to estimate
future positions of a moving agent within a certain time
horizon with a deterministic or stochastic state hypothesis.
Typically, a motion predictor uses as input the current (x, y)
state of the agent (or a history of observed states), possibly
augmented with the current state of the environment (or history
thereof). The environment is represented by the states of other
moving agents, a 2D map of static obstacles M and possibly
also surface semantics f(M). For evaluation of a motion
predictor, a continuous flow of detections from the dataset [6]–
[11] is converted into testing scenarios, where all detections
between two frames are used as the observation history of
length O, and the following T frames should be predicted
and compared to the ground truth (GT) data. Metrics used
to this end include geometric and probabilistic estimations of
the distances between predicted and GT positions [12]. This
outlines the main parameters of the evaluation: the dataset
used, the extraction strategy for a testing scenario, observation
and prediction intervals O and T , and finally the metrics.



The evaluation strategy, proposed by Alahi et al. [1] and for-
malized in the first TrajNet benchmark for motion prediction
[4], has been adopted by many authors [13]–[21]. It uses the
ETH and UCY datasets with fixed observation history O = 3.2
s and prediction horizon T = 4.8 s and the ADE and FDE
geometric metrics. TrajNet does not include variability in the
main parameters O and T , obstacles in the environment and
any notion of prediction uncertainty or robustness.

An improved TrajNet++ benchmark [3] uses several further
datasets, and potentially can be extended with new ones (stored
in json format). It includes the possibility to predict several
discrete positions for each pedestrian in each step, but does
not support other probability distribution representations. The
main limitation here, however, is the rigidly defined testing
parameters, which restrict the evaluation to the fixed O = 3.2
s and T = 4.8 s. Furthermore, the scenario extraction strategy
only guarantees that in each scenario one target pedestrian has
a complete track of requested O + T consecutive positions.
This contradicts the assumption, commonly made by many
authors, that the history tracks for all pedestrians are available
at the time of prediction [21]–[24]. TrajNet++ does not support
obstacles and semantic information about the environment.

Based on these insights, we develop the Atlas benchmark
with an automated procedure to extract testing scenarios from
an arbitrary dataset with flexible O and T parameters. Atlas
accepts occupancy and semantic maps as input, supports
analytical and discrete uncertainty representation, and includes
robustness experiments with added noise to the observed
trajectories.

III. OUR BENCHMARK DESCRIPTION

Fig. 1 outlines the design of our benchmark. The benchmark
includes five main elements: data import, preprocessing, a
prediction phase, evaluation and visualization tools. By ex-
plicitly interfacing the prediction module and scripting the
experiments, our benchmark is suited for flexible and highly
automated assessment of the motion prediction algorithms.

As the first step, the datasets and possibly additional in-
formation like the known goals in the environment, obstacle
or semantic maps, are imported into the benchmark. Then,
the raw data is preprocessed with downsampling to the user-
defined frequency, interpolating the missing detections and
trajectory smoothing. Once the dataset is ready, we extract
the testing scenarios with the user-specified observation and
prediction lengths. The observed histories of all people in the
testing scenario, along with environment data, are explicitly
interfaced as input to the prediction algorithm. The returned
predictions are evaluated against the ground truth using sev-
eral metrics. Finally, the prediction results can be visualized
with plots or animations. Meta-parameters to control the data
processing and experiments are stored in a separate yaml file,
eliminating the need to modify and re-compile the code.

A. Datasets

The benchmark users can import any dataset in the spe-
cific json file format, compatible with TrajNet++ [3], which
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Fig. 2. Example trajectory from the ATC dataset, which shows the noise
and missing detections in the raw data (original trajectory on the top). Our
benchmark offers interpolation and smoothing to fix this, followed by adding
a controlled amount of noise to test the robustness of the prediction algorithm.
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Fig. 3. Synthetic testing scenarios (top to bottom: opposing, crossing and
avoiding an obstacle). The blue and orange dots show the observations of
the two people, the green dotted lines show the social force predictions [25],
and the purple dotted lines illustrate the predictive social force result [26].

includes for each detection the time stamp, person id and
position. The json dataset format also supports the obstacle and
semantic grid maps, and the common goals in the environment,
which may insight the possible destinations of people. Our
benchmark currently includes the following three datasets:

i) ETH [6]: This dataset contains people detections from
video data recorded outdoors in the ETH campus in two
locations: ETH and HOTEL.

ii) ATC [9]: It is recorded in a shopping mall in Japan,
representing therefore a large indoor environment with
densely crowded scenes.

iii) THÖR [11]: This dataset captures human motion in a
room with static obstacles.

These three datasets come from different countries, taken
in different environments, which increases the diversity of the
data, and allows comparing the prediction methods on different
social and cultural contexts.



B. Preprocessing

Raw datasets often include noise and annotation artifacts
(e.g. missing detections) [11]. Hence, our benchmark offers
interpolating and smoothing options in the preprocessing step.
In addition, to check the robustness of the implemented
models, Gaussian noise may be added to each detection. Fig. 2
shows the preprocessing steps applied to one trajectory in
the ATC dataset. After detecting the missing frames in the
original trajectory based on the average annotation frequency,
we interpolate the points in the missing part of the trajectory.
Then, a moving average filter is used to smooth the noise.
Finally, random noise distributed as N (0, σ2), where σ is
inversely proportional to the frame frequency, can be added
to each detection.

After the data preprocessing, Atlas generates the testing
scenarios with the observation length O and ground truth for
the following T frames. As the prediction quality may strongly
depend on the observation length (in particular for intention
estimation and when the person detection is noisy), it is critical
that all people in the testing scenario are observed in each of
the O frames. A testing scenario, along with the environment
information, is passed to the motion prediction step.

C. Prediction

Our benchmark offers a direct interface to the prediction
module, which is called at this step for the given testing
scenario. This allows automated evaluation with a systematic
variation of parameters, defined at the previous steps. For
optimizing the hyperparatemers of the prediction methods,
such as [25]–[29], Altas includes an interface to the SMAC3
optimizer [5].

Prior to benchmarking the prediction model on real data,
the users can first validate their methods with several synthetic
scenarios, which model fundamental interactions between peo-
ple and the environment, e.g. individuals and groups walk-
ing in the opposite directions, crossing paths and navigating
around hindrances (see several examples in Fig. 3). For
instance, Fig. 3 (top) shows two people walking on a collision
course towards each other. Their velocities are 1 ms−1 and
the initial displacement in the y axis is 0.2 m. The frame
frequency is 2.5Hz and the observation length is 8 frames.

Our benchmark supports analytical, discrete and particle-
based uncertainty representation for the prediction results.
Discrete uncertainty is encoded in the grid map of the en-
vironment, separately for each person in each time step. Ana-
lytical uncertainty is represented with a mixture of Gaussians.
Particle-based uncertain predictions are represented with a
set of discrete samples. These options allow evaluating most
existing prediction algorithms.

D. Evaluation

The Atlas benchmark supports geometric and probabilistic
metrics. Geometric metrics include the Average Displacement
Error (ADE), which describes the error between points of
predicted trajectory and the ground truth at the same time step,
and the Final Displacement Error (FDE), which computes

the error at the last prediction step. Probabilistic metrics
include the Negative Log-Probability (NLP), which computes
the average probability of the ground truth position under the
predicted distribution for the corresponding frame, and Top-k
ADE and FDE, which compute the displacements between the
ground truth position and the closest of the k samples from
the probability distribution.

E. Experiments

On top of the datasets, metrics and pre-processing steps, in
our benchmark we propose a set of experiments to study the
prediction performance under the influence of various factors.
These experiments allow systematic validation of parameters
and help the users to gain a deeper insight into the applicability
of the methods, in contrast to a limited insight contained in a
single benchmark score. Due to the automated nature of our
benchmark, the experiments are scripted with all parameters
available externally in a yaml file.

1) Prediction accuracy conditioned on parameters: Obser-
vation length and prediction horizon are among the main fac-
tors, associated with predicting motion. The accuracy naturally
degrades for further time instances, while longer observations
may improve it overall. In Atlas it is possible to measure
the accuracy of prediction conditioned on these two main
parameters. We intend to add more conditioned experiments in
the future, e.g. based on the number of people in the scenario.

2) Transfer experiment: A crucial part of evaluating a
prediction method is testing its applicability in new environ-
ments outside the training data. Surprisingly, this experiment
is most often overlooked in evaluation sections. In Atlas it is
possible to script hyperparameter optimization in one dataset,
and evaluate the resulting method in another. In the future we
plan to extend this functionality to training.

3) Robustness experiment: For a system working in the
real world, perception of the people’s positions is often prone
to noise, therefore the predictor must be robust to noisy
input. One possible way to quantify robustness, implemented
in Atlas, is by measuring accuracy on the testing scenarios,
artificially adding increasing amounts of Gaussian noise to the
initially noise-free data.

IV. EXPERIMENTS WITH LOCAL INTERACTION MODELS

Social force model [25] is a well-known approach for
describing joint motion of people with promising results in
the prediction domain [30]. A reasonable and popular choice
due to its reliability, performance and simple implementation,
the social force model suffers from inherent reactivity: the
agents engage in passive collision avoidance only when in
close proximity for the social forces to take effect (see Fig. 3).
In reality, people adapt their trajectories to avoid collisions
in advance. To correct this sort of behavior, the social force
theory was extended with explicit collision prediction by a
number of authors.

In this section we use the experiments in Atlas to compare
the social force (Sof ) with two popular predictive extensions:
the model by Zanlunlgo et al. [26], abbreviated as Zan in



Prediction horizon
Methods 1.6 s 3.2 s 4.8 s 8 s

A
D

E
CVM 0.10 ± 0.05 0.23 ± 0.13 0.40 ± 0.23 0.84 ± 0.57
LIN 0.17 ± 0.09 0.34 ± 0.19 0.55 ± 0.35 1.02 ± 0.69
Sof 0.10 ± 0.05 0.23 ± 0.12 0.39 ± 0.20 0.78 ± 0.45
Zan 0.10 ± 0.05 0.23 ± 0.12 0.38 ± 0.19 0.76 ± 0.44
Kara 0.11 ± 0.06 0.23 ± 0.11 0.38 ± 0.19 0.75 ± 0.44

FD
E

CVM 0.19 ± 0.10 0.50 ± 0.28 0.90 ± 0.54 1.96 ± 1.44
LIN 0.29 ± 0.16 0.66 ± 0.39 1.13 ± 0.73 2.25 ± 1.62
Sof 0.19 ± 0.09 0.49 ± 0.26 0.85 ± 0.45 1.72 ± 1.12
Zan 0.19 ± 0.10 0.49 ± 0.26 0.85 ± 0.44 1.67 ± 1.08
Kara 0.20 ± 0.10 0.49 ± 0.25 0.85 ± 0.44 1.67 ± 1.07

TABLE I
ADE/FDE IN THE ETH DATASET WITH DIFFERENT PREDICTION

HORIZONS

Prediction horizon
Methods 1.6 s 3.2 s 4.8 s 8 s

A
D

E

CVM 0.15 ± 0.09 0.38 ± 0.24 0.71 ± 0.45 1.51 ± 0.91
LIN 0.29 ± 0.18 0.60 ± 0.38 0.99 ± 0.63 1.84 ± 1.08
Sof 0.18 ± 0.10 0.36 ± 0.20 0.60 ± 0.35 1.13 ± 0.67
Zan 0.15 ± 0.09 0.34 ± 0.20 0.59 ± 0.36 1.16 ± 0.70
Kara 0.16 ± 0.08 0.35 ± 0.19 0.60 ± 0.36 1.16 ± 0.69

FD
E

CVM 0.28 ± 0.18 0.86 ± 0.54 1.64 ± 1.05 3.54 ± 2.11
LIN 0.49 ± 0.31 1.20 ± 0.75 2.07 ± 1.30 3.97 ± 2.27
Sof 0.29 ± 0.16 0.72 ± 0.42 1.27 ± 0.79 2.48 ± 1.54
Zan 0.26 ± 0.16 0.72 ± 0.43 1.31 ± 0.82 2.62 ± 1.61
Kara 0.28 ± 0.15 0.73 ± 0.42 1.31 ± 0.82 2.59 ± 1.59

TABLE II
ADE IN THE THÖR DATASET (“ONE OBSTACLE” SCENARIO) WITH

DIFFERENT PREDICTION HORIZONS
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Fig. 4. ADE/FDE in the ATC dataset with different observation lengths using
Gaussian filter as initial velocity filter and without smoothing

plots and tables, and the model by Karamouzas et al. [27],
abbreviated as Kara. As a baseline, we add the linear velocity
model (Lin), implemented as average velocity in the observed
track, and constant velocity model (CVM), implemented as
forward propagating the last observed motion state.

A. Results and Discussion

Tables I and II show the results of experimenting with
different prediction horizons. In general, and not surprisingly,
the social force models outperform the linear velocity variants
with lower displacement errors, and show more stable perfor-
mance with lower standard deviations. However, we did not
find a substantial difference between Sof, Kara and Zan in any
of the datasets and on any of the prediction horizons.
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Fig. 5. ADE/FDE in the THÖR dataset (“Three obstacles” scenario) with
different observation lengths
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Dataset ETH HOTEL ATC THÖR1

ETH

CVM: 0.40 ± 0.23
LIN: 0.55 ± 0.35
Sof: 0.39 ± 0.20
Zan: 0.38 ± 0.19

Kara: 0.38 ± 0.19

0.20 ± 0.16
0.25 ± 0.22
0.21 ± 0.16
0.20 ± 0.16
0.21 ± 0.16

0.50 ± 0.12
0.56 ± 0.16
0.50 ± 0.12
0.50 ± 0.12
0.50 ± 0.12

0.83 ± 0.43
1.14 ± 0.59
0.74 ± 0.37
0.71 ± 0.37
0.72 ± 0.38

HOTEL
Sof: 0.40 ± 0.23
Zan: 0.40 ± 0.23

Kara: 0.40 ± 0.23

0.20 ± 0.16
0.20 ± 0.16
0.20 ± 0.16

0.50 ± 0.12
0.50 ± 0.12
0.50 ± 0.12

0.83 ± 0.43
0.82 ± 0.43
0.83 ± 0.43

ATC
Sof: 0.40 ± 0.23
Zan: 0.40 ± 0.23

Kara: 0.40 ± 0.23

0.20 ± 0.16
0.20 ± 0.16
0.20 ± 0.16

0.50 ± 0.12
0.50 ± 0.12
0.50 ± 0.12

0.82 ± 0.43
0.82 ± 0.43
0.82 ± 0.43

THÖR1
Sof: 0.39 ± 0.20
Zan: 0.38 ± 0.20

Kara: 0.38 ± 0.20

0.21 ± 0.16
0.20 ± 0.16
0.21 ± 0.16

0.50 ± 0.12
0.50 ± 0.12
0.50 ± 0.12

0.71 ± 0.36
0.71 ± 0.37
0.71 ± 0.37

TABLE III
ADE MEASURED IN THE TRANSFER EXPERIMENTS ON DIFFERENT

DATASETS. THÖR1 ABBREVIATES THE “ONE OBSTACLE” SCENARIO.

Similarly, in experiments with different observation hori-
zons we found no difference between the models. Interest-
ingly, if the observations have low levels of noise, observing
additional frames does not improve the performance, see a
comparison between the noisy ATC dataset and noise-free
THÖR in Fig. 4 and 5 respectively.

Table III summarizes the transfer experiment, where the
methods are calibrated on one dataset and tested on another.
Also in this case we did not find that one of the three social
force models exhibits superior transferability.

Finally, in Fig. 6 and 7 we show the robustness experiment,
where we measure performance in presence of noise. While
all social force models have excellent robustness, on the level
of the very simple and therefore very robust constant velocity
model, the predictive variants do not outperform here either.

V. CONCLUSION

In this paper we present the Atlas motion prediction
benchmark for thorough evaluation in automated repeatable
experiments with a systematic variation of the several key
prediction parameters. In the future work we plan to release
Atlas implementation in Python, implement additional metrics,
further baseline algorithms, new scripted experiments and an
interface to fine-tune the pattern-based methods in the transfer
experiments.
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Fig. 6. ADE/FDE in the ETH dataset with added noise and using linear
velocity filter
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Fig. 7. ADE/FDE in the THÖR dataset (“Three obstacles” scenario) with
added noise and using linear velocity filter
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Learning multi-modal distributions of pedestrian trajectories with GANs.
In Proc. of the IEEE Conf. on Comp. Vis. and Pat. Rec. (CVPR)
Workshops, pages 0–0, 2019.

[22] F. Bartoli, G. Lisanti, L. Ballan, and A. D. Bimbo. Context-aware
trajectory prediction. In Proc. of the IEEE Int. Conf. on Pattern
Recognition, pages 1941–1946, 2018.

[23] Tharindu Fernando, Simon Denman, Sridha Sridharan, and Clinton
Fookes. Soft+Hardwired attention: An LSTM framework for human
trajectory prediction and abnormal event detection. Neural networks,
108:466–478, 2018.

[24] Chaofan Tao, Qinhong Jiang, Lixin Duan, and Ping Luo. Dy-
namic and static context-aware lstm for multi-agent motion prediction.
arXiv:2008.00777, 2020.

[25] D. Helbing and P. Molnar. Social force model for pedestrian dynamics.
Physical review E, 51(5):4282, 1995.

[26] F. Zanlungo, T. Ikeda, and T. Kanda. Social force model with explicit
collision prediction. EPL (Europhysics Letters), 93(6):68005, 2011.

[27] I. Karamouzas, P. Heil, P. van Beek, and M. H. Overmars. A predictive
collision avoidance model for pedestrian simulation. In Int. Workshop
on Motion in Games, pages 41–52. Springer, 2009.

[28] S. Kim, S. J. Guy, W. Liu, D. Wilkie, R. W. H. Lau, M. C. Lin, and
D. Manocha. BRVO: Predicting pedestrian trajectories using velocity-
space reasoning. Int. J. of Robotics Research, 34(2):201–217, 2015.

[29] F. Farina, D. Fontanelli, A. Garulli, A. Giannitrapani, and D. Prat-
tichizzo. Walking ahead: The headed social force model. PloS one,
12(1):e0169734, 2017.

[30] A. Rudenko, L. Palmieri, and K. O. Arras. Joint prediction of human
motion using a planning-based social force approach. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 1–7, 2018.

https://github.com/automl/SMAC3

	Introduction
	Background
	Our Benchmark Description
	Datasets
	Preprocessing
	Prediction
	Evaluation
	Experiments
	Prediction accuracy conditioned on parameters
	Transfer experiment
	Robustness experiment


	Experiments with Local Interaction Models
	Results and Discussion

	Conclusion
	References

