
Benchmarking Sampling-based Motion Planning Pipelines
for Wheeled Mobile Robots

Eric Heiden *1, Luigi Palmieri ∗2, Leonard Bruns 3,
Kai O. Arras2, Gaurav S. Sukhatme1†, Sven Koenig1

1 Department of Computer Science, University of Southern California, Los Angeles, USA
2 Robert Bosch GmbH, Corporate Research, Stuttgart, Germany

3 Division of Robotics, Perception and Learning (RPL), KTH Royal Institute of Technology, Stockholm, Sweden
heiden@usc.edu, Luigi.Palmieri@de.bosch.com, leonardb@kth.se

Abstract

Sampling-based motion planning is a key tool for sev-
eral autonomous systems ranging from autonomous
driving to service and intralogistic robotics. Over the
past decades, several algorithms, extend functions and
post-smoothing techniques have been introduced for
such systems. Choosing the best combination of such
components for an autonomous system’s application is
a tedious exercise, even for expert users. With the aim of
helping researchers and practitioners in efficiently solv-
ing this issue, we have recently presented Bench-MR,
the first open-source motion-planning benchmarking
framework designed for sampling-based motion plan-
ning for nonholonomic, wheeled mobile robots. Unlike
related software suites, Bench-MR is an easy-to-use and
comprehensive benchmarking framework that provides
a large variety of sampling-based motion-planning al-
gorithms, extend functions, collision checkers, post-
smoothing algorithms and optimization criteria. In this
workshop paper, we complement our previous publica-
tion, by providing several examples on how to use it,
together with the details on the framework architecture
and components.

Introduction
In this paper we present Bench-MR, the first open-source
benchmarking framework designed for sampling-based mo-
tion planning for nonholonomic, wheeled mobile robots in
complex navigation scenarios resembling real-world appli-
cations. This work has previously been published at the In-
ternational Conference on Robotics and Automation (Hei-
den et al. 2021)1.

Bench-MR is based on two main pillars, namely the
motion-planning components (consisting of the sampling-

*Equal contribution
†G.S. Sukhatme holds concurrent appointments as a Professor

at USC and as an Amazon Scholar. This paper describes work per-
formed at USC and is not associated with Amazon.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We publish code and documentation on our Bench-MR web-
site at https://robot-motion.github.io/bench-mr.

Figure 1: Selection of environments provided by Bench-
MR: City grid from the Moving AI path-finding benchmark
(Sturtevant 2012) (top left), polygon-based warehouse envi-
ronment (top right), and thresholded occupancy grid from
the Freiburg SLAM dataset (Kümmerle et al. 2009) (bot-
tom).

based motion planning algorithms, extend functions, colli-
sion checkers, post-smoothing algorithms and optimization
criteria) and the evaluation components (consisting of the
navigation scenarios and performance metrics), see Fig. 2.
We chose all these components carefully to match the ap-
plication constraints. For example, we focus on polygon-
based collision checking since it presents a challenge for
motion-planning algorithms which make inefficient use of
collision checking. Furthermore, we support the evaluation
of motion-planning systems for particular settings of nav-
igation scenarios, such as varying obstacle density. Over-
all, Bench-MR is a highly configurable and expandable
software suite with representative state-of-the-art motion-
planning and evaluation components.

https://robot-motion.github.io/bench-mr

Much of Bench-MR builds on the Open Motion Planning
Library (OMPL) (Şucan, Moll, and Kavraki 2012), but we
also provide interfaces to other implementations of motion-
planning algorithms (such as SBPL planners (Likhachev,
Gordon, and Thrun 2003)) and extend functions (such as
POSQ (Palmieri and Arras 2014) and continuous-curvature
steering (Fraichard and Scheuer 2004)) outside of OMPL.
Thus, Bench-MR offers users access to state-of-the-art com-
ponents of sampling-based motion-planning systems for
wheeled mobile robots, while being less confined to partic-
ular implementations of these components.

Related Work
Several researchers have recently introduced benchmark-
ing frameworks for analyzing motion-planning algorithms
for different robotic systems. We discuss some of the most
prominent ones in the following.

Sturtevant (Sturtevant 2012) has introduced a benchmark-
ing framework for path-planning algorithms for robotic sys-
tems without kinematic constraints. The Moving AI path-
finding benchmark provides many navigation scenarios on
different grid-based environments, such as city grids. Bench-
MR includes some of their environments (and supports their
format) but additionally it provides many other environment
classes, motion-planning components and evaluation com-
ponents for wheeled mobile robots.

Luo et al. (Luo and Hauser 2014) have introduced
a benchmarking framework for asymptotically optimal
motion-planning that supports only straight-line connec-
tions and compares them only on four navigation scenarios.
Bench-MR, on the other hand, provides many diverse navi-
gation scenarios for wheeled mobile robots.

Moll et al. (Moll, Şucan, and Kavraki 2015) have in-
troduced a general benchmarking framework for motion-
planning algorithms that is highly coupled with OMPL. It is
highly customizable but lacks specific navigation scenarios
for wheeled mobile robots. Bench-MR, on the other hand,
provides navigation scenarios, performance metrics and ex-
tend functions for wheeled mobile robots and, similar to Co-
hen et al. (Cohen, Şucan, and Chitta 2012), different classes
of motion-planning algorithms, including lattice-based plan-
ners.

Althoff et al. (Althoff, Koschi, and Manzinger 2017) have
introduced a benchmarking framework for autonomous cars
driving on roads. Bench-MR, on the other hand, focuses on
wheeled mobile robots in complex and cluttered static (in-
door and outdoor) environments.

Additionally the website (Amato, Rauchwerger, and
Morales 2013) provides several benchmarks for different
robotic systems but contains only a small number of nav-
igation scenarios for wheeled mobile robots. Instead Path-
Bench (Clair et al. 2021) is a framework for testing recent
machine learning based algorithms for planning in 2D or 3D
grid environments without focusing on mobile robots.

A number of authors (Calisi and Nardi 2009; Weisz et al.
2016; Rañó and Minguez 2006; Sprunk et al. 2016) have in-
troduced benchmarking frameworks for motion-planning al-
gorithms in dynamic environments. Bench-MR, on the other

Bench-MR
Python Front-End

C++ Back-End

External
OMPL SBPL ...

Merged
Result
JSON

Setup Front-End
Plotting

Config
JSON

Config
JSON

Config
JSON

Result
JSON

Result
JSON

Result
JSON

Motion-Planning Evaluation
Motion-Planning

Algorithms
Post-Smoothing

Algorithms

Extend
Functions

Collision
Checkers

Optimization
Criteria

Scenarios

Performance
Metrics

Figure 2: Architecture of Bench-MR. The components nec-
essary for motion planning are shown in the box on the left
(turquoise), and the utilities used in the evaluation are shown
in the box on the right (orange). The implementation is split
into a C++ back-end for running the performance-critical
motion-planning components, and a Python front-end for
providing a flexible interface to the design and evaluation
of the benchmark scenarios through Jupyter notebooks.

hand, focuses on motion planning in static environments,
which is a fundamental operation often performed during
robot navigation in dynamic environments.

Architecture of Bench-MR
Bench-MR is split into a Python front-end and a C++ back-
end, see Fig. 2. The front-end provides a flexible inter-
face for setting up and performing evaluations of motion-
planning systems through Jupyter notebooks. For example,
the front-end allows the user to select appropriate navigation
scenarios (such as environment classes) and performance
metrics related to the planning efficiency and the result-
ing motion quality. It then provides the user with extensive
evaluation reports and plotting capabilities. The back-end
performs the (compute-intensive) evaluations by using the
motion-planning components in the blue box and the eval-
uation components in the orange box. We chose all compo-
nents based on their scientific impact and their popularity
in the open-source community (Şucan, Moll, and Kavraki
2012; Likhachev et al. 2005; Fraichard and Scheuer 2004).
JSON files are used for communicating both settings from
the front-end to the back-end and the evaluation results in the
opposite direction. The open-source code of Bench-MR is
available at https://github.com/robot-motion/bench-mr. This
website also contains extensive documentation, including
tutorials and examples, and up-to-date benchmarking re-
sults, that are automatically generated.

Bench-MR provides interfaces to two existing open-
source motion-planning libraries, namely OMPL (Şucan,
Moll, and Kavraki 2012) and SBPL (Likhachev, Gordon,

https://github.com/robot-motion/bench-mr

and Thrun 2003), enabling the user to utilize their compo-
nents as part of Bench-MR. We expose many settings from
OMPL and SBPL through the Python interface, to allow the
user to change the parameters of their components. Cross-
component settings in Bench-MR (such as the computation
time limit) can be changed via a common interface.

Bench-MR Planning Components
In this section, we explain the Bench-MR motion-planning
components.

Sampling-Based Motion-Planning Algorithms
Bench-MR provides many different sampling-based motion-
planning algorithms that belong to to three different classes
(as suggested by prior work, such as (LaValle, Branicky,
and Lindemann 2004; LaValle 2006; Janson, Ichter, and
Pavone 2018)): feasible planners, asymptotically (near) op-
timal planners and lattice-based planners.2 For feasible and
asymptotically (near) optimal planners, Bench-MR provides
the option to use random sampling with a uniform distribu-
tion and goal biasing or deterministic Halton sampling (Jan-
son, Ichter, and Pavone 2018; LaValle, Branicky, and Lin-
demann 2004; Palmieri et al. 2019). We choose the most
prominent open-source implementation for each class.

Feasible Planners Feasible planners eventually find a
path with probability one but not necessarily an opti-
mal path. Bench-MR currently provides feasible planners
from OMPL (such as RRT (LaValle and Kuffner Jr 2001),
PRM (Kavraki et al. 1996), SPARS (Dobson, Krontiris, and
Bekris 2013), RRT (LaValle and Kuffner Jr 2001; Kunz
and Stilman 2015) using random forward propagation, EST
(Hsu, Latombe, and Motwani 1997), SBL (Sánchez and
Latombe 2003) and STRIDE (Gipson, Moll, and Kavraki
2013)).

Asymptotically (Near) Optimal Planners Asymptoti-
cally (near) optimal planners eventually find an optimal
path with probability one. Bench-MR currently provides
optimization-based planners from OMPL (such as RRT∗ and
PRM∗ (Karaman and Frazzoli 2011), BFMT (Starek et al.
2015), RRT# (Arslan and Tsiotras 2013)), informed search-
based planners (such as Informed RRT∗ (Gammell, Srini-
vasa, and Barfoot 2014), SORRT∗ (Gammell, Barfoot, and
Srinivasa 2018) and BIT∗ (Gammell, Srinivasa, and Barfoot
2015)), CForest (Otte and Correll 2013) and near-optimal
planners (such as SST (Li, Littlefield, and Bekris 2016),
an asymptotically near-optimal incremental version of RRT,
SPARS (Dobson, Krontiris, and Bekris 2013) and SPARS2
(Dobson and Bekris 2013)).

Lattice-Based Planners Lattice-based planners use state
lattices with predefined motion primitives that encode dif-
ferential constraints (Pivtoraiko, Knepper, and Kelly 2009).
Bench-MR currently provides lattice-based planners from
SBPL (such as ARA∗ (Likhachev, Gordon, and Thrun 2003),

2For the sake of brevity, we do not list all included planners
with detailed explanations and instead direct the reader to the cor-
responding references.

AD∗ (Likhachev et al. 2005), MHA∗ (Islam, Narayanan, and
Likhachev 2015) and ANA∗ (Van Den Berg et al. 2011)).

Extend Functions
Depending on the class of a sampling-based motion-
planning algorithm, Bench-MR provides two classes of
extend functions, namely those that use random forward
propagation for a given robot dynamical model and those
that solve a two-point boundary value problem (Laumond,
Sekhavat, and Lamiraux 1998) to connect two given robot
configurations exactly for a given steer function. We refer
the reader to (Kunz and Stilman 2015) for an analysis of the
properties of both classes. We also include the predefined
motion primitives for lattice-based planners here since they
can be understood as a discrete set of predefined controls.

Robot Dynamics Models Our software includes two
robot dynamics models, namely a kinematic car (ẋ =
vcosθ , ẏ = vsinθ , θ̇ = v/L · tanδ) and a kinematic single-
track model (ẋ = vcosθ , ẏ = vsinθ , θ̇ = v/L · tanδ , δ̇ = vδ),
where x and y are the Cartesian coordinates according to a
fixed world frame, L is the length of the car, v is the tangen-
tial velocity, θ is the heading, δ is the steering angle and δ̇

is its rate (Paden et al. 2016).

Steer Functions Several common steer functions, namely
Dubins (Dubins 1957), Reeds-Shepp (Reeds and Shepp
1990), Continuous Curvature (Banzhaf et al. 2017;
Fraichard and Scheuer 2004) and POSQ (Palmieri and Arras
2014; Palmieri, Koenig, and Arras 2016) are included.

Motion Primitives Bench-MR provides a few motion
primitives from SBPL, and further models can be added via
the motion primitive file interface of SBPL.

Collision Checkers
Bench-MR includes a two-dimensional grid-based approach
to collision checking, which checks whether the robot (mod-
eled as a polygon or single point) collides with blocked
cells. Furthermore, we provide a two-dimensional polygon-
based approach to collision checking, which uses the sepa-
rating axis theorem (Gottschalk 1996) to check whether the
robot (modeled as a convex polygon) intersects with obsta-
cles (also modeled as convex polygons). Finally, Bench-MR
provides the distance field, represented as a grid whose cells
are annotated with the distance to the closest obstacle, for all
environment classes.

Post-Smoothing Algorithms
Bench-MR includes several post-smoothing algorithms
from OMPL, such as B-Spline, Shortcut and Simplify-
Max (Şucan, Moll, and Kavraki 2012). It also includes
the recently introduced GRradient-Informed Post Smooth-
ing (GRIPS) algorithm (Heiden et al. 2018), a hybrid ap-
proach that combines short-cutting with locally optimized
waypoint placement based on the distance field of the envi-
ronment.

0 25 50 75 100 125 150
0

25

50

75

100

125

150

Informed RRT*
RRT
Start
Goal

Figure 3: Predefined grid-based environment obtained from
a gray-scale image of an Intel office building (Kümmerle
et al. 2009).

Optimization Criteria
Bench-MR provides optimization criteria by allowing user-
defined cost functions for several motion-planning algo-
rithms.

Bench-MR Evaluation Components
In the following, we explain the Bench-MR evaluation com-
ponents.

Navigation Scenarios
A navigation scenario consists of a specification of the
shapes of obstacles in an environment, the shape of a robot,
and its start and goal poses. Bench-MR provides the two
common environment classes used by motion-planning sys-
tems, namely grid-based and (convex) polygon-based en-
vironments. It provides both predefined and procedurally-
generated environments for both classes.

Predefined Grid-Based Environments We provide two
classes of predefined grid-based environments. First, we in-
clude a selection of city grids from the Moving AI path-
finding benchmark (Sturtevant 2012), consisting of city lay-
outs of sizes ranging from 256× 256 to 1024× 1024 cells.
An example is the Berlin 0 256 grid in Fig. 1 (top left).
Second, Bench-MR also provides image-based grids that
can be created from grey-scale images by thresholding with
a user-defined occupancy cutoff value (a common represen-
tation for maps generated by SLAM algorithms (Kümmerle
et al. 2009)). Examples are shown in Fig. 1 (bottom) and
Fig. 3.

Procedurally-Generated Grid-Based Environments
Bench-MR provides two classes of procedurally-generated
grid-based environments to allow the user to vary environ-
ment characteristics (such as the environment complexity)
in small steps. It provides random outdoor-like environ-
ments (with occasional small obstacles, such as trees) with
a desired percentage of blocked cells γ . These environments
are generated by starting with only unblocked cells and
repeatedly sampling a cell with a uniform distribution and

making it blocked. Examples are shown in Fig. 4 (top).
It also provides random indoor-like environments (with
complex networks of rectangular spaces, such as rooms and
corridors) with a desired minimum corridor width r. They
are generated by starting with only blocked cells and, for
a predefined number of steps, repeatedly sampling a cell
with a uniform distribution and applying a modified RRT
exploration algorithm to connect it to the nearest tree node
with either horizontal or vertical unblocked corridors of the
desired minimum corridor width. Examples are shown in
Fig. 4 (bottom).

0 10 20 30
0

10

20

30
°=1%

0 10 20 30
0

10

20

30
°=1:5%

0 10 20 30
0

10

20

30
°=2%

0 10 20 30
0

10

20

30
°=2:5%

0 10 20 30
0

10

20

30
°=3%

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
r=3

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
r=4

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
r=5

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
r=6

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
r=7

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
r=8

Figure 4: Procedurally-generated grid-based environments,
namely random outdoor-like environments with different
percentages of blocked cells (top), and random indoor-like
environments with different minimum corridor widths (bot-
tom).

Predefined Polygon-Based Environments Bench-MR
includes five classes of predefined polygon-based environ-
ments, as shown in the left-most five subfigures of Fig. 5.
It provides three parking scenarios in street environments
where a car-like vehicle has to park between other cars,
namely by i) pulling forward into a parking space, iii) back-
ing into a parking space, and ii) parallel parking. Bench-
MR also provides two navigation scenarios in warehouse
environments where a square-shaped robot has to navigate
among shelves of various sizes and irregular orientations.
Additional polygon-based environments can be loaded from
SVG files.

Procedurally-Generated Polygon-Based Environments
Bench-MR allows the user to generate their own polygon-
based environments procedurally by placing (convex) polyg-
onal obstacles into the environment. An example resembling
an asteroid field is shown in the right-most subfigure of
Fig. 5.

Performance Metrics
Bench-MR provides commonly used performance metrics
for evaluating motion-planning systems with respect to their
planning efficiency and resulting path quality.

1. The success statistics measure the percentage of found,
collision-free and exact paths. Whether a path is collision-
free is checked with a given collision checker. The ratio of
exact paths is included since some motion-planning sys-
tems report approximate paths.

2. The path length measures the length in meters (m) of a
path in the workspace.

parking1 parking2 parking3 warehouse1 warehouse2 asteroids

Figure 5: Paths for polygon-based environments computed by the Bidirectional Asymptotically Optimal Fast Marching Tree
(BFMT) motion-planning algorithm using the Reeds-Shepp steer function. The first five environments are predefined, and the
right-most environment is procedurally generated.

3. The maximum curvature (κmax), normalized curvature
(κnorm) and angle-over-length (AOL) measure the smooth-
ness of a path. Smoother paths result in less control effort
and energy to steer a robot and more comfort for the pas-
sengers. Since the maximum curvature is not well-defined
in the presence of cusps, we also use the normalized cur-
vature (which is the path-length-weighted curvature along
the path segments between the cusps), defined as

κnorm = ∑
i

∫
σi

κ(σ̇i(t))||ṗσi(t)||2 dt, (1)

where σi are the path segments of path σ between the
cusps, κ(σ̇(t)) is the curvature at point σ(t) of the path
and pσ are the x and y components of σ . Since the nor-
malized curvature ignores cusps, we also use the angle-
over-length (AOL) as a combined metric that divides the
total heading change by the path length. The total heading
change is computed numerically by summing the abso-
lute angular difference between neighboring tangent vec-
tors along the path. Following this convention, the head-
ing change for each cusp is approximately π .

4. The computation times measure the time in seconds (s)
required for collision checking, for extend function eval-
uation (namely forward integration when using forward
propagation or solving the two-point boundary value
problems when using steer functions), and for finding an
initial path.

5. The mean clearing distance measures how close a path is
to obstacles (reported in meters).

6. The number of cusps (Banzhaf et al. 2017) measures how
often a robot has to stop on a path and turns its wheels to
abruptly change its heading.

Example Usage
In the following, we demonstrate how Bench-MR allows for
an easy benchmarking of different planners. For more ex-
periments that give insights on the interplay between various
components of the planning pipeline, we refer the reader to
our main paper (Heiden et al. 2021).

Introductory Example
As initial step we set our motion planning benchmark object
mpb, associated to a configuration file in the JSON format
that contains all the benchmark configurations. We specify
a generator for procedural grid environments that resemble
indoor-like spaces with corridors that have a width of 3 cells:

1 from mpb import MPB
2 mpb = MPB(c o n f i g f i l e = ” b e n c h m a r k t e m p l a t e . j s o n ”)
3 mpb . s e t c o r r i d o r g r i d e n v (r a d i u s = 3)

Next, we define the planning algorithms that we wish to
compare, the type of steer function, and the number of runs
to execute each combination of planning algorithm and steer
function:

1 mpb . s e t p l a n n e r s ([” r r t ” , ” r r t s t a r ” , ” i n f o r m e d r r t s t a r ”])
2 mpb . s e t s t e e r f u n c t i o n s ([” r e e d s s h e p p ”])
3 mpb . run (r u n s =3)
4 mpb . v i s u a l i z e t r a j e c t o r i e s ()

To visualize the resulting paths (see Fig. 6), we need to
call a single function on our motion planning benchmark in-
stance mpb:

1 mpb . v i s u a l i z e t r a j e c t o r i e s ()

0 10 20 30 40 50
0

10

20

30

40

50
Run 0 (50£ 50 corridor 1)

0 10 20 30 40 50
0

10

20

30

40

50
Run 1 (50£ 50 corridor 2)

0 10 20 30 40 50
0

10

20

30

40

50
Run 2 (50£ 50 corridor 3)

Informed RRT*
RRT
RRT*
Start
Goal

Figure 6: Paths obtained from the listed example.

To visualize the recorded metrics and gather statistical in-
sights (see Fig. 7), we can call the following function:

1 mpb . p l o t p l a n n e r s t a t s ()

As shown in Fig. 7, it visualizes the performance on key
metrics as violin plots across the 3 runs that have been exe-
cuted, grouped by the motion planning algorithms.

In
fo

rm
ed

 R
RT

*

RR
T

RR
T*

60

70

80

Path Length

In
fo

rm
ed

 R
RT

*

RR
T

RR
T*

0

2

4

6

Maximum Curvature

In
fo

rm
ed

 R
RT

*

RR
T

RR
T*

0.05

0.10

0.15

0.20

Computation Time
Mean
Median

In
fo

rm
ed

 R
RT

*

RR
T

RR
T*

3.0

3.2

3.4

3.6

Mean Clearing
In

fo
rm

ed
 R

RT
*

RR
T

RR
T*

2

4

6

8

Cusps

In
fo

rm
ed

 R
RT

*

RR
T

RR
T*

0

1

2

3

Aggregate
Total runs
Found solutions
Collision-free
Exact solution

Figure 7: Statistics obtained with the illustrated example.

Parallel Benchmark Execution
Bench-MR supports multi-processing out of the box to dis-
tribute benchmarks across multiple processors. After the
parallel execution, the results from the separately evaluated
benchmark instances can be merged for further analysis.

In the following example we vary the time allotment
within which the planner Informed RRT∗ equipped with the
Reeds-Shepp steer function has to find a solution. Therefore,
we create three MPB instances with different planning times
(0.5 s, 1 s and 10 s), and select the corridor-like procedural
grid generator as envionment. Finally, the MPB instances are
added to a MultipleMPB object which executes the three
benchmarks in parallel over five runs each.

1 from mpb import MultipleMPB , MPB
2 poo l = MultipleMPB ()
3 f o r t ime in [0 . 5 , 1 , 1 0] :
4 m = MPB()
5 m[” m a x p l a n n i n g t i m e ”] = t ime
6 m. s e t c o r r i d o r g r i d e n v ()
7 m. s e t p l a n n e r s ([” i n f o r m e d r r t s t a r ”])
8 m. s e t s t e e r f u n c t i o n s ([” r e e d s s h e p p ”])
9 poo l . benchmarks . append (m)

10 poo l . r u n p a r a l l e l (” t e s t p a r a l l e l ” , r u n s =5)

Comparison: Random and Halton Sequences, State
Lattice
In this example we show how to compare different sampling
strategies, namely an i.i.d. uniform random distribution, Hal-
ton sequence, and state lattice.

We start by configuring a benchmark using a corridor en-
vironment generated with a radius of 3 cells, choose the
PRM∗ planning algorithm and the extend function Reeds-
Shepp:

1 from mpb import MPB
2 import m a t p l o t l i b a s mpl
3 mpb = MPB()
4 mpb . s e t p l a n n e r s ([” p r m s t a r ”])
5 mpb . s e t s t e e r f u n c t i o n s ([” r e e d s s h e p p ”])
6 mpb . s e t c o r r i d o r g r i d e n v (r a d i u s = 3 . 0)
7 mpb [” ompl . s eed ”] = 1
8 mpb [” ompl . c o s t t h r e s h o l d ”] = 0
9 mpb [” m a x p l a n n i n g t i m e ”] = 0 . 3

Next, we create three copies of the benchmark object mpb
and assign to them the different sampling strategies. For the
state lattice we need to also choose a different planning al-
gorithm, as it has to be a method from SBPL (we choose
ARA∗ here):

1 from copy import deepcopy
2 m p b i id = deepcopy (mpb)
3 m p b i id . s e t i d (” i i d ”)
4 m p b i id [” ompl . s a m p l e r ”] = ” i i d ”
5
6 mpb ha l ton = deepcopy (mpb)
7 mpb ha l ton . s e t i d (” h a l t o n ”)
8 mpb ha l ton [” ompl . s a m p l e r ”] = ” h a l t o n ”
9

10 m p b s t a t e l a t t i c e = deepcopy (mpb)
11 m p b s t a t e l a t t i c e . s e t i d (” s b p l a r a s t a r ”)
12 m p b s t a t e l a t t i c e . s e t p l a n n e r s ([” s b p l a r a s t a r ”])
13 m p b s t a t e l a t t i c e [” s b p l . s c a l i n g ”] = 1
14 m p b s t a t e l a t t i c e [” s b p l . r e s o l u t i o n ”] = 0 . 2 5
15 m p b s t a t e l a t t i c e [” m a x p l a n n i n g t i m e ”] = 1

Finally, we run the previously defined benchmarks in par-
allel:

1 poo l = MultipleMPB ()
2 poo l . benchmarks . append (m p b i i d)
3 poo l . benchmarks . append (mpb ha l ton)
4 poo l . benchmarks . append (m p b s t a t e l a t t i c e)
5 poo l . r u n p a r a l l e l (r u n s =100 , id =” exp ” , s h o w p l o t = F a l s e)
6 poo l . merge (” exp / exp . j s o n ” ,
7 p l an names =[”PRM* (i i d) ” , ”PRM* (Ha l t on) ” , ”SL (ARA*) ”])

The results have been merged to the previously configured
results JSON file exp/exp.jsonwhich we can use to plot
statistical results from the previous runs, see Fig. 8:

1 from p l o t s t a t s import p l o t p l a n n e r s t a t s
2 p l o t p l a n n e r s t a t s (” exp / exp . j s o n ” ,
3 m e t r i c s =” p a t h l e n g t h , p l a n n i n g t i m e , a o l ” ,
4 s a v e f i l e =” . / s a m p l i n g . pdf ” ,
5 n u m c o l o r s =4 , t i c k s r o t a t i o n =20)

PRM* (Halton)
PRM* (iid)

SL (ARA*)

20

40

60

80

100

Path Length

PRM* (Halton)
PRM* (iid)

SL (ARA*)
0.05

0.10

0.15

0.20

0.25

0.30

Computation Time

PRM* (Halton)
PRM* (iid)

SL (ARA*)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

AOL
Mean
Median

Figure 8: Statistics obtained by comparing different sam-
pling strategies.

Metrics
In this example we show the available metrics that our
benchmarking suite offers, how we can evaluate and visu-
alize them.

We start by setting our planning context. Again, we adopt
the corridor environment and use the steer function Reeds-
Shepp to compare three algorithms from OMPL: RRT, RRT∗
and Informed RRT∗.

1 mpb = MPB()
2 mpb . s e t c o r r i d o r g r i d e n v (r a d i u s = 3)
3 mpb . s e t p l a n n e r s ([” r r t ” , ” r r t s t a r ” , ” i n f o r m e d r r t s t a r ”])
4 mpb . s e t s t e e r f u n c t i o n s ([” r e e d s s h e p p ”])
5 # o p t i o n a l run ID , number o f runs (e n v i r o n m e n t s)
6 mpb . run (id =” t e s t r u n ” , r u n s =3)

We can plot all the available statistics with the following
command:

1 mpb . p l o t p l a n n e r s t a t s (” , ” . j o i n (s t a t n a m e s . keys ()))

Note that all the available metrics are stored in the
stat names dictionary which maps from the name of the
metric to its printable title which is used for plotting pur-
poses.

Informed RRT* RRT RRT*
0

1

2

3

4

5

6

Maximum Curvature

Informed RRT* RRT RRT*
4

6

8

10

12

14

16

18

Normalized Curvature

Informed RRT* RRT RRT*
0.2

0.3

0.4

0.5

0.6

AOL

Informed RRT* RRT RRT*
4.0

4.5

5.0

5.5

6.0

6.5

7.0

Maximum Clearing
Mean
Median

Informed RRT* RRT RRT*

3.0

3.2

3.4

3.6

3.8

4.0

Mean Clearing

Informed RRT* RRT RRT*
2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Median Clearing

Informed RRT* RRT RRT*

1.6

1.8

2.0

2.2

2.4

Minimum Clearing

Informed RRT* RRT RRT*
60

65

70

75

80

85

Path Length
Mean
Median

Informed RRT* RRT RRT*
0

500

1000

1500

2000

2500

3000

3500

Smoothness

Informed RRT* RRT RRT*
0

2

4

6

8

10

12

14

Computation Time

Informed RRT* RRT RRT*
2

4

6

8

10

12

Cusps

Informed RRT* RRT RRT*
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Aggregate
Total runs
Found solutions
Collision-free
Exact solution

Figure 9: Metrics obtained by comparing different planners.

Additionally we can plot also the time spent in different
planning phases (e.g. steer function, collision checking), see
Fig. 10:

1 mpb . p l o t p l a n n e r t i m i n g s ()

Informed RRT* RRT RRT*
0

2

4

6

8

10

12

14

Run 1
Total time
Steering
Collision

Figure 10: Example computation times reported for a single
run, separated by the time used for computing the extend
function (steering) and for collision checking.

Conclusions
Bench-MR is an easy-to-use and comprehensive bench-
marking framework that aids practitioners and researchers
in designing, testing and evaluating motion-planning sys-
tems. Various motion planning components can be easily
compared against the state of the art on complex naviga-
tion scenarios with many performance metrics. Unlike other
benchmarking tools, our suite of motion planning compo-
nents is particularly tailored to applications in wheeled mo-
bile robotics, and provides a productive user interface. In
this workshop paper that complements our previous work
(Heiden et al. 2021), apart from reporting details on the
framework and its components, we have presented several
examples that demonstrated how to use Bench-MR. In fu-
ture work, we plan to extend Bench-MR to dynamic envi-
ronments to support more realistic scenarios in autonomous
driving.

Acknowledgments
We thank Ziang Liu for his contributions to the software
repository and testing of various algorithms. This work was
supported by a Google Ph.D. Fellowship, the European
Union’s Horizon 2020 research and innovation program un-
der grant agreement No. 101017274 (DARKO), and the US
National Science Foundation (NSF) under grant numbers
1409987, 1724392, 1817189, 1837779 and 1935712.

References
Althoff, M.; Koschi, M.; and Manzinger, S. 2017. Com-
monRoad: Composable benchmarks for motion planning on
roads. In IEEE Intelligent Vehicles Symposium (IV), 719–
726.
Amato, N.; Rauchwerger, L.; and Morales, M. 2013.
Algorithms and Applications Group motion planning
benchmark. https://parasollab.web.illinois.edu/resources/
mpbenchmarks/.
Arslan, O.; and Tsiotras, P. 2013. Use of relaxation methods
in sampling-based algorithms for optimal motion planning.
In 2013 IEEE International Conference on Robotics and Au-
tomation. IEEE.
Banzhaf, H.; Palmieri, L.; Nienhüser, D.; Schamm, T.;
Knoop, S.; and Zöllner, J. M. 2017. Hybrid curvature steer:
A novel extend function for sampling-based nonholonomic
motion planning in tight environments. In International
Conference on Intelligent Transportation Systems, 1–8.
Calisi, D.; and Nardi, D. 2009. Performance evaluation of
pure-motion tasks for mobile robots with respect to world
models. Autonomous Robots 27(4): 465–481.
Clair, J.; Milenkova, R.; Shields, A.; Yao, J.; Patel, Z.; Hu,
D.; Kelly, P.; and Saeedi, S. 2021. PathBench3D: A Bench-
marking Platform for Classic and Learned Path Planning Al-
gorithms. https://github.com/perfectly-balanced/PathBench.
Cohen, B.; Şucan, I. A.; and Chitta, S. 2012. A generic
infrastructure for benchmarking motion planners. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 589–595.

https://parasollab.web.illinois.edu/resources/mpbenchmarks/
https://parasollab.web.illinois.edu/resources/mpbenchmarks/
https://github.com/perfectly-balanced/PathBench

Dobson, A.; and Bekris, K. E. 2013. Improving sparse
roadmap spanners. In 2013 IEEE International Conference
on Robotics and Automation. IEEE.
Dobson, A.; Krontiris, A.; and Bekris, K. E. 2013. Sparse
roadmap spanners. In Algorithmic Foundations of Robotics
X, 279–296. Springer.
Dubins, L. E. 1957. On curves of minimal length with a
constraint on average curvature, and with prescribed initial
and terminal positions and tangents. American Journal of
Mathematics 79(3): 497–516.
Fraichard, T.; and Scheuer, A. 2004. From Reeds and
Shepp’s to continuous-curvature paths. IEEE Transactions
on Robotics 20(6): 1025–1035.
Gammell, J. D.; Barfoot, T. D.; and Srinivasa, S. S. 2018. In-
formed sampling for asymptotically optimal path planning.
IEEE Transactions on Robotics 34(4): 966–984.
Gammell, J. D.; Srinivasa, S. S.; and Barfoot, T. D. 2014.
Informed RRT*: Optimal sampling-based path planning
focused via direct sampling of an admissible ellipsoidal
heuristic. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2997–3004.
Gammell, J. D.; Srinivasa, S. S.; and Barfoot, T. D. 2015.
Batch informed trees (BIT*): Sampling-based optimal plan-
ning via the heuristically guided search of implicit random
geometric graphs. In IEEE International Conference on
Robotics and Automation, 3067–3074.
Gipson, B.; Moll, M.; and Kavraki, L. E. 2013. Resolution
independent density estimation for motion planning in high-
dimensional spaces. In 2013 IEEE International Conference
on Robotics and Automation. IEEE.
Gottschalk, S. 1996. Separating axis theorem. Technical
Report TR96-024, Department of Computer Science, UNC
Chapel Hill.
Heiden, E.; Palmieri, L.; Bruns, L.; Arras, K. O.; Sukhatme,
G. S.; and Koenig, S. 2021. Bench-MR: A Motion Planning
Benchmark for Wheeled Mobile Robots. IEEE Robotics and
Automation Letters 6(3): 4536–4543.
Heiden, E.; Palmieri, L.; Koenig, S.; Arras, K. O.; and
Sukhatme, G. S. 2018. Gradient-Informed Path Smoothing
for Wheeled Mobile Robots. In IEEE International Confer-
ence on Robotics and Automation, 1710–1717.
Hsu, D.; Latombe, J.-C.; and Motwani, R. 1997. Path plan-
ning in expansive configuration spaces. In Proceedings
of International Conference on Robotics and Automation.
IEEE.
Islam, F.; Narayanan, V.; and Likhachev, M. 2015. Dynamic
multi-heuristic A*. In IEEE International Conference on
Robotics and Automation, 2376–2382.
Janson, L.; Ichter, B.; and Pavone, M. 2018. Determinis-
tic sampling-based motion planning: Optimality, complex-
ity, and performance. International Journal of Robotics Re-
search 37(1): 46–61.
Karaman, S.; and Frazzoli, E. 2011. Sampling-based algo-
rithms for optimal motion planning. International Journal
of Robotics Research 30(7): 846–894.

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation 12(4): 566–580.

Kümmerle, R.; Steder, B.; Dornhege, C.; Ruhnke, M.;
Grisetti, G.; Stachniss, C.; and Kleiner, A. 2009. On mea-
suring the accuracy of SLAM algorithms. Autonomous
Robots 27(4): 387–407. http://ais.informatik.uni-freiburg.
de/slamevaluation/datasets.php.

Kunz, T.; and Stilman, M. 2015. Kinodynamic RRTs with
fixed time step and best-input extension are not probabilisti-
cally complete. In Algorithmic Foundations of Robotics XI,
233–244. Springer.

Laumond, J.-P.; Sekhavat, S.; and Lamiraux, F. 1998. Guide-
lines in nonholonomic motion planning for mobile robots. In
Robot Motion Planning and Control, 1–53. Springer.

LaValle, S. M. 2006. Planning algorithms. Cambridge Uni-
versity Press.

LaValle, S. M.; Branicky, M. S.; and Lindemann, S. R. 2004.
On the Relationship between Classical Grid Search and
Probabilistic Roadmaps. International Journal of Robotics
Research 23(7-8): 673–692.

LaValle, S. M.; and Kuffner Jr, J. J. 2001. Randomized kin-
odynamic planning. International Journal of Robotics Re-
search 20(5): 378–400.

Li, Y.; Littlefield, Z.; and Bekris, K. E. 2016. Asymptoti-
cally optimal sampling-based kinodynamic planning. Inter-
national Journal of Robotics Research 35(5): 528–564.

Likhachev, M.; Ferguson, D. I.; Gordon, G. J.; Stentz, A.;
and Thrun, S. 2005. Anytime Dynamic A*: An Anytime,
Replanning Algorithm. In International Conference on Au-
tomated Planning and Scheduling, 262–271.

Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. Ad-
vances in Neural Information Processing Systems 16: 767–
774.

Luo, J.; and Hauser, K. 2014. An empirical study of optimal
motion planning. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 1761–1768.

Moll, M.; Şucan, I. A.; and Kavraki, L. E. 2015. Bench-
marking motion planning algorithms: An extensible infras-
tructure for analysis and visualization. IEEE Robotics &
Automation Magazine 22(3): 96–102.

Otte, M.; and Correll, N. 2013. C-FOREST: Parallel shortest
path planning with superlinear speedup. IEEE Transactions
on Robotics 29(3): 798–806.

Paden, B.; Čáp, M.; Yong, S. Z.; Yershov, D.; and Frazzoli,
E. 2016. A survey of motion planning and control tech-
niques for self-driving urban vehicles. IEEE Transactions
on Intelligent Vehicles 1(1): 33–55.

Palmieri, L.; and Arras, K. O. 2014. A novel RRT extend
function for efficient and smooth mobile robot motion plan-
ning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 205–211.

http://ais.informatik.uni-freiburg.de/slamevaluation/datasets.php
http://ais.informatik.uni-freiburg.de/slamevaluation/datasets.php

Palmieri, L.; Bruns, L.; Meurer, M.; and Arras, K. O. 2019.
Dispertio: Optimal sampling for safe deterministic motion
planning. IEEE Robotics and Automation Letters 5(2): 362–
368.
Palmieri, L.; Koenig, S.; and Arras, K. O. 2016. RRT-based
nonholonomic motion planning using any-angle path bias-
ing. In IEEE International Conference on Robotics and Au-
tomation, 2775–2781.
Pivtoraiko, M.; Knepper, R. A.; and Kelly, A. 2009. Differ-
entially constrained mobile robot motion planning in state
lattices. Journal of Field Robotics 26(3): 308–333.
Rañó, I.; and Minguez, J. 2006. Steps toward the auto-
matic evaluation of robot obstacle avoidance algorithms. In
Workshop of Benchmarking in Robotics in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 90–
91.
Reeds, J.; and Shepp, L. 1990. Optimal paths for a car that
goes both forwards and backwards. Pacific Journal of Math-
ematics 145(2): 367–393.
Sánchez, G.; and Latombe, J.-C. 2003. A single-query bi-
directional probabilistic roadmap planner with lazy collision
checking. In Robotics research. Springer.
Sprunk, C.; Röwekämper, J.; Parent, G.; Spinello, L.;
Tipaldi, G. D.; Burgard, W.; and Jalobeanu, M. 2016. An
experimental protocol for benchmarking robotic indoor nav-
igation. In Experimental Robotics, 487–504.
Starek, J. A.; Gomez, J. V.; Schmerling, E.; Janson, L.;
Moreno, L.; and Pavone, M. 2015. An asymptotically-
optimal sampling-based algorithm for bi-directional motion
planning. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2072–2078.
Sturtevant, N. R. 2012. Benchmarks for grid-Based
pathfinding. Transactions on Computational Intelligence
and AI in Games 4(2): 144 – 148. https://movingai.com/
benchmarks/grids.html.
Şucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The Open
Motion Planning Library. IEEE Robotics & Automation
Magazine 19(4): 72–82. doi:10.1109/MRA.2012.2205651.
https://ompl.kavrakilab.org.
Van Den Berg, J.; Shah, R.; Huang, A.; and Goldberg, K.
2011. Anytime nonparametric A*. In AAAI Conference on
Artificial Intelligence, 105–111.
Weisz, J.; Huang, Y.; Lier, F.; Sethumadhavan, S.; and Allen,
P. 2016. RoboBench: Towards sustainable robotics system
benchmarking. In 2016 IEEE International Conference on
Robotics and Automation, 3383–3389.

https://movingai.com/benchmarks/grids.html
https://movingai.com/benchmarks/grids.html
https://ompl.kavrakilab.org

	Introduction
	Related Work
	Architecture of Bench-MR
	Bench-MR Planning Components
	Sampling-Based Motion-Planning Algorithms
	Extend Functions
	Collision Checkers
	Post-Smoothing Algorithms
	Optimization Criteria

	Bench-MR Evaluation Components
	Navigation Scenarios
	Performance Metrics

	Example Usage
	Introductory Example
	Parallel Benchmark Execution
	Comparison: Random and Halton Sequences, State Lattice
	Metrics

	Conclusions

