
H2020-ICT-2020-2 Grant agreement no: 101017274

DELIVERABLE 4.6
Robot control for dynamic throwing of objects

Dissemination Level: PUBLIC
Due date: month 42 (December 2024)
Deliverable type: Report and Software
Lead beneficiary: EPFL

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

1 Introduction

Robots equipped with throwing capabilities have remarkable potential to enhance their
object transportation skills, achieving unprecedented levels of dexterity and efficiency for
intralogistics. By carefully transferring momentum from the robot to the object during
the throwing motion and relying on gravity for the free-flying trajectory, robots can
minimize unnecessary movements of their heavy bodies. This results in a smaller motion
footprint and lower energy consumption—two highly desirable characteristics for the
next generation of collaborative mobile manipulators. These robots will operate outside
confined industrial cages and navigate in cluttered environments, with capacity-limited
batteries.

In D4.5 - Preliminary Robot Control for Dynamic Throwing of Objects, EPFL
reported methods and algorithms for fast and adaptive (FAT) throwing planning, published
in IROS 2022 [33], marking a key technical contribution to automated throwing planning.
UNIPI presented methods for throwing with a pneumatic tool equipped with a bi-directional
valve to jet the object toward the target using compressed air, which is a highly desirable
solution for the suction cup-dominated grasps in industry.

Despite these past achievements, building a robotic throwing system with a higher
Technology Readiness Level (TRL) remains a significant challenge. Such a system, designed
to throw a variety of objects for agile production, requires a thorough understanding of the
physics of the throwing process and the development of reliable algorithms for consistent
and self-improving performance. In addition, for such robots to operate in unstructured
and unpredictable dynamic environments, it is also necessary to effectively utilize elastic
energy for throwing, to increase the object’s reachable space, reduce energy consumption,
and minimize the robot’s throwing motion footprint for safe operation.

With these goals in mind, this deliverable presents our scientific progresses in designing
robust control approaches for robot throwing.

1.1 Contributions

This deliverable reports on five contributions:

1. Throwing robust to stochastic release conditions (EPFL): We develop a method
robust to the stochastic effects, due to unmodeled deformations and friction, that
arise at the release time, i.e. when the object detaches from the gripper, and
demonstrate that it enables to more reliably throw a variety of objects, including
deformable ones.

2. Physical Modeling of Throwing (EPFL): We investigate in more details the physics
of the release dynamics, focusing in particular on the friction effect on the velocity
of the released object. We show that our modeling offers more precise estimate of
the flying dynamics after release and more accurate prediction of the landing pose
of the object.

3. Learning and Adaptation from Past Throwing Experiences (EPFL): We tackle
the problem of improving accuracy of throwing by learning from past throws and
active sampling to improve throw accuracy. To this end, we develop an approach
that combines physics-based modeling of the object’s flying dynamics with machine
learning?

4. Throwing with the Elastic Wrist (UNIPI): How to throw using an elastic wrist to
enhance the dynamics of robotic throwing?

2

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

5. Throwing with the Elastic Manipulator (TUM): How to throw using an elastic arm
to enhance the dynamics of robotic throwing?

2 Robust Throwing, Physical Models for Throwing and Learning to
Throw-Flip (EPFL)

2.1 Robust dexterous throwing against release uncertainty

In robotic throwing, the release phase involves complex dynamic interactions due to
object deformation and limited gripper opening speed, often resulting in inaccurate and
nonrepeatable throws (As shown in Fig. 1a). The uncertainty associated with releasing
objects of various geometries, surface materials and deformabilities poses significant
challenges. In the literature of robot throwing, the majority of previous approaches were
limited to throwing one specific object type ([34]: a wooden block; [49, 38, 18, 36, 28,
40, 39, 41]: a ball; [44]: a square plastic plate; [5, 6]: heavy boxes). Although two
recent works [55, 37] proposed end-to-end learning methods to throw various objects,
their reliance on massive real-robot throwing trials and black-box learning models raises
concerns on their scalability and wide adoption. More specifically,

Zeng et al. [55] provides an end-to-end learning approach for throwing various objects.
The throwing configuration is generated from the throwing velocity predicted by a trained
model given the target box position and object image. The learned model can handle a large
set of objects and multiple target positions in the training set. However, its performance
degrades for unseen objects. While one could retrain the model with new data, it is not
clear how quickly the robot can learn to throw new objects.

Monastirsky et al.[37] utilize Decision Transformer[9], a framework that abstracts
Reinforcement Learning (RL) as conditional sequence modeling problems, to generate
robot throwing motion by conditioning the learned autoregressive model on the desired
landing position, past states (joint position history), and past actions (joint velocity history).
Although direct deployment of the model trained purely in simulation results in very
inaccurate throws, the model can throw accurately after fine-tuning with a handful of real
throwing experiments. By applying domain randomization1 on robot control error and
gripper opening delay during training, the final policy generalizes well to unseen and even
deformable objects.

Both approaches take a learning approach to modeling the complexity of the throwing
behavior. Our approach differs from the above reviewed two contributions in the following
key aspects: (1) While [55, 37] are designed for planar throwing, our framework can
handle full throwing configurations as input, hence enlarging the range and complexity
of throwing types. (2) While [37] treats errors due to gripper-object dynamics as a
domain randomization issue, we explicitly control for these uncertainties through the tube
acceleration and offer theoretical justification for the approach. (3) We explicitly ensure
that the generated throws are dynamically feasible.

Facing the release uncertainty, EPFL proposed a novel method to synthesize robust
throwing motion during the release phase, such that the same manipulator motion is valid
to throw different objects (shown in Fig. 1b). The method encapsulates all uncertainties
resulting from complex contact dynamics in a surrogate kinematic model of their resulting
effect on “gripper opening delay”. Then EPFL introduces the notion of tube acceleration
to model the class of constant acceleration motion in joint space that guarantees a release
within the set of valid throwing configurations, as illustrated in Fig. 2. Through insightful
observations, the primal robust throwing problem is relaxed to a convex one with a tight

1Adding noise during training in simulation, which encourages the policy to be robust.

3

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

(a) (b)

Figure 1: The robot throws a hard plastic ball and a deformable tennis ball. The motion
commands and gripper opening times are identical in each subfigure. (a) Illustration of release
uncertainty. The tennis ball escapes the gripper later than the plastic ball along the throwing
trajectory due to unmodeled micromechanical deformations, resulting in a smaller horizontal
velocity, hence the ball fails to fall into the target box. (b) The proposed tube acceleration
compensates for release time uncertainty. Thus, despite different escape times and hence
different flying trajectories, the two objects land in identical locations. This is possible as the
robot traverses within the set of valid throwing configurations – the tube acceleration.

error bound and leads to online computation of robust throws on a 7-DoF robot arm
(<50ms).

Figure 2: Schematic for robust throwing. During the release phase, the robot end-effector
traverses a family of valid projectile trajectories encapsulated by the tube acceleration. As a
result, the landing outcome is agnostic to the exact object release time and hence robust to
release dynamics.

The tube acceleration method achieves high accuracy and success rate at throwing
a variety of complex objects with diverse throwing configurations, without training on
experimental data. For planar throwing which is common in the literature, robust throwing
with tube acceleration achieved 97.3% accuracy, which is higher than the best-reported
accuracy (85%) with end-to-end learning methods [55]. This work on robust dexterous
throwing is the first in the literature that can throw various objects with dexterous postures.
It is published as "Tube Acceleration: Robust Dexterous Throwing Against Release Uncertainty,"
Liu and Billard, IEEE Transactions on Robotics, 2024 [30].

4

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

2.1.1 Preliminaries

1) Geometric Modeling of Throwing
The geometric modeling is illustrated in Fig. 3, with notations introduced in Table 1.

We define the object’s horizontal velocity direction as the positive horizontal direction in
the throwing plane. In this model, we assume that the object is grasped at the center of
mass(CoM), hence if the object is perfectly released and commences free-flying at a given
valid nominal throwing state, it will land at point B. However, if the release dynamics
delays the object entering free-flying, the landing point might not overlap with the target
B.

Figure 3: Geometry of 3D throwing

A Robot base
B Target box
E Robot end-effector
E′ Projection of E on X − Y plane
EBE′ Throwing plane, with origin at B
r Object’s horizontal coordinate in the throwing plane
z Object’s vertical coordinate in the throwing plane
ṙ Object’s horizontal velocity
ż Object’s vertical velocity

Table 1: Notations for geometric modeling in Fig. 3.

2) Backward Reachable Tube
In the throwing plane, the object flying state is denoted as ξ= [r, z, ṙ, ż]⊤ ∈ R4. The

flying dynamics is described by a first-order differential equation ξ̇= f f l y(ξ). The flying
trajectory of f f l y starting from state ξ0 are denoted as ζ f f l y ,ξ0(t) : [0,+∞] → R4. We
assume that a user has provided the robot with a landing target set X ⊂ R4, which

5

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

describes the allowed landing position slack and the range of allowed landing velocities.
For a flying trajectory that enters the landing target set, any state on this trajectory

segment is a valid throwing configuration. Therefore, by aggregating all the trajectories that
eventually enter the landing target set, we obtain the set of valid throwing configurations,
which we call the backward reachable tube (BRT). Mathematically, the BRT is defined as:

G (f f l y ,X) = {ξ0 | ∃ t ≥ 0, ζ f f l y ,ξ0(t) ∈ X}.

Given a connected target set X ⊂ R4, the BRT G associated with a smooth continuous
flying dynamics f f l y is also a connected set in R4 without any isolated regions (or ‘holes’)
(Th. 3.5 [27]). As a result, BRT G is defined in a topological space, with well-defined
topological concepts such as boundaries and interiors. Hence, the BRT can be represented
as a level-set function fBRT (ξ0) : R4→ R, with the following interpretations:

• fBRT (ξ0) > 0 ⇔ ξ0 ̸∈ G , indicating that the initial flying state ξ0 is not a valid
throwing configuration.

• fBRT (ξ0) < 0 ⇔ ξ0 ∈ IntG , implying that the initial flying state ξ0 is a valid
throwing configuration.

• fBRT (ξ0) = 0 ⇔ ξ0 ∈ ∂G , indicating that the initial flying state ξ0 lies on the
boundary of the BRT.

3) Object Flying Flowmap
We define flowmap Φ as the mapping from the initial condition ξ0 to a scalar outcome

driven by the flying dynamics. The outcome of interest could be the function of state at a
given time or the state upon a certain event happening.

Using the adjoint sensitivity method (Pontryagin et al., 1962 [45]), Neural ODE [12] is
able to efficiently compute ∇ξ0Φ ∈ Rd , which is the gradient of the scalar function Φ w.r.t.
initial condition ξ0. The method scales linearly with problem size, has low memory cost,
and explicitly controls numerical error.

In the context of robotic throwing, we are interested in the object’s flying flowmap
that maps from the release state ξ0 = (r0, z0, ṙ0, ż0) to the horizontal landing position in
the throwing plane EBE’, denoted as rland . However, in this scenario, the landing time
is implicitly defined by the release state, flying dynamics, and landing height, making it
difficult to determine the termination criterion explicitly. To resolve this difficulty, Neural
Event ODE [11] models the event as a scalar function h(ξ) of the state ξ, which is equal
to zero if and only if the event happens. The event function is integrated together with
Neural ODE and differentiated through. In our setting, the landing event function can be
defined as:

h(r, z, ṙ, ż) = z +max(ż, 0).

The condition on ż ensures that the vertical velocity is negative upon landing. Therefore,
if the object’s initial position is lower than the landing height and the initial vertical velocity
is positive, the solver will continue integration when passing the landing height during
the upward flight and will terminate integration only when flying downward.

As a result, we obtain the following flying flowmap of the object’s flying dynamics:

rland = Φ f l y(r
0, z0, ṙ0, ż0) (flying flowmap)

Since we define the origin of the throwing plane EB at target B, the outcome of interest
rland should be as close to zero as possible.

6

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

2.1.2 Robust Throwing Formulation

As shown in Fig. 2, for a n-DoF manipulator given a nominal throwing configuration
(q0, q̇0) ∈ R2n, where the corresponding end-effector’s state is inside the Backward Reach-
able Tube (BRT) of the target box position p ∈ R3, and known object flying dynamics
f f l y : R4→ R4, the goal is to find a motion sequence q(·) : [0, T]→ Rn such that:

• End-effector’s state remains inside the BRT for a time window [0, T],

• Motion sequence q(·) is dynamically feasible.

Then in the “gripper opening delay” model, the robot can perform a valid throw regardless
of the exact release time within the release phase.
Spatial Algebra Notations: All spatial vectors are expressed in the robot base frame.
ApB ∈ R3 denotes the vector from point A to point B. v ∈ R3 denotes the Cartesian
velocity of the robot end-effector. Subscripts of spatial vectors represent their elements or
collections of elements, e.g. ApB

z denotes the vertical component of ApB, ApB
x y = [

ApB
x ,A pB

y]
denotes the collection of the horizontal components of ApB.

The Recursive Task-Validity (RTV) Problem can be formulated as follows:

Problem RTV

Find: {q(·), q̇(·), q̈(·)} (1a)

subject to: q(t) =

∫ t

0

q̇(τ)dτ+ q0,∀t ∈ [0, T], (1b)

q̇(t) =

∫ t

0

q̈(τ)dτ+ q̇0,∀t ∈ [0, T], (1c)

v(q, q̇) = J(q)q̇, (1d)

[vx , vy]
⊤[−E pB

y(q),
E pB

x (q)] = 0, (1e)

r(q) = −

E pB
x y(q)

2
(1f)

z(q) = −E pB
z (q), (1g)

ṙ(q, q̇) = ∥vx y∥2, (1h)

ż(q, q̇) = vz . (1i)

Φ f l y(r(q), z(q), ṙ(q, q̇), ż(q, q̇)) = 0, (1j)

qmin ≤ q(t)≤ qmax,∀t ∈ [0, T], (1k)

q̇min ≤ q̇(t)≤ q̇max,∀t ∈ [0, T], (1l)

q̈min ≤ q̈(t)≤ q̈max,∀t ∈ [0, T]. (1m)

Problem RTV is difficult to solve due to the functional decision variables and the
non-convex constraints. In order to let the robust throwing motion generator be ready to
handle large amounts of throwing configurations for dexterous throwing, we choose to
convexify the primal problem and obtain the following formulation of Problem Tube-CVX.
Blue variables are induced by constant tube acceleration q̈tube, while black variables can
be viewed as parameters of the program and hence are treated as fixed in the solver.

7

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

(1b)-(1c) double integrator constraints
(1d) differential forward kinematics with Jacobian function J
(1e) throwing velocity direction aligned with E pB

x y
(1f)-(1i) relate Cartesian variables with throwing plane variables
(1j) correct landing position in the throwing plane EB
(1k)-(1m) robot hardware limits

Table 2: Explanation of constraints in Problem RTV.

Problem Tube-CVX

Find: {q̈tube} (2a)

subject to: qT = q0 + Tq̇0, (2b)

q̇T = q̇0 + Tq̈tube, (2c)

rT = −

E pB
x y(qT)

2
, (2d)

zT = −E pB
z (qT), (2e)

vT (qT , q̇T) = J(qT)q̇T , (2f)

[vT,x , vT,y]
⊤[−E pB

y(qT),
E pB

x (qT)] = 0, (2g)

ṙT = ∥vT,x y∥2, (2h)

żT = vT,z , (2i)

−Φ f l y(0) =

�

∂Φ f l y

∂ ṙT (q̈zero)
,
∂Φ f l y

∂ żT (q̈zero)

�⊤ �
ṙT (q̈tube)− ṙT (q̈zero)
żT (q̈tube)− żT (q̈zero)

�

(2j)

q̇min ≤ q̇T ≤ q̇max, (2k)

q̈min ≤ q̈tube ≤ q̈max. (2l)

2.1.3 Experiments

For the real-robot throwing experiments, we use 7-DoF Franka Emika Panda manipulator
mounted with Robotiq 2f-85 parallel gripper. We compare two strategies of motion design
during the release phase: zero acceleration and tube acceleration.
1) Quantitative experiment on robust throwing
In this quantitative experiment, 3 objects are selected to be thrown: a 3D-printed plastic
ball (‘grey_ball’), a cardboard box (‘small_box_heavy’), and a tennis ball (‘tennis_ball’).
The photos and properties of each object are listed in Table 3. To accurately track the
landing positions, each object is equipped with markers, which are monitored using an
OptiTrack motion capture system. The markers’ positions are recorded at 240Hz with a
spatial accuracy of 0.2mm. For each strategy-object combination, we perform 5-6 throws.
The results of the experiment are summarized in Fig.4 and Table4.
Discussion on Fig. 4a: Based on the end-effector motion during the release phase (100
ms after the nominal throwing configuration), we observe that, on average, the objects’
release delay follows the order: ‘tennis_ball’ > ‘small_box_heavy’ > ‘grey_ball’, which
corresponds to the order of their deformability. This suggests that objects with higher
deformability tend to experience a longer delay before being released from the gripper.
Additionally, the landing positions of the ‘small_box_heavy’ object are more spread out
compared to the other two objects. This spread indicates that the dynamic interaction

8

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Object grey_ball small_box_heavy tennis_ball

Weight (g) 120 100 70
Size (mm) 80×60×60 80×65×60 75×75×75

Table 3: Thrown objects in the quantitative experiment.

(a) throwing with zero acceleration (b) throwing with tube acceleration

Figure 4: The landing positions of the throws with the 3 objects. The black arrows show the
end-effector motion driven by the planned release motion in joint space, while the blue arrows
show the real end-effector’s release motion in one throwing experiment. The red box resembles
a virtual target box with a size of 15cm×15cm.

between the gripper fingers and the box is less predictable.

Discussion on Fig. 4b: A remarkable fact of the tube acceleration is that the landing
positions among the 3 objects are much more condensed, compared to the zero accelera-
tion strategy. However, the landing positions in the tube acceleration strategy exhibit a
constant offset. This offset primarily stems from the larger trajectory tracking error, as
depicted in Fig.4b. A practical remedy to mitigate this offset is to employ robot dynamics
learning techniques, as demonstrated in[24, 26], to achieve more accurate motion com-
mand tracking. In the case of mobile manipulator throwing [33], the offset can be easily
eliminated by moving the base aside.

Discussion on Table 4:

• grey_ball: Tube acceleration results in an enlarged mean landing error due to a
large trajectory tracking error.

• small_box_heavy: Tube acceleration reduces 83% of the standard deviation of
the landing error, whereas zero acceleration suffers from a large variance due to
unpredictable gripper-object interaction.

• tennis_ball: Tube acceleration reduces 50% of the mean landing error, while zero

9

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Mean (mm) Std. (mm)

Object Tube Zero Tube Zero

grey_ball 74.52 53.70 9.51 15.60
small_box_heavy 87.12 95.30 7.47 44.57
tennis_ball 66.23 121.07 9.55 25.97

overall 75.88 88.11 12.04 40.74

Table 4: Landing position error statistics of the two robot motion strategies (Tube and Zero)
after the nominal release state. Each strategy-object pair is repeated 5-6 times.

.

acceleration experiences a large landing error due to a significant “gripper opening
delay”.

• Overall: Tube acceleration reduces the mean landing error by 14% and the standard
deviation of the landing error by 70% across all the throws.

2) Qualitative experiment on robust throwing

In the qualitative experiment, we demonstrate the robustifying capability of tube
acceleration for dexterous throwing configurations. We conduct throwing experiments
for 1 planar throwing configuration and 4 distinct non-planar throwing configurations,
as shown in Fig. 5. The set of 18 thrown objects used in the experiment is shown in
Fig. 6a. It is worth noting that the set of objects is arguably the most diverse in the
literature to date: TossingBot [55] has a collection of 80+ different objects, including toy
blocks, fake fruit, decorative items, and office objects, but it lacks deformable objects; the
work by Monastirsky et al. [37] has 7 objects, including 2 deformable (a sand ball and
a squeeze ball), but this selection does not encompass deformable objects with varying
contact geometries and material. In contrast, our object set includes not only items from
these previous studies but also a folded T-shirt, towels, a plush toy, and various rubber and
foam objects, enhancing the diversity of deformability, contact surface and geometry. To
assess the throwing accuracy w.r.t. different target sizes, we design the target box with two
levels of error tolerance, represented by the inner small box with dimensions 15cm×15cm
and the outer large box with dimensions 37cm×33cm. This design emulates the concept
of Top-1 classification accuracy and Top-5 classification accuracy used in ImageNet [15].
Considering the stochasticity among different throws of the same object, we throw each
object 5-8 times. In total, we conduct 1114 real throwing experiments.

The experiment results are presented in Table 6, demonstrating the significant im-
provement in throwing accuracy achieved through tube acceleration for all 5 throwing
configurations.

Compared to the two previous works on planar throwing of different objects [55, 37],
our small box measures 15cm×15cm, aligning with the target dimensions in Monastirsky
et al. [37] and more compact than the 15cm×25cm box in TossingBot [55]. With a fair
setup in target size, our planar throwing driven by tube acceleration achieved a throwing
accuracy of 97.3%, surpassing the best-reported accuracy of 85% in TossingBot [55]. While
Monastirsky et al. [37] report a 100% accuracy rate, it is worth noting that the objects
that failed in our experiments are the squash ball and the wrapped foam tape, both of
which are significantly softer than those tested in their study. This difference in object
properties could account for the variance in performance.

10

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

(a) (b)

(c) (d)

Figure 5: 4 dexterous throwing configurations in the qualitative experiment.

Moreover, certain throwing configurations, such as the one depicted in Fig. 5b, may
exhibit more variability in release uncertainty, resulting in the lowest throwing accuracy
among the 5 throwing configurations. A comprehensive study of configuration-dependent
release uncertainties would be valuable future work to gain deeper insights into the
throwing system’s fundamental limits.

2.1.4 Limitation of Tube Acceleration for Off-CoM Grasps

In the robust throwing formulation, the recursive task-validity problem is based on the
assumption that the intricate release dynamics can be effectively approximated by a
kinematic “gripper opening delay” model, so that the release motion, designed to be robust
against the unknown time delay in the kinematic model, can robustify the true uncertainties
in the release dynamics. The experimental results in the previous subsection validate the
fidelity of the kinematic release model when objects are grasped at their CoM. However,
this model fails to capture the release dynamics when objects are grasped with CoM offset.

To account for grasp offset without modifying our algorithm, we translate the gripper
frame from the original finger frame E to a virtual frame G, attached to the gripper and

11

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

(a) 18 thrown objects in the qualitative ex-
periment.

(b) Target box with two levels of error tol-
erance. Inner small box: 15cm × 15cm.
Outer large box: 37cm × 33cm.

Figure 6: (a) Thrown objects and (b) target box used in the qualitative experiment.

Figure 7: 3D-printed bar to study the effect of grasp CoM offset on throwing. The two designed
grasp points, the CoM and one end, are covered with paper tape to maintain consistent contact
properties.

overlapping with the object’s CoM upon grasping. This is a straightforward adjustment
based on the kinematic release model.

To evaluate how the location of the grasp influences the accuracy of the throws, we
3D-printed an object with known mass distribution, as shown in Fig. 7, which we throw
using two different grasps in the same planar throwing configuration. The corresponding
release motions are generated by Problem Tube-CVX, assuming projectile flying dynamics
at the object’s CoM. Snapshots of the throws are shown in Fig. 8.

As shown in Fig. 8a, when grasped at CoM, the nominal landing position is 1.21m, and
the landing position of the object CoM is almost identical to the nominal landing position.
However, when grasped with a 0.14m CoM offset, the object lands 0.3m further away
from the model prediction (1.67m vs. 1.37m). The larger flying distance indicates that the
CoM is accelerated drastically during the release, while the computed tube acceleration
generates a negative horizontal acceleration at the virtual frame G (shown in Fig. 9).
This finding confirms that our kinematic release model is not just quantitatively, but also
qualitatively, inaccurate for off-CoM grasps.

12

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Object ID Object name Mass (g) Dimension (mm) Surface Material

1 plastic_ball 92 radius 30 plastic
2 fake_peach 34 radius 30 plastic
3 tennis_ball_hard 58 radius 35 nylon
4 tennis_ball_soft 46 radius 40 nylon
5 squeeze_ball_blue 18 radius 35 foam
6 squash_ball_red 27 radius 30 rubber
7 cardboard_box 135 80×60×60 cardboard
8 carton_box 99 150×65×28 carton
9 cleaning_sponge 8 95×65×40 foam
10 small_towel 42 110×75×32 textile
11 medium_towel 90 140×100×50 textile
12 empty_jar 15 80×50×50 plastic
13 whiteboard_pen 18 138×20×20 plastic
14 folded_tshirt 130 210×90×55 textile
15 fake_banana 68 190×38×32 plastic
16 plush_mole 51 160×70×55 textile
17 wrapped_rubber_pump 163 220×200×80 thick plastic bag
18 wrapped_foam_tape 32 160×140×60 thin plastic bag

Table 5: Summuary of object properties in the quantitative experiment.

in small box in large box

Configuration Box position (m) Tube Zero Tube Zero

planar [1.3, 0, -0.2] 97.3% 57.9% 100.0% 91.3%
(a) [1.1,0,0] 91.2% 9.0% 97.4% 79.3%
(b) [1.1,0,0] 40.7% 1% 88.5% 4.1%
(c) [1.3,0,-0.3] 81.4% 25.5% 95.6% 90.4%
(d) [0, -0.7, 0.7] 63.7% 27.6% 96.0% 96.5%

Table 6: Summary of the quantitative throwing experiments. The box positions are expressed
in the base frame of the robot.

.

(a) Accurate throw with CoM grasp (b) Large throwing error with CoM offset

Figure 8: Comparison of throws with different grasps.

13

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Figure 9: The horizontal acceleration of the virtual frame G is negative throughout the 100ms
release window.

2.2 Physical modeling of transient release dynamics

In the previous subsection, we demonstrate a highly performant method for robust dex-
terous throwing of various objects for CoM grasps. However, as object-in-hand pose
upon grasping can be arbitrary on the object body, either due to perception and control
uncertainties during grasping action, or planned deliberately to ease the grasping from a
cluttered source box, throwing with off-CoM grasps (eccentric throwing for brevity) have
to be considered systematically for an automated throwing system.

In the robot throwing literature, only data-intensive end-to-end learning has been em-
ployed to handle eccentric throwing: TossingBot [55] learns an end-to-end mapping from
grasping to throwing, leveraging visual observations (RGB-D images) to implicitly capture
the relationship between grasping offsets from the CoM and throwing outcomes; Toss-
Net [10] learns an autoregressive model to predict object landing poses using joint motion
and wrist force/torque sensor measurements before the release, where the friction interac-
tion is also learned implicitly. Despite their pioneering advancements, both TossingBot
and TossNet suffer from inherent limitations of data-driven end-to-end approaches:

• Lack of Physical Insights: These models provide limited human understanding of
the underlying physics of throwing, focusing instead on predictive accuracy through
data.

• Data-Intensive Training: The reliance on thousands of samples for effective model
training contrasts with the “zero-shot” nature of physical modeling.

• Limited Transferability: End-to-end methods face challenges in adapting to dif-
ferent robot embodiments or operational conditions. On the other hand, physical
models, adhering to SI units, offer excellent transferability.

The challenge of eccentric throwing motivates our study on the physical modeling of
the transient releasing dynamics that describes the momentum transfer from the robot to
the object via the frictional patch.

14

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

We start with a conventional modeling strategy: combining rigid body dynamics with
the common patch friction model Limit Surface (LS) [19, 23, 54], and identify that the
velocity-magnitude-independent frictional wrench, described by the LS models, causes
the robot-object dynamical system to be discontinuous, leading to pathological behavior
(Zeno’s phenomenon) [8] and limited model accuracy due to its sensitivity to uncertainty.
In response, we propose Sliding Pivot, a physical surrogate model that offers smoother
dynamics. Extensive robot throwing experiments are conducted to validate and assess
the models’ accuracies. Our model reduces horizontal velocity prediction error by 76%
and angular velocity prediction error by 80%, achieving a mean absolute error (MAE)
of 2.6 cm for landing position and 15 degrees for landing orientation, with significantly
lower variability and systematic bias across a wide range of experimental conditions. To
our knowledge, this work is the first study on the physical modeling of transient release
dynamics in robot throwing and is currently under review as "On Transient Release Dynamics
in Robot Throwing: A Sliding Pivot Model," Liu and Billard, submitted to IEEE Transactions
on Robotics, 2025 [31].

2.2.1 Parameters and variables in dynamic modeling of throwing

𝒜

ℋ

𝒪

𝑥

𝑧

(𝑥ℎ , 𝑧ℎ)

(𝑥𝑜, 𝑧𝑜)

𝜃ℎ

𝜃𝑜

Figure 10: Major notations for release dynamics modeling.

As shown in Fig. 15, we use robot base frameA as the world frame. Hand frameH
is located at the center of the two fingers. Object frame O is located at its center of mass
(CoM). The generalized coordinates of the hand are denoted by,

qh = [xh, zh,θ h]⊤ ∈ R3 (1)

where xh is the horizontal position of the hand frameH relative to the robot base frame
A , zh is the vertical position of the hand frame H relative to the robot base frame A ,
θ h is the hand’s orientation relative to the vertical orientation. Twist, acceleration, and
applied wrench at the center of the two fingers are expressed in the world frameA and

15

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

are denoted by,

vh = [vh
x , vh

z ,ωh]⊤ ∈ R3 (2)

ao = [ah
x , ah

z ,αh]⊤ ∈ R3 (3)

fo = [f h
x , f h

z ,τh]⊤ ∈ R3 (4)

The generalized coordinates of the object are denoted by,

qo = [x o, zo,θ o]⊤ ∈ R3 (5)

where x o is the horizontal position of its CoM relative to the robot base frame A , zo

is the vertical position of its CoM relative to the robot base frame A , θ o is the object’s
orientation relative to the vertical orientation. Note that θ o is unwrapped from [0,2π]
in order to differentiate different number of flips during its free flying. Likewise, twist,
acceleration, and applied wrench at CoM are expressed in the world frame A and are
denoted by,

vo = [vo
x , vo

z ,ωo]⊤ ∈ R3 (6)

ao = [ao
x , ao

z ,αo]⊤ ∈ R3 (7)

fo = [f o
x , f o

z ,τo]⊤ ∈ R3 (8)

Define the relative coordinates of object frame O w.r.t. hand frameH ,

qr = [x r , z r ,θ r]⊤ (9)

:= qo − qh ∈ R3 (10)

For the contact point C on the object specified by a relative vector qr , the linear velocity
of C expressed in robot base frameA , denoted as vc

xz , is

vc
xz = vo

xz +wo ×−qr
xz =
�

vo
x +woz r

vo
z −wo x r

�

, (11)

where vo
xz is the linear velocity C expressed in robot base frameA . Hence, we can define

the transformation matrix G(qr) that relates the contact point twist vc and object twist vo:

vc =





vc
x

vc
z

wc



=





vo
x +woz r

vo
z −wo x r

wo



= G(qr)v
o (12)

with

G(qr) =





1 0 z r

0 1 −x r

0 0 1



 , (13)

Similarly, the wrenches are related via,

fo = G⊤(qr)fc (14)

The relative velocity vr is defined as the difference between the velocity of the contact
point vc and the velocity of the hand vh,

vr := vc − vh (15)

16

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

The Cartesian acceleration of the contact patch on the object ac can be written as,

ac =





ac
x

ac
z
αc



= ao +





−αoz r −ωo2 x r

αo x r −ωo2z r

0



 (16)

Then define the relative acceleration ar as the slip acceleration,

ar := ac − ah (17)

The rigid body dynamics expressed in the object frame is,

Mao = G⊤(qr)fc + g (18)

where M = diag(m, m, I) denotes the mass matrix of the object, g = [0,−g, 0]T represents
the gravitational wrench acting on the object in the vertical plane, and fc is the frictional
wrench applied on the object.

The finger normal force is defined as fN ∈ R+. The tangential friction force limit is
fmax = µ fN and the torsional friction torque limit is τmax = caµ fN , where µ is the contact
patch’s friction coefficient, a is the radius of the contact patch, and the constant c ∈
[0,1] represents the factor accounting for the contact geometry under uniform pressure
distribution.

2.2.2 Sliding Pivot model

1) Sticking dynamics
During sticking, finger acceleration ah equals the acceleration of the contact patch on the
object ac , i.e. relative acceleration ar is zero. Thus, we obtain the object acceleration ao

by setting ac = ah in Equation 16:

ao =





ao
x

ao
z
αo



= ah −





−αoz r −ωo2 x r

αo x r −ωo2z r

0



 (19)

and the required friction wrench fp to achieve this acceleration to remain sticking:

fp = G⊤(−qr) (Mao − g) (20)

If |τp| ≤ τmax and ∥[f p
x , f p

z]∥ ≤ fmax, the object is sticking to the hand and its motion
can be determined by Equation 19, i.e. propagating hand motion with the object be the
extended body.
2) Pivoting dynamics
If |τp| > τmax and ∥[f p

x , f p
z]∥ ≤ fmax, then the friction patch cannot generate enough

torsional friction to resist spinning but can generate enough linear friction to prevent the
contact patch from sliding. In this case, the system becomes a 1-DoF pivot around the
finger pad. This pivoting can be conveniently described by the state of relative rotation
(θ r ,ωr) = (θ o − θ h,ωo −ωh), with pivot acceleration αr be,

αr := ω̇r =
sgn(|τp|)(|τp| −τmax(fN))

ml2 + I
(21)

where l = ∥[x r , z r]∥ =

[x o − xh, zo − zh]

 be the CoM offset, τmax(fN) be the time-
varying torsional friction limit. In other words, the Karnopp routine is applied during

17

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

pivoting. Note that sticking dynamics and pivoting dynamics can be written in the following
compact form:

αr = ω̇r =
sgn(|τp|)(max{|τp|,τmax} −τmax(fN))

ml2 + I
(22)

3) Sliding dynamics
If ∥[f p

x , f p
z]∥> fmax, the pivot starts sliding on the contact surface, The sliding dynamics

is given by,
�

ar
x

ar
z

�

=
1
m

��

f p
x

fmax

∥[f p
x , f p

z]∥

f p
z

fmax

∥[f p
x , f p

z]∥

�

+ gxz

�

(23)

where [ar
x , ar

z]
⊤ is the sliding acceleration, gxz = [0,−g]⊤. Pivot acceleration is also

influenced by the decreased lever torque due to the insufficient friction force to maintain
pivoting. Mathematically, define αs be the amount of decreased pivot acceleration, given
by,

αs =

�

−x r

−z r

�

×

�

f p
x (1−

fmax

∥[f p
x , f p

z]∥
)

f p
z (1−

fmax

∥[f p
x , f p

z]∥
)

�

ml2 + I
(24)

As a result, the pivot acceleration during sliding is:

αr = ω̇r =
sgn(|τp|)(max{|τp|,τmax} −τmax(fN))

ml2 + I
−αs (25)

2.2.3 Release dynamics model validation

Hardware setup
The throwing experiments are conducted by a 7 degrees of freedom fully actuated manip-
ulator (Franka Emika Panda) mounted with Robotiq 2F-85 parallel gripper. To measure
the vanishing normal force during gripper opening, an ATI Nano 17 F/T sensor is attached
behind one of the gripper’s finger pads. The experiment hardware setup is illustrated in
Fig. 11. The thrown object is the 3D-printed bar with a known and configurable mass
distribution attached with markers, shown in Fig. 7.
Batch throwing experiments
We conduct batch throwing experiments that cover a large space of landing poses and
summarize the predictions of the conventional model LS and the proposed model SP. The
throwing conditions are configured as follows:

• 2 CoM offsets: a metal cylinder payload (mass: 154 gram) is configured at 2
different slots in the 3D-printed bar (mass: 92 gram), yielding two distinct CoM
offsets from the tip (‘CoM-1’ - 10 cm, ‘CoM-2’ - 16 cm).

• 3 throwing pitch angles: 3 different nominal throwing postures with distinct pitch
angles (θ h upon release).

• 6 release acceleration: 6 different release motions ranging from acceleration to
deceleration.

Each (CoM, pitch angle, release acceleration) tuple is thrown 5 times, resulting in
180 throws. The collection of landing poses is shown in Fig. 12, demonstrating that the
experiment design covers a wide range of landing poses.
Result and discussion
The landing pose prediction errors, defined as the difference between the predicted and

18

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Figure 11: Hardware setup: Franka Emika Panda manipulator with Robotiq 2F-85 gripper. An
ATI Nano 17 F/T sensor is mounted behind one finger pad.

Figure 12: Scatter plot of landing poses in batch experiments. The marker shape indicates
the two bar CoM configurations tested. The color bar represents the family of release motions,
ranging from acceleration to deceleration. To avoid clutter, the three pitch angles are not
explicitly labeled in the scatter plot but can be inferred from the three vertical clusters of
landing poses.

actual landing poses, are shown in Fig. 13. The LS predictions exhibit a systematic bias,
tending toward smaller horizontal displacements (negative error in landing x) and smaller
rotations (negative error in landing θ). We hypothesize that this bias arises from frequent
oscillations dissipating the energy transferred to the object. In contrast, the SP predictions

19

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

show no discernible trend or bias, indicating the absence of systematic error. Moreover,
SP prediction errors are significantly more concentrated around zero compared to LS,
highlighting the superior accuracy and consistency of SP in predicting landing poses.

Figure 13: Scatter plot comparing the landing pose errors of LS and SP predictions on the 180
throws. The SP error population is much more condensed around zero compared to LS.

Table 7: MAE and STD of LS and SP predictions for free flying and landing metrics. Errors are
MAE(±STD).

Model
Free Flying Twist Landing Pose

ẋ (m/s) ω (deg/s) x (m) θ (deg)

LS 0.192(±0.159) 112.30(±101.72) 0.110(±0.105) 62.47(±57.74)
SP 0.045(±0.030) 22.13(±20.27) 0.026(±0.020) 14.77(±12.34)

The quantitative results of the landing pose prediction errors are summarized in Table 7,
which compares the Mean Absolute Error (MAE) and Standard Deviation (STD) of the
absolute error of the predictions from the conventional LS model and the proposed SP
model across multiple metrics. The metrics include free-flying twist variables: horizontal
velocity (ẋ) and angular velocity (ω), and landing pose variables: horizontal landing
position (x) and landing orientation (θ).

The table highlights a significant improvement in prediction accuracy and consistency
achieved by the SP model. Specifically, for free-flying twist predictions, SP demonstrates
over a fourfold reduction in MAE for horizontal velocity (ẋ) and angular velocity (ω), with
MAEs of 0.045 m/s and 22.13 deg/s, respectively, compared to 0.192 m/s and 112.30
deg/s for LS. Similarly, SP outperforms LS in landing pose prediction, achieving MAEs of
0.026 m and 14.77 deg for horizontal displacement (x) and orientation (θ), respectively,
compared to LS’s larger errors of 0.110 m and 62.47 deg.

In addition to achieving lower MAE, SP predictions also exhibit significantly smaller
STD across all metrics, indicating a higher level of consistency in its predictions. This is
particularly evident in the angular velocity (ω) and orientation (θ), where LS predictions
show high variability (STD of 101.72 deg/s and 57.74 deg, respectively), whereas SP
predictions are much more concentrated (STD of 20.27 deg/s and 12.34 deg). These
results align with the visual analysis in Fig. 13, further demonstrating that the SP model
not only eliminates the systematic biases observed in LS but also delivers robust and

20

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

reliable predictions across diverse experimental conditions.

2.2.4 Discussion on Impact on Robot Throwing

The proposed physical model on transient release dynamics opens up new possibilities for
scalable and industrial-grade robot throwing.
Fast and accurate sorting. As shown in Fig.13, the throwing displacement error is
bounded within ±11 cm across a wide range of throwing configurations and landing
poses. This provides a direct comparison with TossingBot[55], an end-to-end learning
model that achieves 85% success rate in throwing various objects with a 25 cm tolerance,
but at the cost of tens of thousands of real throwing trials. In contrast, our physical
model has the potential to enable precise throwing planning with over 99% success rate,
given stock-keeping unit (SKU) information and accurate robot motion. This represents a
significant leap in the technology readiness level (TRL) of robot throwing.
Throwing with desired landing pose. Additionally, Fig. 13 demonstrates that the landing
orientation error is bounded within ±50 degrees, indicating that it is possible to plan
throwing motions to achieve desired landing poses (position and orientation) with high
precision. This capability can facilitate bar code scanning, optimize space utilization, and
improve ergonomic access for human operators or other robots in industrial automation.
Knowledge transfer among fleets of throwing robots. Compared to end-to-end learning
models, a key advantage of physical models is their excellent transferability. Object SKU
information, sensor measurements, and robot motion are all described in the common
language of SI units, allowing knowledge to be easily transferred across different embodi-
ments and operating conditions. On the other hand, it is unclear how information can
be transferred between end-to-end learning models trained for individual robots under
varying conditions.
Physics-guided active learning. Finally, recent studies in operations research [46, 53]
have shown that algorithms leveraging structural information achieve better exploration-
exploitation trade-offs than classical structure-free methods in online decision-making.
Therefore, for robot throwing in unstructured environments where object information is
unavailable, the algebraic structure encoded in the physical model has the strong potential
to guide strategic active learning and reduce sample complexity.

2.3 Learning to throw-flip with desired landing pose

Recent advances in robot throwing from EPFL [33, 30] as well as from the literature [55,
6, 25, 56] have shown that robots can throw a variety of objects accurately. However,
attention has so far been given solely to having the object land precisely in a given location.
Precise control over the final orientation of objects when thrown, however, is crucial—for
instance, to enable accurate barcode scanning.

In this third contribution from EPFL, we explore controlled landing poses in the
challenging task of throw-flipping a bar into a narrow box with a desired orientation
(referred to as "throw-flip" hereafter for brevity). Throw-flipping is arguably one of the
most complex dynamic manipulation tasks due to two key challenges:
1) Coupled displacement and rotation: For manipulators with revolute joints, increasing
the linear velocity of the end-effector (EEF) to reach farther targets inherently increases its
angular velocity, introducing a parasitic effect of exaggerated rotation. Thus, it is essential
to design robot throwing actions that can independently steer both landing position and
orientation.
2) Intricate release dynamics: The in-hand sliding and spinning that occur during the
transient phase (approximately 50 ms) of vanishing gripper normal force are difficult to

21

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Figure 14: Robot throw-flips the bar with 4 different landing poses.

model. Additionally, some physical parameters, such as friction and deformations induced
by a tight hold, are difficult to measure accurately.

In the literature, robot throwing with desired landing poses (position and orientation)
has received much less attention, with only a few notable exceptions:
1) Non-prehensile throwing with desired pose: In non-prehensile throwing, objects are
held immobile via inertial forces during acceleration and are released instantaneously by
maximizing deceleration of the hand to minimize the effects of friction during release, re-
sulting in accurate throws. Most early works on robot throwing considered non-prehensile
throwing [2, 48, 1, 35, 34]. [34] applied sequential quadratic programming (SQP) for
motion generation to throw a block with a flat pad to achieve a desired landing pose.
More recently, [44] adapted a similar setup in [34] to achieve highly accurate throwing at
high speed by utilizing the set of valid release states that end up with successful throws.
However, in these setups, the instantaneous release from the “palm” inherently binds the
object’s feasible free-flying motion to the motion capabilities of the end-effector. Conse-
quently, for typical robot manipulators with revolute joints, the tight coupling between
linear and angular motion at the end-effector severely restricts the range of achievable
landing poses for the thrown object.
2) Prehensile throwing with desired pose: Prehensile throwing, where the object is
firmly grasped to prevent slippage during acceleration, poses additional challenges for
achieving accurate throws due to release uncertainties arising from dynamic friction and
deformations. By leveraging a large amount of real throwing data (on the scale of thou-
sands) to implicitly encapsulate all sources of uncertainty, including transient friction,
TossNet [10] learns an autoregressive model to predict object landing poses from joint mo-
tion and wrist force/torque sensor measurements prior to the release. The trained model
is then used to determine robot motions for accurate throws through a bisection method,
including “pitching” bottles to desired poses. However, as demonstrated in the work, the
obtained “pitching” motion only involves linear displacement without rotation (either
for the end-effector or the flying object), implying that the landing orientation can only
align with the end-effector’s orientation at the moment of detach. Notably, TossNet also
evaluated the accuracy of a benchmark physics model (rigid-body and projectile dynamics,

22

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

𝒜

ℋ

𝒪

𝑥

𝑧

(𝑥ℎ , 𝑧ℎ)

(𝑥𝑜, 𝑧𝑜)

𝜃ℎ

𝜃𝑜

Figure 15: Major notations for flipping.

neglecting frictional interactions), which showed significantly larger errors compared to the
learned model (∼3 cm vs. ∼15 cm error for throws with∼50 cm horizontal displacement).

Compared to the literature that suffers from restricted landing poses, we aim to throw-flip
objects to precise landing poses within a large and dense set of reachable outcomes. In
addition, facing the dilemma between the inaccuracies of model-based planning and the
high sample complexities of end-to-end learning, we aim to strike a balance by designing
a learning system that seamlessly assimilates data with physical knowledge to accelerate
learning. More specifically, our contributions include,

• Control system design with impulse-momentum principle to decouple displace-
ment and rotation, resulting in drastically enlarged feasible landing poses.

• Learning with data assimilation integrates empirical data with flying dynamics,
reducing sample complexity by 40% compared to pure data-driven learning.

• Transfer learning to throw-flip a new object: Reusing past data on in-hand object
spinning when throw-flipping a new object under a Center of Mass (CoM) shift
reduces sample complexity by 70%, compared to CoM-shift-agnostic methods.

This work is under review as "Learning to Throw-Flip," Liu, Da Costa, and Billard,
submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
2025 [32].

2.3.1 Method

Modeling throw-flipping A schematic of the throw-flip variables is illustrated in Fig. 15.
The robot base frameA serves as world frame. Hand frameH is located at the center of the
two fingers. Object frame O is located at its center of mass (CoM). In the absence of external
disturbance, the throw-flip motion is planar. In the plane of motion, the coordinates of the
hand frame w.r.t. the world frame reduce to three parameters: qh = [xh, zh,θ h]⊤ ∈ R3,
where xh and zh are the coordinates on the horizontal and vertical axes, and θ h the
orientation of the object at release time relative to the vertical axis. Hand twist at the
center of the two fingers is expressed in the world frameA : vh = [vh

x , vh
z ,ωh]⊤ ∈ R3.

23

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Denote the joint position and velocity of an N-DoF robot manipulator as q ∈ RN ,
q̇ ∈ RN , respectively. Associate the end-effector (EEF) states in the world frame using
standard forward kinematics and differential forward kinematics relationships:

qh = fh
kin(q) : RN → R3

vh = Jh(q)q̇ : RN ×RN → R3

The generalized coordinates of the object/bar are denoted by qo = [x o, zo,θ o]⊤ ∈ R3.
Note that θ o is unwrapped from [0, 2π] in order to differentiate different number of flips
during its free flying. Likewise, object twist at CoM is expressed in the world frame A
and is denoted by vo = [vo

x , vo
z ,ωo]⊤ ∈ R3.

For indoor throwing of solid objects, air drag can be neglected. The free-flying dy-
namics is only subject to gravitational force, resulting in the object acceleration ao :=
[ao

x , ao
z ,αo]⊤ = [0,−G, 0]⊤, where G = 9.81 m/s2 is the gravitational acceleration. For such

projectile dynamics, the landing pose can be obtained in closed form given the release state
(qo,vo). The flying duration t f l y can be calculated as t f l y =

�

żo +
p

żo2 + 2G(zo − z land)
�

/G.

Then, x land = x o + vo
x t f l y ,θ land = θ o +ωo

x t f l y . Without loss of generality, in this work,
we assume that the landing height is always 0 in the robot frame and define the landing
pose at height 0 as qland = (x land ,θ land). We define the projectile flying flowmap g, with
qland = g(qo,v0), to compute the landing pose at 0 height given release state.

Define the relative coordinates of object frameO w.r.t. hand frameH , qr = [x r , z r ,θ r]⊤ :=
qo − qh ∈ R3. Then for the contact point C on the object specified by a relative vector qr ,
the contact point twist vc and object twist vo are related through:

vc =





vc
x

vc
z

wc



=





vo
x +woz r

vo
z −wo x r

wo



 (26)

The relative velocity vr is defined as the difference between the velocity of the contact
point vc and the velocity of the hand vh, i.e. vr := vc − vh.

Impulse-momentum-based control design For manipulators with revolute joints, the
coupling between the linear motion and the angular motion of the end-effectpr significantly
limits the feasible space of the landing poses of thrown objects. To address this challange,
we propose leveraging the temporal hinge effect during the gripper-opening window,
as illustrated in the schematic of Fig. 16. The temporal hinge can be demonstrated
through a simple dropping experiment with our fingers: pinch-grasp a pen at one end,
hold it horizontally, and gradually open the fingers—the pen will first pivot in-hand and
then detach. During the transient release window, the finger-bar contact behaves like
an underactuated joint, making the robot-bar system an (N+1)-DoF pendubot for an
N-DoF manipulator. In this scenario, if the robot undergoes drastic deceleration during the
temporal hinge window, the impulse-momentum principle allows part of the robot’s angular
momentum to be transmitted to the bar through the frictional interface, accelerating the
object’s angular velocity. The amount of hinge acceleration can be controlled by the
magnitude of braking during this window. As a result, we obtain one additional steerable
DoF, independent of the nominal throwing state.

3-parameter family of flip motions As sketched in Section 2.3.1, the two-phase flip
motion family proceeds as follows:

24

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

pivoting velocity

Figure 16: Schematic of flip motion. The robot firmly grasps the bar and accelerates it to
a high-energy, high-velocity state, then enters a rapid decelerating-braking phase. During
braking, the robot’s gripper begins to open with decreasing normal force. Approximately 50
ms later, the normal force vanishes completely, and the bar enters free flight. Leveraging the
impulse-momentum principle, the bar’s rotation is accelerated by the pivoting velocity.

Acceleration Given a desired nominal throwing state in joint space (qd , q̇d) ∈ R2N , a
dynamically feasible accelerating trajectory is generated to connect the pre-throw pose
with the nominal throwing state. This trajectory is executed via a standard impedance
controller.

Starting from a fixed initial nominal throwing state (qs, q̇s) ∈ R2N , ξd is obtained by
adjusting two scalar parameters, “pitch” γ and “speed” s, as follows,

qd = qs +
γ

N
IN×1, q̇d = sq̇s

Effectively, “pitch” γ and “speed” s regulate the direction and the magnitude of the finger’s
linear velocity.

Brake After bypassing the end of the trajectory, the target position is set as qd and
the target velocity is set to 0 for the impedance controller. The magnitude of the brake is
regulated by the “damping” D parameter of the impedance controller.

In summary, the family of robot flip motions is indexed by (“pitch” γ, “speed” s,
“damping” D). Hence, we define the flip command u := (γ, s, D) ∈ R3.

Learning and Adaptation We aim to solve the inverse problem of finding appropriate
control commands for desired throwing outcomes through iterative learning. The rationale
behind the data-driven approach is the absence of accurate forward models to describe
the physical process of throw-flipping. This is not only due to the complex and intricate
dynamic patch friction between the finger pad and the object, but also due to the lack
of accurate robot dynamics models when operating in the highly dynamic regime of
impulse-momentum braking.

25

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

�𝒖𝒖

Landing 𝑥𝑥

La
nd

in
g
𝜃𝜃

𝒒𝒒1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝒒𝒒3𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝒒𝒒2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�𝒒𝒒𝑀𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Detach states
𝒒𝒒𝑜𝑜,𝒗𝒗𝑜𝑜 ∈ ℝ6

(Δ𝒒𝒒𝑜𝑜,Δ𝒗𝒗𝑜𝑜)

�𝒒𝒒𝑀𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝒒𝒒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(�𝒖𝒖)
𝒖𝒖1

𝒖𝒖2

𝒖𝒖3

Recession cone target

Figure 17: Schematic of the two forward models to predict the landing pose of a new command
û.

Our learning to throw-flip setup is as follows: Given an initial support dataset X0 =
{(u,qh,qr ,vh,vr ,qo,vo,qland)} representing the initial observations of the physical process,
the task is to iteratively refine control commands that progressively throw-flips the object
closer to an unseen target landing pose as new data is gathered throughout the process.
For a learning and adaptation system, two crucial design choices must be considered:

• Forward model: Given the dataset of past experiences, how to build a forward
model to predict the throwing outcome of a new command?

• Iterative command adaptation: How to effectively adapt the command based
on the updated forward model? As an autonomous decision-maker, what actions
should be taken when the process gets stuck?

Next, we describe our iterative learning design in detail.

Forward Model Despite the absence of accurate release dynamics models and robot
dynamics models, there is still rich geometrical and physical knowledge about the throw-
fliping process at our disposal, as presented in Section 2.3.1. Can this knowledge be
utilized to accelerate learning? To answer this question, we design and compare the
following two models: as illustrated in Fig. 17,

• Model 1: end-to-end learns a locally linear map from the 3D command u to the 2D
landing pose directly.

• Model 2: projectile-based learns a locally linear map from 3D command to the
6D object’s detach state (qo,vo) and then obtains the predicted landing pose using
the projectile flying flowmap g(qo,vo). Compared to Model 1, this model encodes
physical knowledge of flying dynamics to assist learning.

Mathematically, we define the normalized error as,

e(qland,qtarget) =

�

x land − x tar get

εx
,
θ land − θ tar get

εθ

�

2

26

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Algorithm 1: Iterative Learning with Cone Search

Input: Support dataset X , Target pose qtar get , Max iterations T , Error thresholds
εx ,εθ , #Command trials N

1 for t = 1 to T do
2 Identify three nearest neighbors in X : (ui ,q

o
i ,vo

i ,qland
i), i ∈ {1, 2,3};

3 foreach (α1,α2) in mesh grid do
4 Compute q̂land using Eq. 27 or Eq. 28 ;
5 Compute error e(q̂land ,qtar get);

6 Find best command ut(α1,α2) minimizing e Execute ut , observe N trials,
compute mean landing pose q̄land

t
7 Update dataset: X ←X ∪ (ut , q̄land

t)
8 if All N trials land within thresholds then
9 return ut (Success);

10 if learning stagnates (error does not improve) then
11 Select new neighbors to escape local minimum;

12 return best found u;

where εx ,εθ are the target pose thresholds for position and orientation, respectively.
From a dataset X , we identify the three nearest neighbors based on the normalized
error, denoted as (ui ,q

o
i ,vo

i ,qland
i), i ∈ 1,2, 3, ranked by their normalized error relative to

the target pose. Define the delta command as ∆u(α1,α2) =
∑

i=1,2αi(ui+1 − u1), where
(α1,α2) ∈ R2 is the recession cone coordinate we are searching for. Then the two forward
models predict the landing poses of a new command u= u1 +∆u(α1,α2) as follows:

q̂land
M1 (α1,α2) = qland

1 +
∑

i=1,2

αi(q
land
i+1 − qland

1) (27)

q̂land
M2 (α1,α2) = g(q̂o, v̂o) = g(qo

1 +
∑

i=1,2

αi(q
o
i+1 − qo

1),v
o
1 +
∑

i=1,2

αi(v
o
i+1 − vo

1)) (28)

Model Inversion with On-Manifold Cone Search In essence, our iterative learning
problem is a zeroth-order optimization/root-finding problem, where only sparse forward
model evaluation is available. At each iteration, given the current best command (u1)
for throw-flipping to the desired target, we aim to determine the delta change of the
current best command (∆u) to throw closer. We propose a fast adaptation method using
on-manifold exhaustive search in the local recession cone. At each iteration, the robot
samples a dense mesh of candidate feasible commands parametrized by the recession cone
coordinate (α1,α2). It then selects the best candidate that minimizes the predicted error
to execute and adds the new observations to the dataset. Progressively, the algorithm
refines the throwing command using more accurate forward models around the target
in the accumulated dataset. The pseudocode describing the procedure is summarized in
Algorithm 1.

Transfer Learning under CoM shift To throw a new object with a different and known
CoM, instead of gathering a support set from scratch and then starting iterative learning,
we propose a method to transfer experience from throwing other objects to accelerate the
learning process for the new object.

27

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Assuming that the in-hand sliding-spinning twist remains unchanged after a CoM shift
∆h, according to Eq. 26, we obtain the predicted landing pose of the new object by shifting
the detach state (qo,vo) as follows:

q̂o(∆h) = qo +∆h[sinθ o,− cosθ o, 0]⊤

v̂o(∆h) = vo +ωo∆h[cosθ o, sinθ o, 0]⊤

Integrating (qo,vo) with projectile dynamics yields the transferred support set X̂ . The
learning procedure, denoted as Model 3: transfer learning, is as follows,

• 1st Iteration: Select the closest command within the transferred support set X̂ ,
denoted as u1. After executing u1, obtain data (qo

1,vo
1,qland

1).

• 2nd Iteration: Select the 3 closest data entries within X̂ , denoted as {(ûi , q̂
o
i , v̂o

i , q̂land
i)}, i ∈

1,2, 3.Then we compute the best delta command ∆u, such that u2 = u1 + ∆u
yields closest landing pose q̂land

2 predicted by the 3 selected data. In particular, let
∆u(α1,α2) =
∑

i=1,2αi(ûi+1 − û1), then

q̂land
2 = g(q̂o

2, v̂o
2) = g(qo

1 +
∑

i=1,2

αi(q̂
o
i+1 − q̂o

1),v
o
1 +
∑

i=1,2

αi(v̂
o
i+1 − v̂o

1))

• 3rd Iteration: Select the 1st, 2nd and 4th closest data entries within X̂ , compute
the best delta command ∆u, such that u3 = u2 +∆u2 yields the closest predicted
landing pose q̂land

3 , calculated in the same way as in the 2nd Iteration. q̂land
3 is

calculated the same way as in the 2nd iteration,

• From the 4th Iteration Onward: Start normal iterative learning using a new
support set, consisting of the data obtained from the first three iterations.

2.3.2 Experiment

Hardware setup The throwing experiments are conducted using a 7-DOF Franka Emika
Panda manipulator mounted with a Robotiq 2F-85 parallel gripper. The thrown object is
a 3D-printed bar attached with markers, whose mass distribution can be configured by
shifting the payload position within the bar.

Control design verification We first verify that our impulse-momentum-based control
design can yield a large set of landing poses using only 3 control parameters (pitch” γ,
speed” s, “damping” D), ensuring that this family of throwing motions includes commands
capable of flipping the bar with large rotations.

To validate the control design, we conducted throwing experiments for a grid of 33 = 27
control commands (3 pitch” γ, 3 speed” s, 3 “damping” D). Each command is executed
5 times to account for intrinsic randomness in the flipping process, arising from tiny
variations in the grasp pose, stochastic friction between the finger and the bar [?], and the
unrepeatable motor control of the Panda robot. A metal payload of 150 gram is configured
in the second slot of the bar, making its CoM be 12 cm from the grasp point. The resulting
population of 27× 5 = 135 landing poses is illustrated in Fig. 18. By focusing on one
parameter/channel at a time, we can observe the effect of individual control parameters:

• “pitch” γ: → → , increasing “pitch” steers the robot from a “forward” throw
to an “upward” throw, resulting in a decreased landing distance, and an increased
landing angle.

28

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Figure 18: Initial population of landing poses generated from impulse-momentum-based
control using a mesh of 3×3×3 = 27 commands. Each command is executed 5 times, yielding
135 throws.

• “speed” s: → → , increasing the “speed” raises the linear velocity and also
causes a parasitic increase in angular velocity, making the landing distance and
landing angle increase simultaneously.

• “damping” D: (, ,) purple landing poses obtained with the lowest damping
are sparse and cannot achieve a full flip (360 degree), highlighting the limitations
of purely velocity-based control. Introducing “damping” significantly expands the
set of feasible landing poses. → → , increasing damping effectively increases
the landing angle while slightly reducing landing distance.

Overall, our impulse-momentum-based control design significantly expands the reach-
able space of landing poses compared to the conventional velocity-based control design,
notably enabling full 360-degree flips.

Learning to throw-flip: model comparison We report on a comparative analysis of
throw-flip performance using end-to-end learning (model 1) as opposed to projectile-
dynamics-based learning (model 2). Given the inherent stochasticity in the throwing
process, as demonstrated by the variance of landing poses in Fig. 18, we set the target tol-
erance to (±5 cm, ±45 degrees). To evaluate the capability of the learning and adaptation
system in throw-flipping to unseen poses, we provide only four initial commands that form
a simplex in the 3D command space, offering a minimal non-degenerate representation of
the forward model. Four unseen target landing poses are specified: (a) (1.2, 180), (b)
(1.2, 360), (c) (1.4, 180), (d) (1.4, 360). The mean landing poses associated with the
four commands in the support simplex, along with the target poses and their tolerances,
are illustrated in Fig. 19. To account for the stochasticity in the throwing process, each
command is executed three times per iteration to obtain the mean outcome. Each learning
path is conducted for five iterations, resulting in 15 throwing trials per learning path.

29

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Figure 19: Mean landing poses for the four commands in the support simplex and the four
unseen target poses.

Figure 20: A sample learning process for target pose (1.4, 180) with Model 2. Iterative 0
represents the closest landing pose within the support set. The green vertical bar represents
the desired landing pose.

Results are summarized in Table 8 and Fig. 21. A sample learning process for the target
(1.4, 180) with Model 2 is illustrated in Fig. 20.

Error First Iter. Min. #Iters Enter Thres.

Target Initial M1 M2 M1 M2 M1 M2
(a) 1.58 3.37 1.04 1.58 0.45 Failed 1
(b) 1.33 2.02 1.94 1.33 0.83 Failed 5
(c) 3.12 2.27 2.25 0.79 0.52 4 4
(d) 2.88 1.97 1.24 0.40 0.68 2 1

Average 2.23 2.41 1.62 1.02 0.62 >4.5 2.75

Table 8: Summary of normalized error and the number of iterations required to reach the
target threshold for the four target poses. ‘M1’ - Model 1, ‘M2’ - Model 2.

Normalized errors: The normalized error for Model 2 after the first iteration is consistently
lower than that of Model 1, indicating that incorporating physical knowledge of nonlinear
projectile dynamics explains away part of the nonlinearity in the command-outcome map.
On average, Model 2 achieves 40% smaller error than Model 1.
Iterative improvement: For Model 2, the iterative learning procedure progressively brings
the landing pose closer to the target. This is evidenced by the fact that the minimum error
is always achieved after the second iteration, despite some error oscillation.

30

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

(a) (b)

(c) (d)

Figure 21: Summary of iterative learning of four unseen target poses. Symbol ‘*’ represents
the first iteration where the landing pose falls within the position and orientation threshold for
at least 2 out of 3 trials. Symbol ‘T’ represents the first iteration where the landing pose falls
within the position and orientation threshold for all the 3 trials.

31

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

First iteration entering threshold: Model 2, which incorporates projectile dynamics,
reaches the target threshold in fewer iterations than Model 1 for all four target poses.
Error correction: Our system design demonstrates the ability to escape local minima.
In particular, for the fourth iteration of (Target (b), Model 2) and the fourth iteration of
(Target (d), Model 1), the landing pose exhibits greater error than in previous iterations,
indicating that the neighbor-constructed local model was inaccurate. However, a new set
of nearest neighbors is selected thanks to the re-selection routine, allowing the system to
correct the large error in the next iteration.

Transfer learning under CoM shift In this experiment, we demonstrate Model 3:
transfer learning can accelerate iterative learning for new objects under CoM shift. The
transfer learning method follows the procedure described in Section III.G. Compared to
the previously thrown bar, we shift the metal payload from the middle to the furthest
position away from the tip, effectively changing the object’s CoM offset from 12 cm to 18
cm.

Figure 22: Transfer learning under CoM shift. Left: the command to throw-flip the original
bar is invalid for the CoM-shifted bar. Right: A new valid command is found after transfer
learning within few iterations.

Fig. 22 illustrates the effect of increased landing position under CoM shift and the
result of transfer learning. The learning progress is summarized in Fig. 23. For comparison,
we also include a baseline approach that does not incorporate physical knowledge of CoM
shift. In this baseline, the support set simplex is gathered using four commands, followed
by standard iterative learning with Model 2.
First iteration entering threshold: Strikingly, transfer learning with Model 3 reaches
a 2/3 success rate after two iterations and 3/3 success rate after three iterations, even
before entering the normal iterative learning process. In contrast, Model 2 requires a total
of 5 iterations to reach 2/3 success rate, and failed to achieve 3/3 success rate after 9
iterations. This demonstrates Model 3’s ability to effectively reuse past experience when
throwing unseen objects, leveraging physical knowledge for faster adaptation. Iterative
improvement: After 6 iterations, Model 3 achieves a significantly lower normalized error
than Model 2 (0.3 vs. 0.88). This improvement is likely due to the fact that the data
population gathered by Model 3 is much closer to the target (as indicated by the smaller
normalized errors in the first three iterations) compared to the standard support simplex
used in Model 2. Consequently, the local approximation quality in Model 3 remains higher
throughout learning, leading to better decisions during the iterative process.

32

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Figure 23: Summary of transfer learning. Symbol ‘*’ represents the first iteration where the
landing pose falls within the position and orientation threshold for at least 2 out of 3 trials.
Symbol ‘T’ represents the first iteration where the landing pose falls within the position and
orientation threshold for all the 3 trials.

3 Throwing (UNIPI)

3.1 Adaptive control for throwing

To move robotics manipulators into daily living situations, one has to guarantee a safe
physical interaction with the environment and humans. For this purpose, most of the
control algorithms used in these situations are based on impedance control [52, 20]. This
technique enables the assignment of a desired compliant behavior to the manipulator
through the design of an appropriate control law, permitting it to interact with the environ-
ment without the generation of large contact forces. Several works were done exploiting
this type of strategy [52, 3]. However, in these controllers, errors in the dynamic model of
the manipulator could lead to a tracking error on the desired motion, especially in highly
dynamic tasks such as throwing.

One of the traditional control algorithms in the literature that reaches asymptotic
stability under parameter uncertainties is the adaptive computed torque control [13, 50,

33

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

16, 14], which consists in a feedback linearization with the joint torque as system input.
However, for the parameters update the law includes the estimated mass matrix inverse and
the joint accelerations, which could lead to numerical problems such as the ill-conditioning
of the estimated mass matrix or the necessity of the double derivation of the joint position
measurements to obtain acceleration. Furthermore, the solution of the Lyapunov equation
of the linearized model of the closed-loop system is required.

To overcome this problem, we propose a novel adaptive law for the computed torque
algorithm that does not require the aforementioned information. We formulate the control
law both in the joint and in the Cartesian domain, to cover all the possible reference
trajectory types. In this section, we briefly recap both the theoretical formulation and the
experimental validation. For more details, we refer the interested reader to "Low-Gains
Adaptive Computed Torque Control for High Dynamic Tasks," Simonini, Baracca, Cavaliere,
Bicchi, and Salaris, submitted to IEEE Access, 2025 [51].

3.1.1 Control law formulation

Joint space controller: Let us consider the well-known dynamic model of a rigid robot
manipulator described by Lagrange equation (see [21]):

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ . (29)

As pointed out in [22], (29) is linear in the inertia parameters π ∈ Rp (link masses, first
and second moments of inertia), and can be hence rewritten as

τ= Y (q, q̇, q̈)π, (30)

where Y ∈ Rn×p is the regressor matrix and pd is the number of parameters.
Let us define π̂ ∈ Rp as an estimate of π, and let

�

M̂(·), Ĉ(·), Ĝ(·)
�

be the dynamic
matrices evaluated in π̂. Let us define qd(t) ∈ Rn ×R as the desired trajectory. Finally, let
then π̃≜ π− π̂ be the parameters’ error and e(t) = qd(t)− q(t) be the tracking error.

The classical computed torque control [22] provides a law that feedback linearises
the nonlinear system and requires the knowledge of the dynamic model to generate the
feed-forward and feedback torque action

τ= M̂(q)q̈d + Ĉ(q, q̇)q̇+ Ĝ(q) + kv ė+ kpe, (31)

where kv , kp are positive definite gain matrices. Substituting (31) in (29), the error
dynamics becomes

M̂(q)ë+ kv ė+ kpe = M̃(q)q̈+ C̃(q, q̇)q̇+ G̃(q). (32)

Under the assumption of a perfect knowledge of the dynamic model, i.e., π̂≡ π, the error
follows a mass-spring-damper dynamics with linear stiffness and damping, i.e.,

M(q)ë+ kv ė+ kpe = 0,

with guarantees of asymptotic stability due to positive definiteness of M(q), kv , kp. In case
of parameters uncertainties, i.e., if π̂ ̸= π, (32) can be written as

ë+ M̂−1(q)
�

kv ė+ kpe
�

= M̂−1(q)Y (q, q̇, q̈)π̃.

A possible solution is to consider a new state x = (e⊤, ė⊤)⊤, which represents the
tracking error and its derivative, and rewrite (29) in state-space form as follows

¨

ẋ = Ax + BM̂−1(q)Y (q, q̇, q̈)π̃
˙̃π= − ˙̂π

34

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

where A∈ R2n×2n, B ∈ R2n×2n are the dynamic and input matrices of a minimal state space
realization of the error system. By choosing the parameters’ update law as

˙̂π= R−1Y⊤(q, q̇, q̈)M̂−⊤(q)B⊤P x (33)

where R ∈ Rp×p is a gain matrix and P ∈ Rn×n is the solution of the Lyapunov equation, it is
possible to show the asymptotic stability of the tracking error (we refer the interested reader
to [13] for the theoretical proof). With this law, it is possible to assign the desired stiffness
kp and damping kv to the manipulator. However, while the theoretical background is
strong, the technical implementation could have different problems. In fact, the parameters’
update law requires the inversion of the estimated mass matrix M̂ (whose could be ill-
conditioned) and the actual joint acceleration q̈ (which is not directly measurable and has
to be obtained through differentiation). Furthermore, it requires also the solution P of the
Lyapunov equation, which is related to the controller gains and has to be computed each
time they change.

To overcome these problems, considering the system (29), we defined the parameters
update law as

uπ = Rp

�

Y⊤r ė+ γY⊤Rt(τ− Y π̂)
�

, (34)

with Rp ∈ Rp×p, Rt ∈ Rn×n positive definite matrices and γ > 0. It is important to note
that Yr(q, q̇, q̇r , q̈r) is the Slotine-Li regressor, which is a generalization of the classical one
Y(q, q̇, q̈). Indeed, substituting (q̇r , q̈r) with (q̇, q̈) the two matrices are identical.

Task-space controller: Despite the most simple way to control a manipulator is to
generate the motion in the joint space, in terms of task planning the easiest approach is to
compute the reference trajectories in the Cartesian domain. Nowadays, it is common to
have manipulators with more than 6 degrees of freedom. In this case, the controller has
to be able to handle the redundancy of the system. Considering the system (29), defining
(·)+ as the right pseudo-inverse operator, i.e., A+ ≜ A⊤(AA⊤)−1, the system (29) can be
written in the task space by substituting q̇ = J+ξ̇+ Nȧ, and q̈ = J+

�

ξ̈+ J̇ q̇
�

+ Nä. The
variables ȧ, ä are the joint velocity and acceleration that do not affect the motion of the
end-effector, given that they are projected in the null of the Cartesian space by the null
projector N = I − J+J .

Consider the system (29), define a desired trajectory on the Cartesian-space ξd(t) ∈
SE(3)×R and let eξ = ξd − ξ be the end-effector error. Using the control law

τ= M̂α+ Ĉβ + D̂+ Ĝ + kv(β − q̇) + J⊤kξpeξ, (35)

where α ≜ J+
�

ξ̈d − J̇ q̇
�

+ Näd , β ≜ J+ξ̇d + Nȧd are desired velocity and acceleration
respectively, and kξp ∈ R

6×6 is the gain matrix for the error in the Cartesian space, in
conjunction with the parameters update law

uπ = Rp

�

Y⊤r (q, q̇,β ,α)
�

β − q̇
�

+ γY⊤(·)Rt

�

τ− Y (·)π̂
�

�

, (36)

with Rp ∈ Rp×p, Rt ∈ Rn×n positive definite matrices and γ > 0, the closed loop system is
stable and the end-effector follows the desired trajectory, i.e.,

lim
t→∞

eξ

= 0.

3.1.2 Validation in throwing task

This section presents the validation part related to the launch task, as an example of a
dynamic task where an accurate knowledge of the dynamic model has an important effect

35

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

(a) Setup. (b) Objects.

Figure 24: Experimental setup and objects used in the throws. The objects are a wooden box
(221 g) in the top right, a heavy tennis ball (427 g), and a silicon tube (445 g).

in terms of its success rate. For the description of the whole validation experiments, we
refer the interested reader to [51]. In our case, the controller has no prior information
about the inertial properties of the object, and it has to learn by itself. In this type of task,
the object has to reach a desired landing position pd = (xd , yd , zd). For this purpose, the
gripper must release the object in a precise Cartesian pose and with a precise velocity.
Considering the projectile motion, the object movement is planar on the plane defined by
the end-effector velocity at the release time and the gravity acceleration vector g⃗, which
in our reference system is aligned with the z axes.

In this work, we assume that the object release time is instantaneous. In this way, the
trajectory followed by the robot before the release does not affect the throw. We choose a
minimum-jerk trajectory to go from the initial end-effector position ξ0 ∈ R3 to the release
point ξr ∈ R3 and velocity ξ̇r ∈ R3. The choice of this type of trajectory to perform
the task was done to have smooth movements (i.e., continuous acceleration and limited
jerk). The orientation is considered fixed to have no angular velocity and to simplify the
hand opening. It is worth noting that the solution proposed in this work to perform the
throwing is not necessarily the optimal one. However, the focus of this part is on testing
the improvement introduced by our controller in dynamic tasks. The integration of this
approach with optimal throwing motion will be part of future works.

The experimental setup consists of a Franka Emika Panda equipped with a SoftHand
as the gripper. The manipulator, starting from a predefined initial position, has to throw
the grasped object to the desired goal. The dynamic model of the manipulator takes into
account the inertia of the SoftHand, but not the one of the grasped object. This choice
was made to emulate the situation where the manipulator needs to launch an unknown
object picked using a soft under-actuated gripper. In this case, even if the system knows
exactly the inertia of the object by itself, the structure of the gripper does not permit us to
know how the object is grasped and to modify accurately the dynamic model of the robot.

Precise throwing: With this setup, we tested three different controllers: our adaptive
computed torque with low gains (kp ≈ 30N/m), the classical non-adaptive computed
torque with low gains (kp ≈ 30N/m), and the classical non-adaptive computed torque with
high gains (kp ≈ 300N/m). The choice of performing tests for the non-adaptive controller
with two levels of gains was made because, usually, the simplest way to make the system
less sensible to inertial model errors is to increase the stiffness of the manipulator. However,
this solution leads to higher interaction forces with the environment, decreasing the safety
of the system. With this test, we want to prove that our approach can achieve better
performances even while keeping a low stiffness profile. The gain kv was chosen in each
case to obtain a critical or overdamped damping behavior in order to avoid oscillations.

36

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

25 50 75 100
0

0.05

0.1

0.15

25 50 75 100
[s]

0

0.1

0.2

(a) Tracking error.

0 10 20 30
y

-20

-15

-10

-5

0

5

x
(b) Landing point distribution.

Figure 25: Throwing experiments. In 25a position and velocity tracking errors are plotted.
To correct the inertia parameter errors, the manipulator repeats several times the throwing
trajectory without releasing the object and then performs the launch. In Fig. 25b the landing
point distribution is plotted. The black rectangle is the desired landing point. The landing
points are referred to: (adaptive low gains, non-adaptive low gains, non-adaptive high
gains)

Figure 26: Throwing sequence of the robot. The heavy tennis ball reaches the box only in the
case in which adaptive control is used.

37

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

Figure 27: Throwing with the elastic wrist. The robot movement exploits the elasticity to
improve throwing.

As introduced before, the motion performed in this set of tests consists of the minimum
jerk trajectory which connects the defined starting point to the desired releasing point
to launch to the desired target. As an object to throw, we use a silicon tube (Fig. 24b)
with a weight of 445 g. For the adaptive controller, before performing the throwing, the
manipulator repeats 4 times the desired trajectory to permit the update law to correct the
dynamic model. It is worth noting that this strategy is not the optimal one to estimate
the inertial parameters. In the literature, different works address this problem [47, 7].
However, the optimal trajectory generation for inertial parameter estimation is not the
main focus of this work and requires a separate discussion.

To evaluate the performances, we measured the dispersion of the position reached by
the object after throwing with respect to the desired target. In Fig. 25b, we can observe
the results obtained by the three controllers tested, proving that our approach outperforms
the others. In Fig. 25a instead we can see the convergence of the position and velocity
errors during the "learning phase" before the throw.

Throwing in a box: To make an additional test we made a second phase of throws, in
which the purpose was to land into a box placed over the robot’s natural workspace. The
experimental setup is shown in Fig. 24a. For these tests, we compare the adaptive and
non-adaptive controllers with two new objects. The objects chosen are a wooden box and
a heavy tennis ball, represented in Fig. 24b. In these tests, we notice that the experiments
with the non-adaptive controllers do not reach the box because they cannot compensate
for the errors due to the weight of the grasped object. Fig. 26 shows a photo sequence
with the heavy tennis ball.

3.2 Throwing with elastic wrist

At the Maker-Faire Rome held from October 25 to 27, 2024, the University of Pisa demon-
strated a task involving the use of a Franka Emika Panda manipulator equipped with a
variable stiffness actuator (VSA) wrist. The task concerned throwing lightweight paper
boxes into a larger target box, utilizing the VSA wrist’s ability to store and release energy.
This wrist, featuring two motors to control the equilibrium angle and stiffness, allowed
the system to exploit compliant behavior for dynamic manipulation. During each throw,
the stiffness and equilibrium angle remained fixed to simplify control while leveraging the
wrist’s energy-storing properties.

38

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

The manipulator’s trajectory was designed to store energy in the springs of the VSA
wrist during the arm’s acceleration phase and release it during deceleration, enhancing
the velocity and accuracy of the throw. This approach highlighted the advantages of using
a compliant actuator to improve throwing dynamics compared to rigid joints. Future
developments will focus on optimizing the arm’s trajectory with advanced algorithms and
dynamically adjusting the wrist’s parameters to further enhance performance. An image
captured during the event shows the manipulator in action (Fig. 27), illustrating the throw
of the Franka Emika Panda arm, equipped with the VSA wrist. A video can be found at
this link1

4 Throwing (TUM)

4.1 Embedding of throwing capabilities via system features

Optimizing for the best throwing performance can be approached from several sides.
From one side, the focus was on increasing the capabilities of the hardware in order to
provide the best manipulability while featuring BSA joints [43] that have been in focus
for TUM development. On the other side, efforts were placed on modeling, control, and
introduction of familiar interfaces (similar to Franka) that should foster collaboration
between partners in order to test the capabilities of the newly developed system.

Main hardware feature for the elastic system is the addition of BSA as an Integrated
actuator. Previous BSA actuator (BSAa) was implemented using our configurable testbed
[17]. However, due to the serial architecture of the actuator, its excessive mass, length and,
by extension, its power-to-weight ratio make it unsuitable for complex robot morphologies
beyond particular research cases [42]. Integrated design has allowed largely to mitigate
all previously mentioned concerns. Prototype represetns a 3 DoF robot with two rigid
joints and one BSA joint at the end. More description regarding integrated platform can
be found in deliverable D1.5.

Beside the form factor, important hardware performance features include custom cage
spring design, revised electronics, featuring faster sampling and PWM control (increased
to 16 kHz and 80 kHz, respectively), more slaves for SPI communication (SPI based rotor
position sensing for more robust readings, etc.). Main Control Architecture has been
extended with ROS interfaces and C++ UDP based controller. Refer to Deliverable D1.5
for more details.

4.2 Validating and benchmarking throwing capabilities (with EPFL)

To validate the hardware platform and benchmark its throwing capabilities in preparation
for future assessments of the novel BSAs, we collaborated with EPFL during the MS3
milestone integration in June 2024 in Munich. This collaboration involved integrating
their software stack for throwing with our low-level control interfaces through ROS. As
a result, we achieved the first throwing experiments with our platform. In the throwing
experiments, the setup is as follows,

Gripper and Thrown Object
As demonstrated in Section 2.1 by EPFL, prehensile throwing using grippers and anthro-
pomorphic hands is subject to release uncertainties. To isolate the throwing uncertainties
caused by release variability and focus solely on the behavior and performance of our

1https://drive.google.com/drive/folders/1nQ2HFcd0ZK6pHvzJ-tlJQBqaRqbVoRKv?usp=drive_link

39

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

control stack, we used a SCHUNK magnetic gripper. The thrown object was a keyring,
which offers a high level of repeatability in object release.

Throwing Motion Generation
While TUM is still developing optimal control algorithms to leverage elasticity, we treated
our platform as a conventional robot with SEAs for this validation. This allowed us to
reuse EPFL’s existing algorithms and software stack, providing a strong benchmark to
facilitate future studies. Utilizing EPFL’s previous algorithm on throwing planning [33]
reported in D4.5, we obtained nominal throwing configurations in the joint state space
using the D-H parameters of our arm. The throwing trajectory was then generated using
an open-source trajectory generator, Ruckig [4], given the initial grasping state and the
nominal throwing state. Finally, the throwing trajectory is tracked by our velocity controller.

Throwing Result
Qualitatively, the platform is able to repeatedly throw the keyring into a target box with
dimensions of 50 cm × 40 cm (smaller than the Darko target box, which measures 70
cm × 40 cm) located 2.2 m away from the base, achieving a 100% success rate. This
demonstrates the high level of control accuracy of our hardware platform in the throwing
task. A video showing single throw experiment can be found at this link1.

4.3 Optimal control for elasticity-aware throwing

Robot modeling: with motor, spring, link-side configuration and the state are defined as
θ ,ψ, q, and ξ := (ψ,q), the equation of motion of the system can be expressed as

�

Bψ 0
0 M(q)

�

︸ ︷︷ ︸

=:Π(ξ)

ξ̈+
�

0
h(q, q̇)

�

︸ ︷︷ ︸

=:η(ξ,ξ̇)

+
�

K(θ −ψ)
0

�

︸ ︷︷ ︸

=:τ(ξ)

+τ f =τc ,

lp(ξ̇) = 0.

(37)

where Bψ and M(q) are the spring and link-side inertia matrices, h(q, q̇) is the link-side
nonlinear bias term including Coriolis, centrifugal and gravitational terms, K is a stiffness
matrix, τ f and τc are friction and clutch torques, respectively. Clutches prevent relative
motion between frames. Thus, for each active clutch, the corresponding relative velocities
(concatenated in the vector lp(ξ̇)) are set to zero.

For preliminary testing, model parameters have been largely taken from CAD. Later on,
the parameter identification procedure based on the [29] has been adopted. Parameter
regrouping was used for the optimal representation of dynamics for identification. Identi-
fication trajectories has been characterized by minimal condition number. For identified
linear parameter combinations, feasible parameter search has been performed using the
Riemannian gradient method. Utilizing clutching modes, additionally, it was possible to
precisely estimate combined inertia of clutch and spring. In coupled mode, by relating
position and torques, spring stiffness was identified.

Two approaches have been used to generate the throwing motion. The first approach
is utilizing the elasticities and the full system model (including the hybrid dynamics
transitions). The OC problem for End-effector speed maximization has been defined, as in
[17]. To deal with hybrid modes, we select a switching sequence a priori. Subsequently,
we solve a multiphase optimization problem, with the phase duration Tp being one of the

1https://drive.google.com/file/d/126pjuX ZNzQSJ4ZW F f −mM gHU1AMW C5T K/view?usp = sharing

40

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

decision variables.
min

x(t),u(t),Tp

J (x(t),u(t))

s.t. ẋ(t) = fp(x(t),u(t)), t ≤ Tp

x+p (t) = gp(x
−(t)), t = Tp

x(t) ∈ X , u(t) ∈ U ,

(38)

We select BRK → SEA as the sequence for the actuator modes. Thus, the system
can preload the spring while the other joints move. Then, the stored potential energy is
converted to kinetic energy in a launch-like motion – rapidly accelerating the link forward.
Despite a limited motor speed of 4.5 rad/s, the robot reached a final cartesian velocity of
4.1 m/s. This is already outperforming our previous prototype and rigidly actuated robots.
Experimental validation has proven repeatability of the preformance and overall system
reliability.

5 Conclusion and outlook

5.1 EPFL

Our primary future work focuses on the systematic experimental validation of learning to
throw-flip, particularly the benefits of incorporating prior physical structures for improved
sample complexity and transferability (e.g., utilizing past data to throw-flip new objects).
In addition to the restrictive landing goals in throw-flipping, we are also interested in
iterative learning to throw objects to a desired location with arbitrary grasping poses,
especially in the context of major use cases in Darko that primarily require achieving a
desired location irrespective of landing orientation.

5.2 UNIPI

The preliminary throwing tests performed with elastic elements in the kinematic chains
could be beneficial in increasing the range of throwing of a classic manipulator. The
next step will be to design an optimization algorithm capable of exploiting the elasticity
introduced by the elastic wrist to obtain precise throws maximizing the distance reached.

The other point to be addressed is the shooting with the pneumatic tool. In the previous
reports, we showed that our tool could be a feasible way to reach targets far from the
manipulator. In the next months we will improve the system with a pneumatic model of
the tool capable to increase the precision of the shot. This system will also be integrated
with the picking routine to be performed with the manipulator to accomplish a complete
cycle of the pick & throw routine.

5.3 TUM

Future efforts are focusing on implementing an efficient planning solution that is optimally
using the clutches for various throwing targets. The plan is to take advantage of offline
computed data at various throwing configurations. The algorithm should make decisions
online based on the given target and current robot position, as well as ensure repeatability
and reliability of the performance for this more general case.

41

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

References

[1] Robot juggling: implementation of memory-based learning. IEEE Control Systems
Magazine, 14(1):57–71, 1994.

[2] Eric W Aboaf, Christopher G Atkeson, and David J Reinkensmeyer. Task-level robot
learning: Ball throwing. 1987.

[3] Fares J Abu-Dakka and Matteo Saveriano. Variable impedance control and learn-
ing—a review. Frontiers in Robotics and AI, 7:590681, 2020.

[4] Lars Berscheid and Torsten Kröger. Jerk-limited real-time trajectory generation with
arbitrary target states. Robotics: Science and Systems XVII, 2021.

[5] Michael Bombile and Aude Billard. Dual-arm control for coordinated fast grabbing
and tossing of an object: Proposing a new approach. IEEE Robotics & Automation
Magazine, 29(3):127–138, 2022.

[6] Michael Bombile and Aude Billard. Bimanual dynamic grabbing and tossing of
objects onto a moving target. Robotics and Autonomous Systems, page 104481, 2023.

[7] Vincent Bonnet, Philippe Fraisse, André Crosnier, Maxime Gautier, Alejandro
González, and Gentiane Venture. Optimal exciting dance for identifying inertial pa-
rameters of an anthropomorphic structure. IEEE Transactions on Robotics, 32(4):823–
836, 2016.

[8] Alan R Champneys and Péter L Várkonyi. The painlevé paradox in contact mechanics.
IMA Journal of Applied Mathematics, 81(3):538–588, 2016.

[9] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Rein-
forcement learning via sequence modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

[10] Lipeng Chen, Weifeng Lu, Kun Zhang, Yizheng Zhang, Longfei Zhao, and Yu Zheng.
Tossnet: Learning to accurately measure and predict robot throwing of arbitrary
objects in real time with proprioceptive sensing. IEEE Transactions on Robotics, 2024.

[11] Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Learning neural event
functions for ordinary differential equations. arXiv preprint arXiv:2011.03902, 2020.

[12] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. Advances in neural information processing systems,
31, 2018.

[13] J. Craig, Ping Hsu, and S. Sastry. Adaptive control of mechanical manipulators. In
1986 IEEE International Conference on Robotics and Automation Proceedings, volume 3,
pages 190–195.

[14] J.J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley series
in electrical and computer engineering: control engineering. Pearson/Prentice Hall,
2005.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

42

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

[16] Rajeshree Deotalu and Shital Chiddarwar. Trajectory tracking of the manipulator
using adaptive computed torque control. In 2020 IEEE International Conference for
Innovation in Technology (INOCON), pages 1–6, 2020.

[17] Edmundo Pozo Fortunić, Mehmet C. Yildirim, Dennis Ossadnik, Abdalla Swikir, Saeed
Abdolshah, and Sami Haddadin. Optimally controlling the timing of energy transfer
in elastic joints: Experimental validation of the bi-stiffness actuation concept. IEEE
Robotics and Automation Letters, 8(12):8106–8113, 2023.

[18] Yizhi Gai, Yukinori Kobayashi, Yohei Hoshino, and Takanori Emaru. Motion control
of a ball throwing robot with a flexible robotic arm. International Journal of Computer
and Information Engineering, 7(7):937–945, 2013.

[19] Suresh Goyal, Andy Ruina, and Jim Papadopoulos. Planar sliding with dry friction
part 1. limit surface and moment function. Wear, 143(2):307–330, 1991.

[20] Neville Hogan. Impedance control: An approach to manipulation: Part
ii—implementation. Journal of Dynamic Systems, Measurement, and Control,
107(1):8–16, 1985.

[21] John Hollerbach, Wisama Khalil, and Maxime Gautier. Dynamics, pages 37–66.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[22] John Hollerbach, Wisama Khalil, and Maxime Gautier. Motion Control, pages 163–
194. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[23] Robert D Howe and Mark R Cutkosky. Practical force-motion models for sliding
manipulation. The International Journal of Robotics Research, 15(6):557–572, 1996.

[24] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis,
Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor skills for
legged robots. Science Robotics, 4(26):eaau5872, 2019.

[25] Maarten Johannes Jongeneel, Luuk Poort, Nathan van de Wouw, and Alessandro
Saccon. Experimental validation of nonsmooth dynamics simulations for robotic
tossing involving friction and impacts. 2023.

[26] Farshad Khadivar, Sthithparagya Gupta, Walid Amanhoud, and Aude Billard. Efficient
configuration exploration in inverse dynamics acquisition of robotic manipulators.
In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
1934–1941. IEEE, 2021.

[27] Hassan K. Khalil. Nonlinear Systems. Prentice Hall, 3 edition, 2002.

[28] Jens Kober, Katharina Muelling, and Jan Peters. Learning throwing and catching
skills. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5167–5168. IEEE, 2012.

[29] Fernando Díaz Ledezma and Sami Haddadin. Ril: Riemannian incremental learning
of the inertial properties of the robot body schema. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 9354–9360, 2021.

[30] Yang Liu and Aude Billard. Tube acceleration: Robust dexterous throwing against
release uncertainty. IEEE Transactions on Robotics, 40:2831–2849, 2024.

[31] Yang Liu and Aude Billard. On transient release dynamics in robot throwing: A
sliding pivot model. Submitted to IEEE Transactions on Robotics, 2025. Under review.

43

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

[32] Yang Liu, Bruno Da Costa, and Aude Billard. Learning to throw-flip. In Submitted
to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025,
2025. Under review.

[33] Yang Liu, Aradhana Nayak, and Aude Billard. A solution to adaptive mobile manipu-
lator throwing. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1625–1632. IEEE, 2022.

[34] Kevin M Lynch and Matthew T Mason. Dynamic nonprehensile manipulation: Con-
trollability, planning, and experiments. The International Journal of Robotics Research,
18(1):64–92, 1999.

[35] Matthew T Mason and Kevin M Lynch. Dynamic manipulation. In Proceedings of
1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’93),
volume 1, pages 152–159. IEEE, 1993.

[36] Hideyuki Miyashita, Tasuku Yamawaki, and Masahito Yashima. Control for throwing
manipulation by one joint robot. In 2009 IEEE International Conference on Robotics
and Automation, pages 1273–1278. IEEE, 2009.

[37] Maxim Monastirsky, Osher Azulay, and Avishai Sintov. Learning to throw with a
handful of samples using decision transformers. IEEE Robotics and Automation Letters,
8(2):576–583, 2022.

[38] Wataru Mori, Jun Ueda, and Tsukasa Ogasawara. 1-dof dynamic pitching robot that
independently controls velocity, angular velocity, and direction of a ball: Contact
models and motion planning. In 2009 IEEE International Conference on Robotics and
Automation, pages 1655–1661. IEEE, 2009.

[39] Masafumi Okada, Shota Oniwa, and Wataru Hijikata. Robust throwing design based
on dynamic sensitivity analysis. Mechanical Engineering Journal, 5(1):17–00442,
2018.

[40] Masafumi Okada, Alexander Pekarovskiy, and Martin Buss. Robust trajectory design
for object throwing based on sensitivity for model uncertainties. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 3089–3094. IEEE,
2015.

[41] Masafumi Okada and Takahiro Sekiguchi. Throwing motion design based on min-
imum sensitivity with respect to error covariance of robot dynamic parameters.
Mechanical Engineering Journal, 8(1):20–00299, 2021.

[42] Dennis Ossadnik, , Vasilije Rakcevic, Mehmet C. Yildirim, Edmundo Pozo Fortunić,
Hugo T. M. Kussaba, Abdalla Swikir, and Sami Haddadin. Optimal control for
clutched-elastic robotic systems: A contact-implicit approach. In 2024 (ICRA)),
2024.

[43] Dennis Ossadnik, Mehmet C. Yildirim, Fan Wu, Abdalla Swikir, Hugo T. M. Kussaba,
Saeed Abdolshah, and Sami Haddadin. Bsa - bi-stiffness actuation for optimally
exploiting intrinsic compliance and inertial coupling effects in elastic joint robots.
In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3536–3543, 2022.

[44] Alexander Pekarovskiy and Martin Buss. Optimal control goal manifolds for planar
nonprehensile throwing. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4518–4524. IEEE, 2013.

44

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.6

[45] Lev Semenovich Pontryagin, EF Mishchenko, VG Boltyanskii, and RV Gamkrelidze.
The Mathematical Theory of Optimal Processes. 1962.

[46] Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed
sampling. Operations Research, 66(1):230–252, 2018.

[47] Paolo Salaris, Marco Cognetti, Riccardo Spica, and Paolo Robuffo Giordano. On-
line optimal perception-aware trajectory generation. IEEE Transactions on Robotics,
35(6):1307–1322, 2019.

[48] Stefan Schaal and Christopher G Atkeson. Open loop stable control strategies for
robot juggling. In [1993] Proceedings IEEE International Conference on Robotics and
Automation, pages 913–918. IEEE, 1993.

[49] Taku Senoo, Akio Namiki, and Masatoshi Ishikawa. High-speed throwing motion
based on kinetic chain approach. In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3206–3211. IEEE, 2008.

[50] Wei-Wei Shang, Shuang Cong, and Yuan Ge. Adaptive computed torque control for a
parallel manipulator with redundant actuation. Robotica, 30:457 – 466, 05 2012.

[51] Giorgio Simonini, Marco Baracca, Tommasio Valerio Cavaliere, Antonio Bicchi, and
Paolo Salaris. Low-gains adaptive computed torque control for high dynamic tasks.
Submitted to IEEE Access, 2025. Under review.

[52] Peng Song, Yueqing Yu, and Xuping Zhang. A tutorial survey and comparison of
impedance control on robotic manipulation. Robotica, 37(5), 2019.

[53] Bart Van Parys and Negin Golrezaei. Optimal learning for structured bandits. Man-
agement Science, 70(6):3951–3998, 2024.

[54] Nicholas Xydas and Imin Kao. Modeling of contact mechanics and friction limit
surfaces for soft fingers in robotics, with experimental results. The International
Journal of Robotics Research, 18(9):941–950, 1999.

[55] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser.
Tossingbot: Learning to throw arbitrary objects with residual physics. IEEE Transac-
tions on Robotics, 36(4):1307–1319, 2020.

[56] Ahmed Zermane, Niels Dehio, and Abderrahmane Kheddar. Planning impact-driven
logistic tasks. IEEE Robotics and Automation Letters, 2024.

45

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101017274

	Introduction
	Contributions

	Robust Throwing, Physical Models for Throwing and Learning to Throw-Flip (EPFL)
	Robust dexterous throwing against release uncertainty
	Physical modeling of transient release dynamics
	Learning to throw-flip with desired landing pose

	Throwing (UNIPI)
	Adaptive control for throwing
	Throwing with elastic wrist

	Throwing (TUM)
	Embedding of throwing capabilities via system features
	Validating and benchmarking throwing capabilities (with EPFL)
	Optimal control for elasticity-aware throwing

	Conclusion and outlook
	EPFL
	UNIPI
	TUM

