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Soft-hands allow to simplify the grasp planning to achieve a successful grasp, thanks to their intrinsic adaptability. At the same time, their usage
poses new challenges, related to the adoption of classical sensing techniques originally developed for rigid end-defectors, which provide fundamental
information, e.g. to detect object slippage. Under this regard, model-based approaches for the processing of the gathered information are hard to
use, due to the difficulties in modelling hand-object interaction when softness is involved. To overcome these limitations, in this paper we propose
to combine distributed tactile sensing and machine learning (Recurrent Neural Network - RNN) to detect sliding conditions for a soft robotic hand
mounted on a robotic manipulator, targeting the prediction of the grasp failure event and the direction of sliding. The outcomes of these predictions
allow for an-on line triggering of a compensatory action performed with a second robotic arm-hand system, to prevent the failure. Despite the fact that
the network was trained only with spherical and cylindrical objects, we demonstrate high generalization capabilities of our framework, achieving a
correct prediction of the failure direction in 75% of cases, and a 85% of successful re-grasps, for a selection of twelve objects of common use.

1 Introduction

In recent years, the introduction of soft elements in robotic hands demonstrated to be an asset to easily provide
capabilities never seen with rigid components [1, 2]. The intelligence, directly embedded into the mechanics,
enables to fold the fingers around the object in a natural fashion, and to gently adapt the shape of the hand when
interacting with the environment. This characteristic comes with the additional benefit that potential uncertain-
ties in local relative placement between the End-Effector and the object are compensated by the compliance of
the hand, thus relaxing constraints in robot planning [3, 4, 5, 6].
However, this increased dexterity is also responsible for a reduced amount of information that the regulator
may feed back to close a control loop. Indeed, because of the difficulties in defining accurate models of hands
[7], of the hand-object interaction when softness is involved [8], and to the intrinsic uncertainties that elastic
components produce in the measurements [9], it is in general not straightforward to use sensing techniques origi-
nally developed for rigid end effectors (e.g. rigid force sensors at the fingertips, encoder [10]), and to implement
model-based feedback solutions that can react to unexpected situations [11]. Indeed, although the increased per-
formances in terms of grasp success that characterize the usage of soft grippers, objects picking and grasping
may still fail in many cases. In those events, it is important to have a system able to predict, within a reasonable
time horizon, when a grasped object is going to slide w.r.t. the hand, and would probably fall, and eventually
trigger a suitable corrective action.
To solve this problem, one of the most common approaches relies on the direct measure of contact forces, usu-
ally relying on force/torque sensors at the joints or at the fingertip level [12, 13, 14, 15, 16]. However, these ap-
proaches are typically hardly feasible in practice, given the large cost of the hardware and the complexity of the
sensing setup - which introduces significant computational effort - and are not suitable in general for continuum-
soft hands, where the shape and the mechanical response of the fingertip may be significantly different than rigid
or articulated-soft hands.
As an alternative to force sensing, the community is recently exploring the usage of other sensory sources, such
as audio signals [17], inertial sensing [18], video streams [19] and tactile sensors [20, 21], and infer contact
forces through algorithms. However, little has been done so far to exploit such sensory information to predict
when a grasp is going to fail, and to trigger reactive recovery primitives.
Recently, we proposed to exploit inertial sensing (accelerations and angular velocities) to feed a deep neural
network which was able to accurately classify offline if the stream of data was associated to a grasp failure, and
even predict online its occurrence [22]. More specifically, in [22] we demonstrated that Inertial Measurement
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Figure 1: A Franka Emika Panda robotic arm integrated with a Soft Hand equipped with IMU sensors is used to reach and grasp a
generic object. A sliding event is detected by processing the IMU information with a Recurrent Neural Network, triggering a reactive
re-grasping primitive with a second arm-hand system, to firmly hold the object.

Units (IMUs) - placed at the fingers level - are capable to record the vibrations caused by the sliding of grasped
objects, and a deep architecture, trained to detect the occurrence of these conditions, can be used to predict when
a grasp is going to fail.
In this paper, we build upon our preliminary work and further extend our deep learning framework for grasp
failure prediction. More specifically, while in previous experiments failures were caused by a rope which me-
chanically constrained the maximum distance between the grasped object and the table, resulting in an abrupt
and non-ecological failure condition, in this work we completely re-designed the experimental part, generating
failures as a consequence of a variable weight added to the object. Furthermore, a robotic arm was used to ex-
ecute the reach-and-grasp task, in both success and failure cases, thus removing potential artifacts introduced
by the manual handling of the robotic hand as done in [22]. Another significant contribution of this work with
respect to [22] is that we now target not only the prediction of the failure event, but also the identification of
the specific direction of slippage. This will enable the triggering of reactive re-grasp primitives performed by a
second manipulator that can exploit the information of the direction of slippage to firmly secure the grasp.
In this work, we collected a grand total of 1800 independent trials. Of these, 56% was used to train the neural
architecture, 24% for its validation and the remaining 20% for testing. Extensive research was carried out to
identify the optimal recurrent neural architecture to use, aiming at maximizing the prediction accuracy over a
dataset of testing trials while minimzing the footprint of the network. With respect to [22], where a Convolu-
tional Neural Network CNN was combined with a Long Short Term Memory (two layers of 128 neurons) to
perform the prediction, we removed the CNN for feature extraction and implemented a Recurrent Neural Net-
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Figure 2: General scheme of the proposed closed loop framework. A bi-manual robotic system, composed by two Franka Emika Panda
Robots, endowed with two Pisa/IIT SoftHands, is used as test-bench. IMUs are fastened on the back of the fingers of the hand used
to reach and grasp the object. A Recurrent Neural Network (RNN) architecture is used to continuously detect, on-line and with an
inference rate of 5 Hz, the occurrence of a sliding event, and the direction of the relative motion. This information is then fed back to
the controller to trigger a reactive re-grasping primitive, which depends on the output of the RNN and on the current status of the first
manipulator.

work (RNN) architecture based on Gated Recurrent Units (GRU) [23] (one layer of 128 neurons). Finally, we
also developed a completely new on-line feedback system which takes as input the inference of the proposed re-
current neural network (in terms of prediction of the sliding event as well as its direction, i.e. top and lateral) and
selects a reactive re-grasping primitive, performed by a second robotic arm-hand system (see Fig. 2), that ulti-
mately manages to firmly secure the grasp. Despite the fact that the network was trained only with spherical and
cylindrical objects, we demonstrate high generalization capabilities of our framework, achieving a correct predic-
tion of the failure direction in 75% of cases (approximately 2 s in advance), and a 85% of successful re-grasps,
for a selection of twelve objects of common use.

2 METHODS

As introduced in the previous section, the goal of this work is to develop a closed-loop framework able to predict
on-line if an object, grasped by a soft robotic hand, is sliding (and along which direction) and will likely drop.
Such information is used to feed a reactive controller that triggers a re-grasping primitive which, in turn, firmly
stabilizes the grasp. As a test-bench, we used two Franka Emika Panda manipulators ([24]), both endowed with
two Pisa/IIT Softhands [25] as End-Effectors. To collect data for RNN training we used a 3D-printed object,
composed by a interchangeable handle and a support where one or more masses were placed to modify the
weight of the object. We considered two different shapes of handles, a sphere and a cylinder, which forced the
shape of the hand in two different configurations. These were presented to the robot (i.e. one robotic arm and
hand system) with two roughness level, one smooth and one covered with sandpaper (400 Grit). The handle was
grasped following two main approaches: top grasp, i.e. with the palm parallel to the horizontal plane, and lateral
grasp, i.e. with the palm parallel to a vertical plane. For each of these grasp approaches, we further considered
two potential failures types: central slippage, i.e. when the object slips along the long fingers, and lateral slip-
page, i.e. when failure is caused by a relative motion perpendicular to the long fingers (examples are provided
in Figure 3-A/B). Of note, to avoid that the network could identify failures only along the direction of the grav-
ity, we included slippage data where the object was pulled off the SoftHand along a direction perpendicular to
the gravity itself, by a second robotic arm-hand system (i.e. Franka Emika Panda equipped with a SoftHand)
(see e.g. Figure 3-A right; Figure 3-B left; Figure 5-B). The position and orientation of hand and object during
experiments were continuously tracked through a 3D motion tracking system (Optitrack Flex 13, NaturalPoint
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Figure 3: Pictures of the experimental framework used for data collection. Two different handles (light gray in the figures) were used:
a sphere (as in the right of panel A and B) and a cylinder (left of panel A and B). Handles were used with and without a sandpaper
coverage to modify the roughness. Panel A shows the two hand configurations that we implemented to replicate central slippage. Panel
B shows the two hand configurations for lateral slippage. In both panels, also the gravity vector is reported, to show that not all failures
occur along the gravity direction. The object was endowed with two supports for the markers of the 3D motion tracking system (one
on the right and one on the left) designed with the shape of a star to always ensure visibility of at least four markers as in [26]. The
variable weight (in the range 200-700 grams) was attached to the handle (dark gray in the figures). Panel C reports a picture of the
IMU glove we mounted on the SoftHand to continuously collect inertial measurements from each hand phalanx.

Inc., Corvallis, Oregon (US), refresh rate 120 Hz). The robotic hand that performed the reach to grasp task was
endowed with a soft glove, on which we mounted 17 Inertial Measurement Units (IMUs), one for each phalanx,
fastened on the back of the hand as in [22]. Four IMUs were attached to the thumb, and three to each long finger.
One additional sensor was placed on the hand dorsum, close to the wrist, for reference (see Figure 3-C). Con-
sidering all the combinations discussed before, we performed a grand total of 1800 independent acquisitions,
of which one third was composed of successful grasps, one third of central slippage and one third of lateral
slippage. For each of these classes, we randomized the shape of the handle, the roughness level and the type of
grasping approach (top vs. lateral), making sure that the different parameters were represented in a balanced
manner. A random weight, ranging between 200 and 700 gr, was added to the object. For each trial, we recorded
synchronously the stream of IMUs readings, the position of optical markers attached to hand and object, the en-
coder of the hand (which measures the degree of closure) and the robot joint positions, all with a refresh rate of
70 Hz.
For each trial, then, we segmented the portion of data we intended to use as input for the neural architecture.
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Figure 4: Stream of raw accelerometers (top row) and gyroscopes (bottom row) during a failed grasp (subpolot A) and a successful
grasp (B). Coloured dashed lines identify the initial frame of the block of signal that is removed from data before training, correspond-
ing to one (blue), two (green) and three (red) seconds. We refer to this quantity as D.

More specifically, we identified as initial frame of the sequence the instant in which the arm start lifting the
object. The final frame, instead, is identified as the one in which the distance between hand and object increases
of 5 mm w.r.t. the previous values (i.e. the object is dropped). Finally, zero-padding was added at the beginning
of each sample, to homogenize the trials length.
Once the dataset was built, to teach the network to recognise the event in advance, we removed from the dataset
the final block of the signal, corresponding to a time slot immediately before the object drop. This has the twofold
purpose of i) removing high peaks in the signal stream caused by the drop of the object and ii) learning to recog-
nise small oscillations that are characteristics of failure events in the first frames of sliding, rather than larger
oscillations evident in the final portion of the signal (see Figure 4). We tested three different levels of anticipa-
tion, corresponding to one, two and three seconds before the actual drop, reported in Figure 4 with a blue, green
and red dashed line respectively. Hereinafter we will refer to the parameter quantifying this anticipation as D.
Data were then randomized and splitted in three groups: 20% was devoted to testing and the remaining was
further divided in 30% for validation and 70% for training.
The neural architecture we selected is based on Gated Recurrent Units (GRU) [23], which are neurons with a
feedback channel, which enables to store, and learn from, the history of a time series. Training was performed
using ADAM optimizer and Cross Entropy as loss function. Early stopping and dropout were also used to pre-
vent overfitting. We tested different combination of hyperparameters, resulting in three different architectures
that demonstrated the highest validation accuracy and the minimum footprint of the network (to minimize infer-
ence time), one for each D value considered. This is motivated by the fact that the larger is the model the larger
is the time to perform inference. Among these, we selected for the implementation the network trained with
D = 2s, because this provided a time horizon sufficiently large to eventually plan a recovery action, while keeping
high accuracy values over validation data.
To develop an on-line implementation of reactive primitives triggered by the output of our grasp failure predic-
tor, we built a First-In-First-Our (FIFO) pile structure with a fixed size equal to the one used at training time,
and containing fresh data coming from inertial sensors. During the execution of the on-line framework, the pile
will always contain the last N readings coming from IMUs, where N is the number of time frames of acquisi-
tions used during training (after pre-padding). At startup, the pile is initialized as a zero matrix. Because with
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Figure 5: Two examples of failures events executed during data collection. A) Lateral slippage with a spherical smooth handle. B)
Lateral slippage with a rough cylindrical handle, caused by the second robot.

Figure 6: Objects of common use selected for the experiments: a sauce bottle, an apple, a tennis ball, a squeeze tube, a mug, a box, a
saucepan, a water bottle, a food box, a shampoo bottle, a rough l-shape, a smooth l-shape. We increased the weight of some of these
objects by adding external weight (as done during experiments for dataset collection) to match the range between 200 and 700 grams.

the architecture we selected for implementation (D = 2s) we observed an average inference time of ⇡ 0.15s, we
implemented two ROS nodes, the first, running at 70Hz, where data were read from the IMU glove and collected
into a dynamic array, and a second one, running at 5Hz, where the block of data collected by the first node was
inserted in the FIFO pile, removing the exceeding samples from the top of the pile (i.e. the oldest samples). Data
contained in the pile was then provided as input to the RNN. When the predicted value is constant for at least
five consecutive inference rounds, and the classified entry is a lateral or a central slippage, then this signal is
used to trigger the reactive behavior of the second manipulator. Note that five represents a trade-off between
promptness of response for the controller and number of false positives and was manually and heuristically
tuned.
To test our methods, we implemented two parametric reactive primitives for the secondary robot, one appropri-
ate for the central slippage and one for the lateral slippage (i.e. the two failure classes considered in this work).
More specifically, we programmed the first primitive (i.e. for central slippage) as a linear interpolation between
the initial robot configuration and the Cartesian position of the first End-Effector. The orientation of the second
hand is imposed to be with the palm upwards (see Figure 6-A). The estimation of Cartesian forces provided by
the second manipulator is continuously read and fed back to the controller, in such a way that when the module
of the readings overcome a certain threshold (2 N) we assume that the robot is in contact with the object and we
stop the execution of the primitive. In case of lateral slippage, the second robot is programmed to reach via a
linear interpolation the position of the first End-Effector. The orientation, instead, is rotated along the direction
of the long fingers in such a way that the angle between the horizontal plane and the plane of the palm is 45 De-
grees (see Figure 6-B). Also in this case, we command as reference the position of the first End-Effector, and
exploit the estimation of contact forces to identify the contact.
We tested our on-line framework with two additional experiments. First, we replicated the failures with the same
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Figure 7: Re-grasp primitives considered for top grasps (A) and lateral grasps (B)

setup employed for data collection. Twenty trials were performed for each of the three classes, considering ran-
domly one of the handles of Figure 3. We then considered a selection of 12 objects of common use, of which ten
are extracted from the YCB dataset [27] and two are l-shaped objects with smooth and rough surface (see Figure
7). This selection was made with the purpose of forcing different types of power grasps, such as power circular,
power prismatic, palm circular and palm prismatic (for terminology, we refer to [28]). We made sure that the
objects’ weight was in the range between 200 and 700 grams, by adding external weight when necessary. For
each of these objects, we employed the grasping strategy afforded by the object. Indeed, as hypothesized in [29],
the geometry of an object suggests one (or more) preferable grasping approaches, which we attempted to respect.
For this reasons, tall objects, such as standing bottles, were grasped using a lateral grasp, while short ones were
grasped using a top grasp. Of note, the bottle was presented in both the standing and lying down configuration.
We repeated the grasp of each object ten times, forcing its ecological failure by regulating the strength of the
hand closure [25], achieving a grand total of 130 samples.

3 RESULTS

As already mentioned in the previous section, we tested our framework in two different ways. First, we validated
the network by assessing the prediction accuracy over a pool of test data not used during training and validation,
consisting of 360 independent samples of three classes: successful grasp, central slippage and lateral slippage.
Then, we implemented our network in an on-line integrated framework of failure prediction and reactive re-
grasp. We tested this implementation over a selection of 12 objects of common use extracted from the YCB
dataset [27].

3.1 Validation of the neural architecture

Considering an anticipation time D of one, two, and three seconds, we converged to three optimized architec-
tures, all based on GRU neurons. The optimal architecture with D = 1 is composed by two layers of 64 neurons
and was trained with a dropout of 0.3. This network demonstrated a validation accuracy of 0.93±0.003 over ten
different rounds of training (all starting from a random seed). For D = 2, the optimal selection converged to a
single layer of 128 neurons trained with a dropout of 0.5, achieving a validation accuracy of 0.91±0.01 over ten
different rounds of training (all starting from a random seed). Finally, with D = 3s, the model consisted of two
layers of 64 neurons, trained with a dropout of 0.3, yielding a validation accuracy of 0.87±0.02 over ten different
rounds of training (all starting from a random seed). After validation, we quantified the accuracy of prediction
also over fresh data, not used during the training phase. This new dataset consisted of 360 samples, 120 for each
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3.2 Validation of the on-line integrated framework

Figure 8: Confusion matrices referred to failure classification over test data for D = 1s (A), D = 2s (B) and D = 3s (C). Values are in
percentage versus the total number of entries of each class. On the rows the real class, on the columns the predicted class. Cells are
color-coded: black stands for 100%, white stands for 0%.

class. Confusion matrices of the classification for different values of D are reported in Figure 8. We obtained an
overall test accuracy of 87%, 84% and 76% for D = 1s, D = 2s and D = 3s respectively.

3.2 Validation of the on-line integrated framework

We decided to consider for the on-line implementation the architecture trained with D = 2s, because this represents
an appropriate trade-off between satisfactory prediction performances and capabilities of detecting small oscil-
lations that are present in the early stages of sliding (minimizing the network footprint). As introduced in the
Methods section, we performed two different experiments to test the capabilities of our framework in the on-line
predict-and-regrasp task. The first one consisted in replicating the experimental setup already used to collect the
training data. In this case, with a pile that continuously (with a refresh rate of 5 Hz) updates the stream of data
given as input to the neural architecture, we obtained a correct classification in ⇡ 78% of cases, of which ⇡ 87%
resulted in a successful robot regrasp. However, a correct prediction of the failure does not necessarily match
with a successful re-grasp, because after triggering the reactive primitive the robot could spend a certain amount
of time to plan and execute the trajectory (approximately 1.5 seconds). For this reason, in certain cases, espe-
cially with very smooth objects, the total success rate of the re-grasp could be lower, and it is more appropriate
to report on the number of successful regrasps over the ones correctly predicted. Indeed, in this first experiment
we had that for occurrences of central slippage we were able to successfully prevent the failure in 80% of cases,
while the performances increased to 94% for lateral slippage. This is caused by the fact that in the first case the
time of sliding is shorter, on average, than the second one. We further validated our framework by performing a
second experiment with 12 objects, of which 10 are extracted from the the YCB dataset [27] (see Figure 7). Also
in this case, we verified the prediction and classification accuracy and then quantified the success rate of the fail-
ure prevention over the cases in which we were able to successfully predict the failure. Over a grand total of 130
experiments, we achieved a classification accuracy of 75% and, for the cases in which the type of failure was
predicted correctly, we successfully prevented the failure with our reactive primitive in 85% of cases. Of note,
we observed marked differences across objects. More specifically, very smooth and spherical objects, such as the
wooden apple in our pool of objects, although easily classified by our neural architecture (with a correct classi-
fication in 80% of cases), was successfully re-grasped in the 25% of cases of correct classification only. Others,
instead, such as the mug, the saucepan, the tennis ball, the squeeze tube and the launch box, were successfully
re-grasped in all the cases in which the neural architecture was able to correctly predict the failure.

4 DISCUSSIONS AND CONCLUSIONS

With this paper we demonstrated the feasibility, and provided an implementation of a neural architecture that can
predict - up to 87% with test data - the occurrence and the direction of grasp failure, considering accelerations
and angular velocities collected from a soft robotic hand (mounted on a robotic manipulator and equipped with
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Figure 9: Four examples of our framework while the occurrence and the direction of a failure was correctly predicted and a reactive
primitive successfully prevented the drop of the object. From top to bottom, a shampoo bottle, an apple, a squeeze tube, a sauce bottle.

an IMU glove) that autonomously grasp an object. We implemented our framework relying on a GRU architec-
ture, a widely popular and consolidated recurrent neural network. Our implementation enables the triggering of
reactive primitives, performed by a second robotic arm-hand system, achieving a correct prediction (approx. 2 s
in advance) of the failure occurrence and its directions in 75% of cases, and - when correctly classified - firmly
secure the grasp with a recovery action, with a success rate of 85%. These results refer to an experiment con-
ducted with a pool of objects of common use, which were never used during the training phase, while the perfor-
mances using the same experimental setup of the training phase were 78% and 87% respectively. Note that these
results come from a combination of different factors, such as the smoothness of the object and the upper bound
of the velocity of the manipulator. Of note, our implementation is completely on-line, from inference to motion
execution, with an average inference time of 0.15 seconds and an average time required to complete the reactive
behavior of 1.5 seconds. We noticed that certain objects, such as the wooden apple in our second experiments,
were particularly harsh for our framework. Indeed, while the sliding was correctly predicted and classified in
the 80% of cases, the failure was extremely quick and resulted in a successful re-grasp for the 25% of cases only.
This is mainly related to the control of the hand itself and we believe that the extension of our reactive behavior
to other re-grasping primitives may improve these performances.
To improve the prediction accuracy, on one side, and the re-grasp success on the other side, our future work will
focus, on one side, on the investigation of the usage of other tactile sensors, such as the Tactip [20], to gather
a larger amount of information during the grasp, which could improve the accuracy of our prediction. On the
other side, we will consider the use of Neural Architecture Search (NAS) techniques to optimize the design
of the neural network. Furthermore, we will also consider the usage of supplementary sensing sources, as for
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example cameras. In this way, sensor fusion could be exploited to feed with a more complete source of infor-
mation the neural architecture and to improve the overall failure prediction accuracy. However, it is also worth
mentioning that such an improvement would come with a significant increase in the dimensionality of raw data,
resulting in higher complexity of the mechatronic system and in a larger footprint of the neural architecture. For
this reason, we believe that a trade-off must be reached, depending on the resources available for a given appli-
cation. For example, for fully autonomous robots, which should process the whole information with on-board
electronics (possibly on the edge), one could use a minimalistic tactile sensing as the one employed in this paper
to minimize the footprint of the network, while for industrial scenarios, it may be feasible to have more com-
plex systems. At the same time, we are planning to further expand the pool of reactive primitives considered,
including also single-arm actions, such as End-Effector re-orientation and hand squeezing force regulation. To
this aim, additional sources of information, as for example a vision layer, will be evaluated, which will help in
discriminating which strategy could be the more appropriate for the specific case.
Ultimately, we believe that our work may represent a valuable contribution toward the development of intelligent
manipulators, capable of identifying on-line whether a task is performed correctly, eventually triggering reac-
tive behaviors to adapt the execution of the action to the expected goal [18]. This will help in developing grasp
planning that minimize the force exerted during the object grasps, and demanding to the prediction-regrasping
component the correction of a possible failure. This, together with the intrinsic adaptability of the softhands,
could offer a viable solutions for the grasping of fragile and delicate objects.
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