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1 Introduction

This deliverable (D) presents the results of the work carried out in Work Package (WP) 5,
with a particular focus on Task (T) 5.3 and T5.4, which aim to enable efficient human-robot
co-production (Objective O2). As part of WP5, the implementation of advanced solutions
for human motion prediction and intention recognition was discussed in D5.1 and D5.2.
In this deliverable, we introduce the other essential components of WP5 that contribute
to achieving O2: novel context-aware representations and causal inference methods for
human-robot spatial interaction (HRSI). T5.3 and T5.4 draw input from WP2 and WP3
regarding robot perception, semantic environment mapping, and localisation, and serve
as input for WP6 and WP7 to generate safe and efficient robot motion plans.

The two tasks address the creation of context-aware representations for HRSI (T5.3)
and the development of causal reasoning algorithms for safe HRSI (T5.4). In particular,
T5.3 focuses on capturing the complexities of human spatial interactions and how they
can influence robot motion in a possible production environment. By adopting a discrete
motion representation based on a Qualitative Trajectory Calculus (QTC) [1, 2], we extend
previous models to incorporate the relative motion of robots and humans, while accounting
for both static and dynamic objects in the environment.

T5.4 aims to advance the understanding of HRSIs by learning causal models that
account for the spatial behaviours of human agents and the possible contextual factors
influencing their trajectories. By employing recent developments in causal inference, we
develop algorithms tailored for robotic applications that efficiently learn causal models
of HRSIs and compute intervention probabilities, facilitating safer and more efficient
human-robot interactions. This task provide important high-level information for WP7 by
reasoning on the HRSI causal models and estimating the risk associated with the robot’s
presence in particular areas of the environment.

The document is organized as follows: the activities carried out in T5.3 and T5.4
are presented in Section 2 and 3, respectively. Finally, Section 4 concludes the report
summarising the main outcomes and discussing future developments.

2 Context-aware representations of HRSI

Human spatial interactions, defined as the mutual influence of motion behaviours between
two or more people, depend on both human activities (e.g. speed and destination) and
objects or constraints (e.g. nearby door, narrow corridor, etc). Similarly, HRSIs are
influenced by the robot’s motion (e.g. to approach the user) but also by other factors
outside the direct control of the two interacting agents.

The scope of this task was to better capture the nature of HRSIs in realistic scenarios
to enable safer and more socially acceptable robot motion behaviors. This was achieved
by leveraging well-established representations of human-robot relative motion, particu-
larly the 2D Qualitative Trajectory Calculus (QTC) [1, 3], to enhance the modelling and
prediction of context-aware human motion and multi-agent spatial interactions.

QTC provides a discrete and symbolic motion representation, which addresses the
challenges posed by continuous or purely quantitative descriptions in real-world envi-
ronments. Building on its theoretical foundations and prior robotics applications [4, 2,
5], we refined previous QTC-based models to consider the influence of environmental
and interaction-specific factors, including static objects (e.g., doors, pallets) and dynamic
entities (e.g., humans). These models were initially studied using data from available
datasets, but the ultimate aim was to create an interface capable of leveraging perception
data from WP2 and robot localization inputs from WP3. By combining these inputs with
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QTC-based motion representations, the task facilitates the prediction of HRSIs and pro-
vides a framework for enhancing the safety and social acceptability of robot behaviors in
complex, dynamic environments.

2.1 Spatial Interactions: a Qualitative Formulation

Figure 1: A case of QT CC1
represen-

tation of interactions between three
body points Pk, Pl , and Pq.

A qualitative spatial interaction is defined by a
vector of m QTC relations [1], which consist of
qualitative symbols (qi , i ∈ Z) in the domain
U = {−, 0,+}. We can distinguish between four
types of QTC: 1) QT CB basic, 2) QT CC double-
cross, 3) QT CN network, and 4) QT CS shape.
Here, we focus on the use of QT CC , since it bet-
ter represents the dynamics of the agents in our
application scenario. Two variations of QT CC
exist in the literature: QT CC1

, with four sym-
bols {q1, q2, q3, q4}, and QT CC2

, with six symbols
{q1, q2, q3, q4, q5, q6}. The symbols q1 and q2 rep-
resent the move towards/away (relative) motion
between a pair of agents; q3 and q4 represent the
left/right relation; q5 indicates the relative speed,
faster or slower; finally, q6 depends on the (absolute) angle with respect to the refer-
ence line joining a pair of agents. Given the time series of two moving points, Pk and
Pl , the qualitative interaction between them is expressed by the symbols qi as follows:

(q1) − : d(Pk|t−, Pl |t)> d(Pk|t, Pl |t)
0 : d(Pk|t−, Pl |t) = d(Pk|t, Pl |t)
+ : d(Pk|t−, Pl |t)< d(Pk|t, Pl |t)

(q2) same as q1, but swapping Pk and Pl

(q3) − : ∥ ⃗P t+
k P t

k ×
⃗P t

l P t
k∥< 0

0 : ∥ ⃗P t+
k P t

k ×
⃗P t

l P t
k∥= 0

+ : all other cases

(q4) same as q3, but swapping Pk and Pl

(q5) − : ∥V⃗ t
k ∥< ∥V⃗

t
l ∥

0 : ∥V⃗ t
k ∥= ∥V⃗

t
l ∥

+ : all other cases

(q6) − : θ (V⃗ t
k , ⃗Pk Pl

t
)< θ (V⃗ t

l , ⃗Pl Pk
t
)

0 : θ (V⃗ t
k , ⃗Pk Pl

t
) = θ (V⃗ t

l , ⃗Pl Pk
t
)

+ : all other cases.

where d(.) is the euclidean distance between two points, V (.) the velocity vector of a single
point, θ (.) is the absolute angle between two vectors, and × is the cross-product operation.
An example of QT CC1

interaction is illustrated in Fig. 1 for three moving points.

2.2 Analysis of Qualitative Representations for Multi-Agent Spatial Interactions

In this part of the task we investigated the problem of Multi-Agent Spatial Interac-
tions (MASI) in environments. To this end, we implemented three new neural network
architectures applied to medium- and long-term interaction predictions, including different
QTC-based representations. The resulting framework is explained below.

2.2.1 MASI Framework

Metrical motion information (i.e. plain coordinates and speed/orientation) of nearby
agents helps robots navigate safely, but it might be not enough to reason about implicit
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Figure 2: An input-temporal attention mechanism for predicting spatial interactions of multi-
dimensional input categorical (red) and metrical (yellow) time series extracted from dense
scenes: application to JackRabbot dataset. The diagram is extended from [6]. x is the input
driving vector, y is the label vector.

Figure 3: JackRabbot dataset scenes: (top) bytes-cafe-2019-02-07_0, (bottom) packard-poster-
session-2019-03-20_2.

intent conveyed through motion (e.g. a person’s accelerating pace suggests some ur-
gency). To address this, we proposed a Multi-Agent Spatial Interaction (MASI) framework
that can be used to predict and compare qualitative interactions. Three variants of the
framework (F) have been implemented:

1. FQT C−4: symbol-driven approach to analyse and predict qualitative interactions
using QT CC1

(explained in Section 2.1);
2. FQT C−6: symbol-driven approach to analyse and predict qualitative interactions

using QT CC2
(also in Section 2.1);

3. F ts: data-driven approach using raw (metrical) trajectories as input, and predicting
QTC-based interactions as output.

The main difference between the two symbol-driven frameworks is that FQT C−4 assigns a
greater importance to the left/right and towards/away dichotomies, neglecting the relative
velocity and angle embedded in FQT C−6.

Network Architecture In order to implement FQT C−4 and FQT C−6, we modified the
original architecture of [6] to deal with time-series of categorical data, representing
symbolic knowledge of the spatial interactions between pairs of agents. We also extended
the prediction horizon to medium (i.e. 48 time steps, or 3.2s) and longer (i.e. 72 time steps,
or 4.8s) time horizons. A schematic representation of the modified network is shown in
Fig. 2. The input attention encoder consists of an input attention layer (I-Attention) which
weighs n∗ spatial interactions in a radial cluster. The encoder is then followed by a decoder
with a temporal attention layer (T-Attention), capturing the temporal dependencies in
multi-agent interactions. The network encodes n∗ input series (denoted by x), each of
length Th, and decodes n∗ output labels (denoted by y), each of length T f , where T f is the
predictive time horizon and Th is the time history used for the temporal attention purpose.
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Data Processing In order to approach the problem of reasoning in socially crowded
environments, we implemented a crowd clustering approach for local interactions predic-
tion. We applied the radial clustering approach on the JackRabbot (JRDB1) open-source
dataset (Fig. 3). Two different values for the radius were chosen inspired by [7], specif-
ically R1 = 1.2m and R2 = 3.7m. The raw data were further processed to extract QTC
representations of a spatial interaction between each pair of agents, whose dictionary
index is then used as ground truth output for FQT C−4 and FQT C−6 approaches. In parallel,
the raw metric data are directly used as ground truth labels for the F ts approach.

The environments considered in JRDB are fairly crowded. Among them, we selected a
cafe shop (bytes-cafe-2019-02-07_0) for comparing the proposed prediction approaches,
and two poster session scenarios (packard-poster-session-2019-03-20_2, denoted PS-2,
and packard-poster-session-2019-03-20_1, denoted PS-1) for testing the framework on a
domain-shift situation. For both the cafe and the poster sessions scenarios, we evaluated
the prediction performance for a medium (T f = 3.2s) and a longer term (T f = 4.8s)
horizons.

2.2.2 Experiments

The three proposed framework configurations implement the same architecture as in Fig. 2
but they were trained with different losses, since the input data is different. FQT C−4 and
FQT C−6 were trained by minimising a categorical cross-entropy loss, while F ts was trained
using the root mean square error loss function (RMSE). Consequently, in order to compare
their performance we use the so-called “conceptual QTC distance” [1] already defined
in 1.

Testing Evaluation Table 1 shows the results for the three frameworks on the cafe scene,
using cluster radius R1 = 1.2m and R2 = 3.7m.

On the test set, FQT C−6 significantly outperforms FQT C−4 over both medium and long
time horizons. However, F ts achieved the best performance across both horizons, with
F ts,1 (using QT CC1

) excelling in medium-term predictions (3.2s) and F ts,2 (using QT CC2
)

excelling in long-term predictions (4.8s). Considering the larger cluster radius, R2, which
accounts for more context, F ts,1 outperforms all other configurations on both the medium
and long horizons. It also outperforms F ts,2 over T f = 4.8s and when R1 is used. We can
infer that with a larger cluster radius, more context is incorporated, which helps improve
long-term predictions. As a result, fewer interaction symbols are needed to accurately
represent the true interactions between multi-agent systems.

Domain-Shift (DS) Evaluation To further assess the generalisation capabilities of the
three approaches, we re-trained and compared the results on another crowded environment
(poster session PS-2, as shown in Fig. 3-bottom) with R1 = 1.2m, and tested them on a
different but related scenario (poster session PS-1). The performance on the testing set
(i.e., 10% of PS-2) is reported in Table 2 (first column). We observe that F ts,1 outperforms
FQT C−4 and FQT C−6 in both medium- and long-term predictions. Notably, even within the
same network configuration, F ts,1 outperformed F ts,2.

When looking at the transfer domain PS-1 in Table 2 (second column), all configurations
succeeded in generalising to PS-1 on the medium and longer terms, except F ts,1 and F ts,2,
which generalised well only on the medium term. Nevertheless, F ts,1 continues to show
the best performance overall when considering only PS-1.

In summary, we can conclude that F ts,1 is the best framework for developing qualitative
predictive solutions to embed a social autonomous system with additional intelligent

1https://jrdb.erc.monash.edu/
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Cafe

µ10%−R1 σ10%−R1 µ10%−R2 σ10%−R2

FQT C−6 (3.2s) 1.772 3.568 3.064 3.851
FQT C−4 (3.2s) 7.545 4.067 3 3.857
Fts,1 (3.2s) 0.464 0.22 0.32 0.16
Fts,2 (3.2s) 0.68 0.166 0.638 0.11
FQT C−6 (4.8s) 3.44 4.4 3.46 4
FQT C−4 (4.8s) 7.61 4.057 3.8 4.18
Fts,1 (4.8s) 3 1.254 0.25 0.18
Fts,2 (4.8s) 0.644 0.146 0.55 0.13

Table 1: Performance comparison between the QTC prediction approaches FQT C−4 and FQT C−6,
and the motion prediction-based QTC analysis framework F ts evaluated on QT CC1

(F ts,1) and
QT CC2

(F ts,2), in the cafe scene of JRDB and over Tf = 3.2s and 4.8s prediction horizons.
All measures are unitless. µ and σ are the normalised mean and standard deviation of the
conceptual distance (dQT C ) measure over the test set. R1 and R2 correspond to cluster radius
1.2m and 3.7m, respectively. The best performance is highlighted in bold.

PS-2 PS-1

µ10% σ10% µ100% σ100%

FQT C−6(3.2s) 1.78 3.558 0.77 0.26
FQT C−4(3.2s) 7.34 4.08 1.3 1.86
F ts,1(3.2s) 0.49 0.217 0.43 0.22
F ts,2(3.2s) 0.715 0.17 0.7 0.17
FQT C−6(4.8s) 2.098 3.81 0.84 0.26
FQT C−4(4.8s) 8.018 3.7 1.27 1.92
F ts,1(4.8s) 0.297 0.21 0.35 0.22
F ts,2(4.8s) 0.547 0.137 0.6 0.15

Table 2: Performance comparison between the QTC prediction approaches FQT C−4 and FQT C−6,
and the motion prediction-based QTC analysis framework F ts evaluated on QT CC1

(F ts,1) and
QT CC2

(F ts,2), in the poster halls PS-2 and PS-1 of JRDB and over Tf = 3.2s and 4.8s prediction
horizons. All measures are unitless. µ and σ are the normalised mean and standard deviation
of the conceptual distance (dQT C ) measure over 10% test set (PS-2) and 100% test set (PS-1).
The best performance is highlighted in bold.

capabilities, such as inferring implicit intent communication and/or predicting needs from
surrounding agents. F ts,1 demonstrates the lowest mean and standard deviation loss over
both short and long horizons and across different cluster radius.

In this activity, we presented and compared three network architectures for multi-
agent analysis and prediction of qualitative interactions in dense social scenes,
combining a symbolic motion representation with a dual-attention mechanism (in-
put plus temporal). Specifically, we compared two symbol-driven neural networks
for QTC prediction, FQT C−4 and FQT C−6, with a metrical data-driven one, F ts. We
showed that the latter solution outperforms the previous two, suggesting that QTC
alone is not sufficiently informative to capture the salient properties of human
spatial interactions in complex social contexts.
This work was published in the paper titled "Qualitative Prediction of Multi-Agent
Spatial Interactions", accepted at the IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN) [8].
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Figure 4: (left) The complete CND for QT CB1 in n-dimensional space. The QT CB1 has only
q1 and q2 symbols. Straight edges represent a conceptual distance of 1, while dashed edges
represent a conceptual distance of 2. (right) One part of the CND for QT CC1 illustrating the 15
possible transitions from the QTC state {−,−,−,−}, whose weight is therefore αcnd = 0.067.

2.3 A Neuro-Symbolic Approach for Enhanced Human Context Representation

In this task we aimed to advance context representation for reasoning on human motion
in complex scenarios by addressing limitations in existing methods. Most prior works in
this area embed all interactions equally within a pre-defined neighborhood size around a
single agent, without distinguishing the varying relevance of interactions. In contrast, we
formulated the problem of context-aware human motion modelling in terms of weighted
interactions between pairs of agents. By incorporating a-priori information about the
qualitative nature of spatial interactions, we demonstrate that it is possible to enrich the
representation of human motion behaviours and improve their prediction accuracy.

To achieve this, we developed a neuro-symbolic model (NeuroSyM) that integrates
a novel weighting mechanism for spatial interactions in the robot’s environment. This
mechanism leverages the probability of QTC transitions to label and weight such interac-
tions and use them as symbolic inputs of a neural network architecture. The proposed
approach was evaluated experimentally on medium- and long-term time horizons, using
two state-of-the-art architectures, one for human motion prediction and the other for
generic multivariate time-series prediction. Comprehensive testing was conducted on six
challenging datasets of crowded scenarios, gathered from both fixed and mobile cameras.
These experiments demonstrate the effectiveness of NeuroSyM and its potential to enhance
the accuracy of context-aware human motion prediction in realistic environments.

2.3.1 QTC-based Interaction Weighting

Here we focus on QT CC1
, explained in Section 2.1, to represent pairwise spatial interactions

with the first four symbols, since these are the most informative and robust to noisy data.
We label the latter exploiting the so-called Conceptual Neighborhood Diagram (CND)
of QTC theory [9]. The CND is built on the notion of conceptual distance (d), which
quantifies the closeness between QTC states at time t and t ′:

dQT C t′

QT C t =
∑

qi

| qQT C t

i − qQT C t′

i | (1)

In Fig. 4 (left), each link (edge) between two QTC neighbours (nodes) includes the
conceptual distance between the latter. In a CND, due to the laws of continuity [9], the
conceptual neighbours of any particular QTC state are only a subset of all the possible
states. For example, QT CC1

can express 81 relations in total (each one of the four symbols
qi can assume 3 different values in U) but the conceptual neighbours of {−,−,−,−} are

8
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(a) Zara dataset. (b) University dataset.

(c) JackRabbot cafe bytes-cafe-2019-02-07_0 scene

Figure 5: Examples from UCY and JackRabbot datasets.

only 15, as illustrated in Fig. 4 (right). Note that the figure does not show the entire CND
for QT CC1

because it is too complex to visualise on a two-dimensional medium.
For each of the 81 states in QT CC1, we assign a weight αcnd formulated as follows:

αcnd = Pr(QT C t ′ |QT C t) =
1

NTr
(2)

where NTr represents the number of transitional states. In practice, αcnd represents the
level of stability, or reliability, of a QTC state. The higher the number of possible transitions
from that state, the lower their likelihood to occur, and vice-versa. In

Given an interaction at time t, we associate a weight αcnd to the interaction at t + 1.
In the literature, an interaction between agents A and B is usually represented by an
embedding of their relative pose as follows:

InterAB = Dense(XB − XA) (3)

where Dense() is the embedding layer. The QTC state between A and B induces a spe-
cific αcnd value, loaded from a dictionary of pre-computed weights, yielding a modified
embedding αcnd InterAB. From a practical point of view, this symbolic knowledge of inter-
actions between two moving points can be readily exploited by any neural architecture for
context-aware motion prediction, since the CND dictionary, associating QTC states to their
corresponding αcnd , remains the same regardless of the data distribution.

2.3.2 Experiments

We evaluated our neuro-symbolic approach on a human motion prediction task, using two
state-of-the-art architectures with raw trajectory data as input:

1. socially-acceptable trajectories with generative adversarial networks (SGAN) [10]:
a well-known baseline for human motion prediction in crowded environments. It
relies on:

• ETH dataset [11] (sequences ETH and Hotel) — captured from fixed top-down
cameras in public spaces.

9
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• UCY dataset [12] (sequences Zara01-02 and Univ) — captured from a mobile
stereo rig mounted on a car.

2. Dual-Stage Attention-Based Recurrent Neural Network (DA-RNN) [6]: a generic
time-series forecasting network that supports the integration of dynamic and static
contexts while paying attention to individual interactions.

To generalise our evaluation to robotics applications, we also used the JackRabbot (JRDB)
dataset [13], which provides multi-sensor data of human behaviour from a mobile robot’s
perspective in indoor and outdoor environments. Unlike ETH and UCY, JackRabbot
captures local interactions through on-board sensors such as 360◦ LiDAR (Velodyne) and
fisheye cameras, making it particularly relevant for social robot navigation scenarios. To
this end, we chose to use JackRabbot on a generic network architecture for time series
prediction and where the following features can be incorporated: (a) the ability to integrate
a dynamic context; (b) the ability to integrate key static objects of potential interactions
(e.g. door, table, bar), differently from S-LSTM and SGAN; (c) the ability to test our neuro-
symbolic approach on prediction architectures that, instead of using a pooling mechanism
to overcome the size problem of dynamic input series (representing the neighbourhood in
social scenarios), weights every single input (i.e. neighbour) by giving special attention to
each one separately. One of the recent architectures that satisfy the last features is the
dual-stage attention mechanism (DA-RNN) developed for time-series forecasting in [6].

Neuro-Symbolic SGAN – The core of SGAN [10] is a generator and a discriminator
trained adversarially. The generator G produces candidate trajectories, while the discrimi-
nator model D estimates the probability that a sample comes from the training data (i.e.
real) rather than from the generator output samples. The generator consists of an encoder
and a decoder, separated by a pooling mechanism, while the discriminator is mainly
an encoder. In SGAN, a variety loss is introduced on top of the adversarial (min-max)
loss in order to encourage the generator to output diverse samples, thanks to a noise
distribution injected to the pooling mechanism output. The performance measures used in
SGAN for the evaluation process are the absolute displacement error (ADE) and the final
displacement error (FDE) of the predicted trajectory (X̃ ). These are calculated as follows:

ADE =

∑N
i=1

∑Tpred

t=1 ∥X̃
i
t − X i

t∥2

N ∗ Tpred
F DE =

∑N
i=1 ∥X̃

i
Tpred
− X i

Tpred
∥2

N
(4)

where N is the total number of training trajectories.

Figure 6: The neuro-symbolic SGAN pooling mechanism. The difference with the original
SGAN pooling mechanism can be seen from the mixed arrows colour added within and outside
the red grid to represent different types of spatial relations or interactions with the central
agent standing on the red spot, which can be inferred from the NeuroSyM SGAN architecture.
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Model Measure Baseline (SGAN) NeuroSyM (SGAN) Relative Gain (%)

Zara1

ADE 0.7 / 2.29 0.21 / 0.34 +70 / +85.15
FDE 1.31 / 4.33 0.41 / 0.7 +68.7 / +83.8

DE-STD 0.35 / 0.9 0.22 / 0.4 +37.14 / +55.5
FDE-STD 1.1 / 2.86 0.64 / 1.2 +41.8 / +58

Zara2

ADE 0.44 / 0.95 0.2 / 0.3 +54.5 / +68.4
FDE 0.84 / 1.85 0.4 / 0.61 +52.38 / +67

DE-STD 0.26 / 0.52 0.2 / 0.35 +23 / +32.7
FDE-STD 0.8 / 1.61 0.58 / 1.05 +27.5 / +34.78

Hotel

ADE 1.76 / 2.45 0.35 / 0.5 +80.10 / +79.6
FDE 3.33 / 4.55 0.67 / 0.99 +79.88 / +78.2

DE-STD 0.44 / 0.9 0.32 / 0.56 +27.27 / +37.7
FDE-STD 1.51 / 2.88 0.96 / 1.72 +36.4 / +40.27

Univ

ADE 1.25 / 2.96 0.36 / 0.62 +71.2 / +79
FDE 2.31 / 5.79 0.74 / 1.31 +67.9 / +77.37

DE-STD 0.51 / 0.84 0.24 / 0.38 +52.9 / +54.7
FDE-STD 1.6 / 2.63 0.68 / 1.14 +57.5 / +56.6

ETH

ADE 0.88 / 3.8 0.63 / 0.73 +28.4 / +80.78
FDE 1.63 / 6.71 1.25 / 1.44 +23.3 / +78.5

DE-STD 0.37 / 1.02 0.37 / 0.64 +0 / +37.2
FDE-STD 1.15 / 3.29 1.09 / 1.91 +5.2 / +41.9

Mean Gain

ADE — — +60.84 / +78.58
FDE — — +58.4 / +76.97

DE-STD — — +28 / +43.5
FDE-STD — — +33.68 / +46.3

Table 3: Performance comparison between the baseline architecture SGAN and its neuro-
symbolic approach across all datasets. We report results in the format of 8/12 prediction time
steps. ADE, FDE, DE-STD, and FDE-STD measures are in meters and in bold is highlighted
the better measure among the two approaches. The lower error the better. The mean gain
represents the mean of the relative gains over the 5 datasets, hence it only applies to the
relative gain rows.

The proposed neuro-symbolic version of SGAN is illustrated in Fig. 6, highlighting
the difference to the original pooling mechanism of SGAN [10]. NeuroSyM acts mainly
on the pooling mechanism of the predictive models, where it represents human-human
interactions by (a) embedding first their relative pose in all the observed states of each
agent through a dense layer, then (b) weighing the embedded relative pose based on the
CND-inspired label (αcnd) associated to the interaction at a previous time step, and finally
(c) max-pooling the weighted embedding across neighbours in the global scene. On the
contrary, the original SGAN considers relative poses at the final observed state only, with
no attention given to the reliability or stability level the interactions might have to help
inferring future states of the agent under consideration.
Results – For a reliable comparison between SGAN and NeuroSyM SGAN, we trained
again the former on our computing system (11th Gen Intel® Core™ i7-11800H processor
and NVIDIA GeForce RTX 3080 16GB GPU), which was able to replicate almost the same
hyper-parameters of the original work on SGAN, except for the batch size, in our case
limited to 10 instead of 64. The ADE and FDE results for both architectures are reported
together with their standard deviations (DE-STD and FDE-STD) in Table 3 for Tpred = 8
steps (i.e. 3.2 seconds) and 12 steps (i.e. 4.8 seconds), and on the five sequences from the
publicly available datasets ETH and UCY. The results show a better ADE, FDE, DE-STD,
and FDE-STD for the NeuroSyM approach compared to the original SGAN. The relative
gain in terms of error drop is represented in Table 3 by a positive percentage for all the
four measures with NeuroSyM with respect to SGAN on each dataset. The average relative
gain for ADE, FDE, DE-STD, and FDE-STD, over the 5 datasets, is 60.84%, 58.4%, 28%,
and 33.68%, respectively, for Tpred = 8; and 78.58%, 76.97%, 43.5%, 46.3%, respectively,
for Tpred = 12.
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Neuro-Symbolic DA-RNN – The original DA-RNN architecture [6] implements a dual-
stage attention mechanism for time-series forecasting. The dual-stage network consists
of an encoder with an input attention module weighing the n∗ time-series data spatially,
each of length Th, where Th is the observed time history. The encoder is then followed by
a decoder with a temporal attention layer, capturing the temporal dependencies in the
input series. The encoder and decoder are based on an LSTM recurrent neural network.
The network outputs the prediction of one time-series data of length T f , where T f is the
predictive time horizon.

The proposed NeuroSyM version of DA-RNN leverages symbolic knowledge of the
spatial interactions between pairs of agents. In DA-RNN, the encoder attention weights
(“α” in Fig. 7) highlights the importance of each input series at time t on the output
prediction at t + 1. The input attention weights in DA-RNN are calculated as follows:

αk
t =

exp(ek
t )

∑n
i=1 exp(ei

t)
(5)

where ek
t is the embedding of the kth input series at time t. It is implemented as:

ek
t = dense[tanh(dense(ht−1; st−1) + dense(xk

1..Th
))] (6)

where ht−1 and st−1 are the hidden and cell state of the encoder LSTM at a previous
time step. The NeuroSyM DA-RNN acts on the input series embedding ek

t before the
softmax function (Eq. 5) is applied on it. Hence, the NeuroSyM approach transforms Eq. 6
into αk

cnd,t ek
t , updating the encoder attention weights with an a-priori knowledge of the

reliability or stability of each input series. For applications of human motion prediction in
crowds (i.e. with context), αk

cnd,t is generated from Eq. 2. Each input series represents the
motion history of a neighbour agent, whereas the first time series is the motion history of
the considered person and the output is the predicted motion of that specific agent. Fig. 7
illustrates schematically where the NeuroSyM module intervenes on the original DA-RNN
architecture with the injection of a CND layer at the interface between the embedding and
the softmax layers.
Data Processing – Crowded scenarios, such as those in the JackRabbot dataset, often
involve an unpredictable number of individuals entering (Pe) and leaving (Pl) the envi-
ronment, which can lead to a combinatorial explosion of input data points and training
parameters. To address this, we implemented a crowd clustering approach for embedding
local interactions:

• For each agent i, a cluster was generated with a fixed interaction radius of R = 3.7 m,
based on proxemics literature [7].

• Each cluster includes n input series, representing the agents within the radius over a
time interval T . To ensure computational feasibility, the maximum number of input
series (n∗) was fixed, and smaller clusters were padded with complementary "fake"
values.

The raw data from the JackRabbot dataset, consisting of annotated 3D point clouds,
was processed to extract QTC representations of spatial interactions between agents.
These representations were assigned weights (αk

cnd,t) using a Conceptual Neighborhood
Diagram (CND) dictionary. These weights served as a priori information for the NeuroSyM
architecture, enhancing the embedding of input data by reflecting the reliability of each
input series. In addition to dynamic contexts, static context features such as bar order and
check-out points, exit doors, and drinking water stations were manually identified and
incorporated as input series. This approach was tested in a crowded cafe scenario (dataset
bytes-cafe-2019-02-07_0).
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Figure 7: NeuroSyM approach for attention-based time-series analysis, extended from [6]
and adapted to multi-step human motion prediction in crowded environments. Inputs are
n∗ time series centered on the cluster’s primary agent, while outputs predict its trajectory.
The CND layer adds a-priori knowledge (αk

cnd,t) to embeddings (e) and weights from QTC
spatial relations of neighbors. Temporal attention weights (l) and context (c) are used in the
encoder-decoder structure, with dense layers for input and attention mechanisms.

Architecture RMSE MAE

DA-RNN (Baseline) 3.61 / 3.572 2.097 / 2.753
NeuroSyM DA-RNN 2.815 / 3.728 2.162 / 2.166
Relative Gain (%) +22 / -4.37 -3.1 / +21.32

Table 4: Performance comparison between the baseline architecture DA-RNN and the Neu-
roSyM approach on the JackRabbot dataset. The results’ format refers to the 48/80 prediction
time steps. RMSE and MAE values are in meters, and the best results are highlighted in bold
(i.e. the lower error, the better).

Results – The performance of NeuroSyM DA-RNN was evaluated against the original
DA-RNN for medium-term (48 steps, 3.2 s) and long-term (80 steps, 5.33 s) prediction
horizons. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) metrics were
used to measure prediction accuracy on the JackRabbot dataset (Table 4).

We can clearly see that the NeuroSyM version of the architecture succeeds in decreas-
ing the RMSE metric by 22% on the 48 steps prediction horizon, while influencing the
performance negatively by 4% on the longer 80 steps horizon. At the same time, the
neuro-symbolic approach decreased the MAE by 21% on the 80 steps horizon, while
influencing negatively by 3% the 48 time steps prediction.

In this activity, we presented a neuro-symbolic approach for context-aware human
motion representation (NeuroSyM) in dense scenarios. The approach leverages
a qualitative representation of interactions between dynamic agents to assess
and weight the influence of neighborhood interactions. The NeuroSyM approach
was evaluated on two baseline prediction architectures, SGAN and DA-RNN. Our
results demonstrated that NeuroSyM outperformed both architectures in most
cases, particularly for medium- and long-term prediction horizons. These findings
validate the effectiveness of integrating symbolic knowledge into neural models for
enhancing human motion representation and reasoning.

The scientific results of this activity were published in the paper titled “A Neuro-
Symbolic Approach for Enhanced Human Motion Prediction”, accepted at the
International Joint Conference on Neural Networks (IJCNN) [14]. A Python imple-
mentation of the NeuroSyM framework was also made available onlinea.

ahttps://github.com/sariahmghames/NeuroSyM-prediction
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2.4 Deployment and Evaluation of a ROS-based Neuro-Symbolic Model for Human
Motion Representation

In the activities presented in Section 2.3, we proposed and evaluated NeuroSyM, a neuro-
symbolic approach for context-aware human motion representation and prediction in dense
scenarios, which integrates QTC-based information to assess and weight the influence
of neighborhood interactions. However, the original method was not suitable yet for
on-board and real-time applications, which limited its use in robotics scenarios.

The system presented in this section, called neuROSym, was developed to address
those limitation by enabling the real-time execution of NeuroSyM using a concurrent
stream of sensor data. Furthermore, being integrated in ROS, the resulting system can be
directly deployed on a robot platform.

2.4.1 neuROSym Architecture

The new ROS package neuROSym, shown in Fig. 8, consists of the following three nodes:

• Inference model node: It implements two subscribers to the same observational
data topic whose messages are generated by a human tracker library. In parallel,
it implements two publishers for the data visualisation and analytics node. Each
pair subscriber-publisher corresponds to either ground truth or predicted samples.
The node implements also the inference model for the prediction method under
investigation.

• Data visualisation and analytics node: This node runs in parallel to the inference
node in order to generate, online, plots of the ground truth and predicted trajectories.
It also generates average performance metrics, simultaneously to the visual plots.

• Data post-processing node: This node is required to perform corrections in case
the human tracking system misses some detections.

The inference model node is based on our previous work [14], explained in Section 2.3,
and incorporates both the NeuroSyM and the SGAN architectures.

Figure 8: Deployment of neuROSym for online and context-aware human motion analysis, with
real-time visualisation. The three blocks are ROS nodes, while the filled arrows and the dashed
ones represent the online and offline inference, respectively. Each arrows label indicates the
type of messages published and/or subscribed to by each node.
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(a) (b) (c)

Figure 9: (a) Experimental Scenario A with two humans walking parallel to each other towards
their goal (room end) and back, repetitively. The online trajectory prediction is performed by
models trained on the UCY-Zara01 dataset. (b) Experimental Scenario B with two humans
crossing each other’s path. Here the models are trained on the THOR dataset. (c) RViz
visualization of the Bayes People Tracker with human bounding-boxes extracted from the
robot’s LiDAR point-clouds.

2.4.2 Experiments

Experimental Setup – We used a TIAGo2 mobile robot to monitor the motion of
two people over a time period of 2 minutes. The robot was positioned at the corner
of the experimental room (5m × 8.2m) and was equipped with a Velodyne VLP-16 3D
LiDAR sensor, as shown in Fig. 9a. To track people in the scene, we run a Bayes People
Tracker3 [15] using point-cloud data from the LiDAR at a frequency of 10Hz. Fig. 9c shows
an RViz screenshot with two humans tracked by the robot.

We conducted two types of experiments, illustrated in Fig. 9a and 9b. During these,
we recorded the runtime of each inference model (SGAN baseline and NeuroSyM). We
registered the rosbag file of each experiment (four in total) for offline evaluation.
Scenario A: “all-forward” motion behaviour. Both SGAN and NeuroSyM were trained on
the UCY-Zara01 pedestrians dataset [12]. The motion pattern of the pedestrians resembles
the all-forward motion pattern replicated in our experiments (i.e. people walking in
parallel directions) and illustrated in Fig. 9a.
Scenario B: “cross-path” motion behaviour. The inference models were trained on the
THOR dataset [16] and similar motion patterns were replicated in our cross-path scenario,
as illustrated in Fig. 9b and 10.

Data Processing – The ROS inference node processes the data sequentially, with an
observed time window of 8 samples. Human trajectories affected by tracking errors (e.g.
because of occlusions) were filtered out and not considered. The ROS inference node and
the visualisation node run simultaneously, showing predicted and ground-truth trajectories
at runtime. The performance comparison between the baseline SGAN model and the
NeuroSyM architecture was conducted on the recorded rosbag files.

Results and Discussion – We evaluated the average accuracy and runtime of each
inference model over the 2-minutes sessions of both experimental settings. The results are
reported in Table 5, which include average displacement error (ADE), final displacement

2https://pal-robotics.com/robots/tiago/
3https://github.com/LCAS/bayestracking
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Figure 10: (Left) Full human motion trajectories in Scenario B, where two people H1 and
H2 (dynamic objects) move back and forth to their destinations (static objects), crossing each
other’s path and avoiding collisions. Snapshots at frames t = 8 (centre-left), 10 (centre-right),
and 16s (right).

Scenario SGAN NeuroSyM
rosbag1 rosbag2 rosbag1 rosbag2

A
Avg. ADE (m) 12.4 16.32 7.06 2.52
Avg. FDE (m) 2.28 3.24 1.31 0.68
Avg time (s) 4.17 5.37

B
Avg. ADE (m) 10.88 24.27 5.7 9.87
Avg. FDE (m) 2.67 5 1.4 1.8
Avg time (s) 5.19 7.36

Table 5: Accuracy and runtime evaluation for Scenario A and B, in terms of average displace-
ment error (ADE), final displacement error (FDE) and time, over 2-minutes long experiments.

error (FDE) and inference time. These tables present 8 results in total, 4 for each scenario
(A and B). We can see that, in all of the four cases, the higher accuracy achieved by
NeuroSyM significantly reduced both ADE and FDE values compared to the SGAN baseline.
We also evaluated the average runtime of each inference model in both experimental
scenarios. Table 5, shows that NeuroSyM model is slightly slower than, but still comparable
to, the SGAN baseline.

From Table 5, we can conclude that, although the NeuroSyM architecture requires
more time to predict human trajectories compared to the SGAN baseline, it is still relatively
fast and, with some code optimisation, suitable for real-time deployment. In particular,
the trade-off between runtime and accuracy is clearly in favour of the NeuroSyM solution,
since its QTC-based context-awareness enables more accurate motion predictions.

In this activity, we presented and tested neuROSym, a ROS package for neuro-
symbolic human motion analysis and prediction with real-time visualisation. This
package enabled the on-board implementation and evaluation of two inference
models, SGAN and NeuroSyM, resulted from the activity in Section 2.3.
This work was presented in the paper titled "neuROSym: Deployment and Evalua-
tion of a ROS-based Neuro-Symbolic Model for Human Motion Prediction", accepted
at the IEEE Conference on Robotics, Automation and Mechatronics (RAM). [17].
Moreover, the software was made available on a public repositorya and it was
integrated on the DARKO platform.

ahttps://github.com/sariahmghames/neuROSym
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3 Causal Reasoning for Safe HRSI

In the DARKO scenario, the robot operates in complex intralogistics settings, navigating
dynamically within spaces shared by human workers. The DARKO robot must perform
tasks efficiently and autonomously while anticipating and responding to human behaviour.
It must complete its tasks with the awareness that its actions may trigger unpredictable
responses from individuals nearby. Understanding the cause-effect relationships in the
environment enables the robot to reason about its actions, enhancing both task execution
and safety in human-robot collaboration.

The scope of this task was to define a framework that takes HRSI data from WP2
(perception) and WP3 (mapping and localisation) as input, reconstructs a causal repre-
sentation between the features used to describe the interaction, and then reasons on the
reconstructed causal model to enhance the interaction. The various steps involved in
creating the framework are presented and discussed in the remainder of this section.

3.1 Causal Discovery of Dynamic Models for Human Spatial Interactions

This work aimed to reconstruct causal models to represent humans-goal, human-human
and human-robot 2D spatial interactions, in single and multi-agent scenarios. To do this,
a state-of-the-art causal discovery method has been exploited in a robotic application
using time-series data from real-world sensors. The utility of the causal models has been
assessed by predicting spatial interactions in human environments.

3.1.1 Causal Discovery from Observational data

The developed approach (depicted in Fig. 11) is based on the observation of human spatial
behaviours to recover the underlying causal model. This causal analysis was performed by
using the Peter & Clark Momentary Conditional Independence (PCMCI) causal discovery
algorithm [18]. First, we identified some important factors (i.e. variables) affecting human
motion in the considered scenarios, and from that we reconstructed the most likely causal
links from real sensor data. Finally, we used the discovered causal models to forecast the
latter with a state-of-the-art Gaussian Process Regression (GPR) technique [19], showing
that the causality-based GPR improves the accuracy of the human interaction prediction
compared to a non-causal version. Two different scenarios have been modelled and
analysed.

Figure 11: Causal prediction approach: a robot reconstructing a causal model from observation
of human behaviours in a warehouse environment. The causal model is then used for human
spatial behaviour prediction.
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Figure 12: Image from THÖR dataset [16] (left). Representation of the two analysed scenarios:
(centre) the human-goal scenario, (right) the human-moving obstacles scenario. The agents
consist of a circle and an arrow specifying, respectively, the current position and orientation.
The selected agent is red, while, the obstacles are black.

Human-goal scenario – The first scenario includes interactions between human and
(static) goals in a warehouse-like environment, illustrated in Fig. 12 (centre), where the
agent walks among different positions (grey squares) to move some boxes or grab/use
some tools. The grey line connecting agent and goal specifies the angle θg between the two.
The following features were deemed essential to explain the human motion behaviour:
(i) angle agent-goal θg ; (ii) euclidean distance agent-goal dg ; (iii) agent velocity v. The
angle θg represents the human intention to reach a desired position (the person will first
point towards the desired target before reaching it); then the person walks towards the
goal, reducing the distance from it, at first by increasing the walking speed and finally
decreasing, when close to the destination. Soon after the human has reached the goal, θg
changes to the next one, and the process restarts. What we expect from this scenario are
therefore the following causal relations:

(a) θg depends on the distance, when the latter decreases to zero then θg changes;
(b) dg is inversely related to v and depends on θg ;
(c) v is a direct function of the distance dg .

Human-moving obstacles scenario – The second scenario involves multiple agents.
It reproduces the interaction between a selected human and nearby dynamic obstacles
(e.g. other humans, mobile robot), as shown in Fig. 12 (right). In this case, we take into
account human reactions to possible collisions with obstacles, modelled by a risk factor.
Consequently, the relevant features in this scenario are (i) euclidean distance dg of the
selected agent-goal, (ii) agent’s velocity v, and (iii) risk value. The agent moves between
goals in the environment, so the cause-effect relation between distance and velocity will
be similar to the previous scenario. The main difference in this case is that, instead of
reaching the goal without problems, the agent needs to consider the presence of other
obstacles, and the interactions with them will affect the resulting behaviour. In particular,
the agent’s velocity is affected by possible collisions (e.g. sudden stop or direction change
to avoid an obstacle). The expected causal links in this scenario are the following ones:

(a) dg depends inversely on v;
(b) v is a direct function of the dg , but it is also affected by the collision risk;
(c) risk depends on the velocity, as explained below.

In order to model a numerical risk value as a function of the agent’s interactions, we
implemented a popular strategy named Velocity Obstacles (VO) [20]. The VO technique
identifies an unsafe sub-set of velocities for the selected agent that would lead to a collision
with a moving or static obstacle, assuming the latter maintains a constant velocity. The
risk can then be defined as follows. At each time step, we apply the VO to the agent’s
closest obstacle. Such risk is a function of two parameters, both depending on the selected
agent’s velocity (i.e. point P inside the VO; see Fig. 13):
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Figure 13: Velocity Obstacle (VO) technique. A Collision Cone (CC) is built from the selected
agent A to the enlarged encumbrance of the obstacle B. Then, the CC is translated by vb to
identify the VO, which partitions the velocity space of A into avoiding and colliding regions,
i.e. velocities lying outside and inside the VO, respectively. (Left) an interaction leading to a
collision. (Right) a collision-free interaction.

• dOP , the distance between the cone’s origin O and P, which is proportional to the
time available for the selected agent A to avoid the collision with B;

• dBP , the distance between P and the closest cone’s boundary, which indicates the
steering effort required by A to avoid the collision with B.

Consequently, the risk of collision is defined as follows:

risk = edOP+dBP+va . (7)

In order to avoid mostly-constant values (undetectable by the causal discovery algorithm),
we introduced a third parameter va, which is the velocity of the selected agent.

Causal prediction with PCMCI and GPR – Our approach for modeling and predicting
spatial interactions, shown in Fig. 11, can be decomposed in three main steps: (i) extract
the necessary time-series of sensor data from the two previously explained scenarios;
(ii) use them for the causal discovery performed by the PCMCI algorithm; (iii) finally,
embed the causal models in a GPR-based prediction system. More details about the PCMCI
causal discovery method in [18]. In the last step, we exploit the GPR, a nonparametric
kernel-based probabilistic model [19], to build a causal GPR predictor, useful to forecast
each variable by using only its parents, and not all the variables involved in the scenario,
as a non-causal GPR predictor would do.

3.1.2 Experiments

We evaluated our approach for causal modeling and prediction of human spatial behaviours
on two challenging datasets: THÖR [16] and ATC Pedestrian Tracking [21]. Both contains
data of people moving in indoor environments, a workshop/warehouse and a shopping
center, respectively. Our strategy was first to extract the necessary time-series from the two
datasets, and then use it for causal discovery. In order to prove the usefulness of the causal
models, a comparison between causal and a non-causal predictions was finally conducted.
We considered two different datasets in order to verify, for the human-goal scenario that
the discovered causal model holds for similar human behaviours, even when observed
in different environments. The human-moving obstacle scenario, instead, was used to
demonstrate that it is possible to perform causal discovery for other types of human spatial
interactions (i.e. with collision avoidance).
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Figure 14: Causal models of: human-goal scenario with (left) THÖR and (centre) ATC datasets,
human-moving obstacles scenario with (right) THÖR dataset. The thickness of the arrows
and of the nodes’ border represents, respectively, the strength of the cross and auto-causal
dependency, specified by the number on each node/link (the stronger the dependency, the
thicker the line). All the relations correspond to a 1-step lag time.

Data processing – From both datasets, we extracted the x-y positions of each agent
and derived all the necessary quantities from them (i.e. orientation θ , velocity v, etc.).

• THÖR dataset: it provides a wide variety of interactions between humans, robot,
and static objects (Fig. 12, left). We used this dataset to analyse both human-goal
and human-moving obstacles scenarios.

• ATC pedestrian tracking dataset: the data was collected in the large atrium of a
shopping mall (much bigger than THÖR’s environment). Due to its large area and
crowd, this dataset was not suitable for the collision-enhanced scenario. Therefore,
we used this dataset only for the human-goal scenario.

Results – We applied PCMCI for causal discovery, using Gaussian Process Regression
and Distance Correlation (GPDC) [22], with a 1-step lag time, where variables at time t
could only be influenced by those at time t − 1. The resulting causal models are shown in
Fig. 14, with the thickness of arrows representing the strength of causal dependencies.
These models support the hypothesis that:

• The human-goal scenario causal model generalises across datasets (THÖR and ATC),
with causal strengths varying due to different sampling frequencies and noise levels.

• The human-moving obstacle scenario produced a different causal model, highlighting
the ability to handle varied human behaviours.

We used the discovered causal models to predict key spatial interaction variables in both
scenarios, such as orientation (θg), distance (dg), and velocity (v). To evaluate the utility
of the causal models, we compared a causally-informed Gaussian Process Regression (GPR)
model with a non-causal GPR model. The comparison was made using the Normalised
Mean Absolute Error (NMAE) metric, definition of which can be found in [23].

Fig. 15 shows that the causal model consistently improved prediction accuracy, par-
ticularly for variables like θg and v in the human-goal scenario using the THÖR dataset.
For the distance variable (dg), both models yielded similar performance, as the full set
of predictors was used in both causal and non-causal cases. The NMAE comparison,
summarised in the bar chart (bottom-right), demonstrates that the causal model led to
more accurate predictions. Table 6 shows the mean NMAE for all considered scenarios.
The causal GPR approach consistently outperformed the non-causal model in all cases.
The ATC dataset, with its longer time-series, had a higher mean NMAE for the human-goal
scenario, likely due to differences in dataset characteristics. Further details and discussion
of the results can be found in our paper [23].
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Figure 15: Comparison between non-causal and causal GPR prediction and NMAE in the
human-goal scenario of the THÖR dataset for the spatial interaction variables θg (top-left),
dg (top-right), and v (bottom-left). A bar chart (bottom-right) summarises the comparison
using the mean NMAE over all three variables.

Human-goal Human-moving obs
THÖR ATC THÖR

Non-causal 0.21761 1.61692 0.37849
Causal 0.1095 1.54552 0.36453

Table 6: Mean NMAE of causal and non-causal predictions over the involved variables for both
scenarios and datasets.

This activity demonstrated the feasibility of using state-of-the-art causal discovery
methods, specifically the PCMCI algorithm, to reconstruct causal models of
Human-Robot Spatial Interactions (HRSI). We successfully applied this method
to recreate causal models for two different HRSI scenarios, showing that these
models are valuable for predicting HRSI.

The findings from this activity have been consolidated into the paper titled "Causal
Discovery of Dynamic Models for Predicting Human Spatial Interactions", presented
at the International Conference on Social Robotics (ICSR) [23].

3.2 Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios

From the work presented in Section 3.1, we discovered that it is indeed feasible to
reconstruct causal models of HRSI using the PCMCI causal discovery method. However,
a significant challenge emerged: causal analysis of complex and dynamic systems is
extremely demanding in terms of both time and hardware resources, as also noted in [24,
25]. This poses a challenge for autonomous robotics, which often operate with limited
hardware resources and real-time constraints.

21



H2020-ICT-2020-2: 101017274 DARKO Deliverable D5.3

The primary factor contributing to PCMCI’s computational cost is the number of variables
involved in the causal analysis. In this part of the deliverable, we describe the activities
conducted to extend one of the state-of-the-art causal discovery methods, PCMCI [18],
by augmenting it with a feature-selection algorithm capable of identifying the correct
subset of variables to include in the causal analysis from a predefined set. Consequently,
we introduced an all-in-one approach that identifies the causal features representing
the system and uses them to build a causal model directly from time-series data. This
modification makes the causal discovery process faster and more accurate.

For instance, in an DARKO-inspired automated warehouse scenario (see Fig. 16),

vAB
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θAB

vBC

dBC

θBC

vAC
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θAC

dAB

vAB

θAB
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Figure 16: A mobile robot in a warehouse-like environ-
ment observes the interaction between agents A and
B. By using our approach, the robot can disregard the
interactions AC and BC as agent B is a static object
and agent C is a standing human, not involved in the
interaction.

where a robot observes the in-
teractions among objects and hu-
mans (e.g. worker and shelf),
it is important to know which
features, among those detectable
by the robot’s on-board sensors,
are relevant for describing the ob-
served interaction (e.g. human-
shelf distance/angle, human ve-
locity, etc.), and which instead
can be neglected (e.g. other hu-
mans not involved in the interac-
tion). The approach, proposed in
this section, allows the robot to
discard unnecessary features and
build a causal model of the inter-
action using only those actually
involved in the process.

3.2.1 Filtered-based Causal Discovery

To reduce the computational cost of PCMCI and enable its execution onboard the robot,
we enhanced it by introducing a Transfer Entropy (TE)-based feature selection method.
TE is an extension of mutual information that quantifies the directed information transfer
between the time-series of a source and a target variable and it can effectively indicate
whether a relationship between two variables exists. Further details regarding the limita-
tions and challenges of using TE as a causal measure are discussed in the paper resulting
from this activity [26].

The developed approach, named Filtered PCMCI (F-PCMCI), uses a TE-based method
to "filter" the important features and their possible associations from the whole set of
variables, before the actual causal analysis. A Python implementation of F-PCMCI has been
developed and made publicly available4. We used TE to decide which variables and links
can be excluded from the original set, and those which are needed for the causal analysis.
As output, the filter returns a set of variables and a hypothetical causal model, which then
needs to be validated by a proper causal analysis. The latter is performed by the PCMCI
causal discovery algorithm. A pseudo-code implementation and a block diagram of our
approach are also illustrated in Algorithm 1 and Fig. 17, respectively.

3.2.2 Experiments

To evaluate our approach and verify its advantages in terms of computational cost and
causal models’ accuracy with respect to PCMCI, we first validated it with the toy problems

4https://github.com/lcastri/fpcmci
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Algorithm 1 F-PCMCI

Require: time-series data D, significance threshold α,
min and max time lag τmin, τmax

1: CS = {} ← hypothetical causal structure dictionary
2: for each target T in D do
3: ST = ; ← T sources / conditioning set
4: L = [ ] ← temporary list
5: while D not empty do
6: for each source S in D∖ T do
7: (p-value, I)S = TES→T |ST

(τmin,τmax )
8: add (p-value, I)S to L
9: (p-value, I)Sb

= argmaxI (L) ← best candidate

10: if p-value ≤ α then
11: remove S from D and add S to ST

12: else
13: if ST ̸= ; then CS(T ) = ST

14: break
15: Ds ← shrink original D by varsel =keys(CS)
16: CM = PCMCI(Ds, α, τmin, τmax , CS)
17: return CM ← causal model

X Y Z W

FILTER
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Z

X
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Z

Figure 17: F-PCMCI block-scheme rep-
resentation with an example.

and with Functional Magnetic Resonance Imaging (fMRI) time-series data generated with a
tool5 provided by [27]. The latter is able to generate realistic and rich simulations of fMRI
time-series data with ground-truth brain networks. The evaluation strategies supported
our hypothesis that F-PCMCI offers advantages in terms of both computational cost and
accuracy compared to PCMCI. The results and discussion of the evaluation strategies can
be found in the paper resulting from this activity [26].

Once, established that our approach works correctly, we used it for modeling and
predicting human spatial behaviours on a challenging dataset, i.e. THÖR [16]. Our
strategy is first to extract the real sensor time-series data from the dataset, as already
explained in Section 3.1.2, and then use them for causal discovery. The effectiveness of
our approach is demonstrated by comparing causal and non-causal predictions. A further
comparison between PCMCI and F-PCMCI is provided to illustrate the advantages of our
method with respect to the state-of-the-art.

Modeling and Predicting Real-world Human Spatial Interactions – Finally, we applied
our approach to model and predict spatial interactions (Fig. 12, left). This application
involves three main steps:

1. extracting time-series of sensor data from human spatial interaction scenarios;
2. reconstruct the causal model using F-PCMCI;
3. embedding the causal model in a LSTM-based prediction system.

To extract time-series data from human spatial interaction scenarios (Step 1), we
utilized the THÖR dataset, specifically extracting the x-y positions of each agent, as
described in Section 3.1.2. From these positions, we derived additional quantities necessary
for the analysis, as detailed below. To represent human spatial interactions, we identified
8 variables for each agent that are suitable for this application. These variables were then
used in the subsequent causal analysis.

5https://www.fmrib.ox.ac.uk/datasets/netsim/
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Figure 18: Causal models of the THÖR dataset using PCMCI (left) and F-PCMCI (right). Arrows
and borders of the nodes represent the strength of cross-causal and auto-causal dependencies,
with stronger dependencies shown by thicker lines/borders. All dependencies have a 1-step
lag time.

1) dg – distance between the current position of the agent and its goal;
2) v – velocity of the selected agent;
3) risk – risk of collision with other agents (as explained in Section 3.1.1);
4) θ – orientation of the selected agent;
5) θg – angle between the current position and goal of the selected agent;
6) ω – angular velocity of the selected agent;
7) gseq – sequence of goal positions reached by the selected agent;
8) dobs – distance between the selected agent’s current position and the nearest obstacle.

In Step 2, we exploited the data extracted in Step 1 for the causal analysis. The
main goal here was to reconstruct the causal model using our approach, F-PCMCI. For
comparison, we repeated the causal analysis using the same data with PCMCI. Fig. 18
shows the two causal models derived from PCMCI and F-PCMCI relatively to agent 11
of the THÖR dataset. As expected, due to the large number of variables and links, the
PCMCI algorithm is affected by spurious links, which it is not able to filter out. In contrast,
F-PCMCI provides a simpler and more realistic causal model. It includes the full set of
variables (like PCMCI) but retains only the most meaningful links between them, thanks
to the TE-based filtering step. The execution time of the causal discovery confirmed
our hypothesis: PCMCI completed in 79’45", while the F-PCMCI’s execution lasted only
17’33", i.e. more than 4 times faster. A qualitative discussion about the correctness of the
reconstructed causal models can be found in [26].

Lacking a ground truth model, we had to assess the correctness and accuracy of our
causal model by evaluating the prediction accuracy of the causality-augmented architecture
described in the following. In Step 3, we implemented an LSTM-based encoder-decoder
model for Multi-Output Multi-Step forecasting6. The architecture, inspired by the DA-RNN
network used in Section 2.3 and discussed in [14, 6, 28], was adapted to leverage the
causal knowledge derived from our approach. Specifically, the self-attentions mechanism
of the encoder was adapted to embed the causal inference vector from the discovered
causal model as a non-trainable parameter. This allows the network to prioritise causally
relevant drivers during prediction.

6https://github.com/lcastri/cmm_ts
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Figure 19: Comparison between non-causal and causal prediction (with both PCMCI and
F-PCMCI) using mean NMAE and mean NRMSE across all the agents in the scenario. White
numbers and error bars indicate mean and standard deviation, respectively.

The model was trained and tested using a 70%-10%-20% split of the time-series dataset.
Hyperparameters, such as learning rate, batch size, and LSTM cell count, were optimized
via grid search. Observation and forecasting windows were set to 32 (3.2s) and 48(4.8s)
time steps, respectively. A separate network was trained for each agent in the scenario and
tested on others to ensure robustness. To evaluate the quality of our causality-enhanced
prediction, we used the Normalised Mean Absolute Error (NMAE) and the Normalised Root
Mean Square Error (NRMSE), defined in [26]. Fig. 19 reports the comparison between
prediction accuracy in the three cases: non-causal prediction, PCMCI-based prediction,
and F-PCMCI-based prediction. The NMAE and NRMSE values are computed for each
selected agent and then averaged. The figure clearly shows that the knowledge of the
causal model helps to obtain a more accurate prediction. Moreover, since both errors are
lower for the F-PCMCI’s case compared to the PCMCI’s one, we can conclude that our
approach produces a better and more useful causal model.

In this activity, we extended and improved the state-of-the-art causal discovery
algorithm PCMCI by embedding an additional feature-selection module based on
transfer entropy. The proposed method was initially evaluated on two toy problems
and on synthetic data from brain networks, where the ground-truth models were
known a priori, to verify the correctness of the approach. It was then tested on a
real-world robotics dataset containing large-scale time-series of human trajectories.
We demonstrated that our approach significantly improves the PCMCI causal discov-
ery method in terms of both accuracy and computational efficiency, enabling faster
and more accurate causal discovery of dynamic models from real-world sensor data.

This activity resulted in the paper titled "Enhancing Causal Discovery from Robot
Sensor Data in Dynamic Scenarios", accepted at the Conference on Causal Learning
and Reasoning (CLeaR) [26]. Additionally, this work produced a Python implemen-
tation of the F-PCMCI algorithma and the causality-augmented architecture of an
LSTM-based encoder-decoder model for Multi-Output Multi-Step forecastingb.

ahttps://github.com/lcastri/fpcmci
bhttps://github.com/lcastri/cmm_ts

3.3 Causal Discovery with Observational and Interventional Data from Time-Series

In Section 3.2 we introduced F-PCMCI to reduce the computational cost of causal discovery
analysis. In this part of the deliverable, we describe the activities carried out to address a
critical challenge for the causality and robotics communities: performing causal analysis
that incorporates data from interventions. Observational data alone are often insufficient
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to accurately identify the correct causal model in complex scenarios, where taking into
account all the variables that influence the evolution of a system is not feasible. In such
cases, interventional data – i.e., data obtained from controlled experiments – are necessary
for causal discovery to eliminate spurious correlations and enhance the quality of the
inferred causal model.

The proposed solution extends and improves the state-of-the-art causal discovery
algorithm for time-series called Latent-PCMCI (LPCMCI) [29], taking inspiration from
the way Joint Causal Inference (JCI) [30] handles interventions with known target. The
result is a new algorithm that enables precise causal analysis using both observational and
interventional data, which significantly improves the accuracy of the model discovered.

3.3.1 Interventions Through Context Variables

Combining observational and interventional data in causal discovery requires adapting the
causal structure to account for both scenarios. Observational data considers the parents of
the intervention variable, whereas interventional data necessitates breaking all incoming
links to the intervention variable. To address this, we used context nodes inspired by the JCI
framework [30]. Context nodes enable the integration of observational and interventional
data into a unified causal structure while preserving system dependencies.

Meta-System Representation – Our approach models the system and context variables
as a new meta-systemM , defined as:

M :

¨

X i(t) = f̃ (Pa(X i), CXk) i ∈ I , k ∈K
CXk = fk k ∈K

(8)

where I represents the set of system variables defined as X = (X i)i∈I , whileK represents
the set of context variables defined as C = (CXk)k∈K . Pa(X i) is the parent set of the system
variable X i , instead CXk is the context variable k. Moreover, the function f̃ models the
system variables and can be decomposed as follows:

f̃ (Pa(X i), CXk) :

¨

f (Pa(X i)) CXk = 0

CXk CXk = ξk
(9)

where f represents the function that models the evolution of the system variable X i in
the observational case, which depends solely on its parent set Pa(X i). Referring again to
Equation 8, the function fk models the context variables and it is defined as follows:

fk :

¨

ξk interventional mode for k
0 observational mode for k

(10)

The case where CXk = 0 corresponds to no intervention, i.e the observational baseline,
while CXk = ξk models the intervention case, where ξk is the actual intervention value
assigned to the variable X i through the context variable CXk.

Key Assumptions – In our case, to model hard interventions with known targets as
context changes in time-series data, we adopt the “JCI123” framework [30], which relies
on the following assumptions:

JCI1 Exogeneity: No system variable causes any context variable.
JCI2 Complete randomised context: No context variable is confounded with a system

variable.
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Figure 20: CAnDOIT effectively employs context variables to handle observational and inter-
ventional data, resulting in a unified causal structure that accommodates both types of data.
CAnDOIT blocks in a,b) provide examples of this unified causal structure in cases of single and
multiple interventions, respectively.

JCI3 Generic context model: Context variables are interconnected but do not model
causal relationships among themselves.

Additionally, we assume that each context node influences only one system variable,
simplifying the integration of interventions with known targets.

At this point, we can further clarify the concept of context nodes. Essentially, the
context node is a dummy exogenous variable (i.e. a “meta-variable” that does not exist in
the real system) that is used to inject the interventional data into the intervention variable
without ignoring its parents. Since the context node is exogenous (by the JCI1 assumption)
and models the intervention, the model’s structure does not change when transitioning
between observational and interventional cases. Following the JCI framework for causal
discovery with both observational and interventional data [30]. the interventional process
in CAnDOIT is generated by creating context nodes (e.g. CXk) that are added as parent of
the system variables (e.g. Xk) and govern their possible values. The context node affects
its system variable instantaneously (at the same time step) injecting the interventional data
into it and maintaining its value constant for the duration of the intervention. Note that,
as the context node does not carry temporal information, i.e., its value does not change
over time, we modelled it as a unique node in the graph confounding its corresponding
system variable at all the time intervals (see Fig. 20 CAnDOIT blocks).

Fig. 20a shows an example of a context variable to handle a hard intervention and illus-
trates how CAnDOIT creates an unified causal structure that represents both observational
and interventional data.

3.3.2 CAnDOIT Algorithm

Fig. 21 depicts a detailed flowchart of CAnDOIT, explaining each step of the algorithm
with an example. In particular, the steps executed by our approach are as follows:

• CAnDOIT takes observational and interventional data as input;
• Using the knowledge of the intervention target Z , the context block adds the context

node CZ to the set of variables considered inM , plus an instantaneous link CZ → Z
to the initial causal structure, i.e., a fully connected graph that is the starting point
of the LPCMCI algorithm;

• The system variables (X , Y, Z), along with the context node CZ are injected into the
causal discovery block;

• LPCMCI performs the causal analysis on the meta-systemM and then removes both
the context variable CZ and the link CZ → Z before returning the causal model;
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Figure 21: CAnDOIT’s block scheme representation. CAnDOIT processes observational and
interventional data; the context block adds context variables (CZ) linked to the actual inter-
vention variable (Z) with an instantaneous link (CZ → Z); Finally, the LPCMCI block finalises
the causal discovery process.

• CAnDOIT outputs a time-series Partial Ancestral Graph (PAG).

Further details regarding the choice of LPCMCI and how CAnDOIT addresses the faithfulness
assumptions are provided in the paper resulting from this activity [31]. A detailed pseudo-
code explanation of our approach is presented in Algorithm 2. A Python implementation
of CAnDOIT is also publicly available7.

Algorithm 2 CAnDOIT

Require: obs. Dobs and int. Dint ts data, int. target variables X i , significance level α, min and max
time lag τmin, τmax .

1: CM0 ← fully connected PAG with for lagged dependencies and for contemporaneous
dependencies ← LPCMCI starting point

2: M ←I add the set of system variables X = (X i)i∈I to the meta-systemM
3: for each int. target variables X i do
4: CXk ← create the context variable CXk associated to the intervention system variable X i

5: M ← CXk add CXk to the meta-systemM
6: CM0← add CXk to the LPCMCI initial condition CM0

7: for each τ in range(τmin, τmax ) do
8: CM0← add the link CXk → X i(t −τ) to CM0

9: Ds ← [Dobs, Dint]
10: CM = LPCMCI(Ds, α, τmin, τmax , CM0)
11: CM ← remove context variables CXk and related links
12: return CM ← time-series PAG

Being based on LPCMCI, our CAnDOIT inherits its necessary conditions for proper
functioning: Causal Markov Condition, Faithfulness, Acyclicity. Furthermore, like its
predecessor, CAnDOIT can adapt to any type of data, including linear and nonlinear
relationships, multiple time lags, various types of noise, and it cannot detect cyclical
relationships. It retains the output format of a time-series Partial Ancestral Graph (PAG).
Specifically, CAnDOIT produces a time-series PAG with a number of layers determined
by the algorithm parameters τmin and τmax (see Algorithm 2 inputs). By default, τmin
is set to 0 to account for the instantaneous links created for the context variables. On
the other hand, τmax represents the maximum time delay considered when the algorithm
performs conditional independence tests between variables across different time steps.

7https://github.com/lcastri/causalflow
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Consequently, the time-series PAG consists of τmax + 1 layers, corresponding to the time
steps t −τmax , t − (τmax − 1), . . . , t.

PAGs are used to represent the Markov equivalence class of Maximal Ancestral Graphs
(MAGs). The latter extend the DAGs representation by including also the bidirected link
(↔) to represent variables confounded by a latent confounder. PAGs further generalise
MAGs by incorporating additional edge types, specifically and , to handle uncertain-
ties in edge orientations. For example, in a PAG, a link X Y corresponds to two possible
MAGs: X → Y (where X is an ancestor of Y ) or X ↔ Y (where X and Y are confounded
by a latent variable). Similarly, a link X Y in a PAG represents two possible MAGs:
X → Y (where X is an ancestor of Y ) or Y → X (where Y is an ancestor of X ).

3.3.3 Experiments

Our evaluation strategy was divided into two main parts. In the first part, we evaluated
CAnDOIT’s effectiveness in handling interventional data and its impact on the causal
structure. Five testing strategies were devised, denoted as S1, S2, S3, S4, and S5.

• In S1, we assessed the performance of our approach with linear systems while varying
the number of observable variables and without hidden confounders.

• S2 extended S1 by introducing hidden confounders while retaining linear systems
and maintaining the same range of variables. In both S1 and S2, only a single
intervention was conducted.

• In S3, we evaluated CAnDOIT’s performance with linear systems and hidden con-
founders when multiple interventions were applied, keeping the number of observ-
able variables fixed.

• S4 and S5 mirrored S2 and S3, respectively, but focused on nonlinear systems.

Across all five evaluation strategies, CAnDOIT outperformed LPCMCI in terms of accuracy
and uncertainty of the retrieved causal model. A full description and detailed results of
these analyses are available in [31].

In the second part of our evaluation, we applied CAnDOIT to model a robotic scenario
in a simulated environment. The strategy involved extracting time-series data from the
simulator and performing causal discovery in the presence of a hidden confounder.

Causal World for Robot Camera Modelling – We designed an experiment to learn
the causal model in a hypothetical robot arm application equipped with a camera. Our
focus was on estimating the causal relationship between the color’s brightness of objects as
captured by the camera and various factors, including camera-to-object distance. For this
evaluation, we utilised the well-known benchmark Causal World [32], which is designed
for causal structure learning in a robotic manipulation environment. The environment
consists of a TriFinger robot (shown in Fig. 22a and 22b), a floor, and a stage. It allows
for the inclusion of objects with various shapes, e.g. cubes.

For simplicity, we focused on a specific scenario using only one finger of the robot,
where the finger’s end-effector was equipped with a camera. The scenario (shown in
Fig. 22) consists of a cube placed at the centre of the floor, surrounded by a white stage.
The color’s brightness (b) of the cube and the floor is modelled as follows:

b = Kh
H

Hmax
+ Kv

�

1−
v

vmax

�

+ Kd
dc

dcmax

(11)

where H is the end-effector height, v its absolute velocity, and dc the distance between
the end-effector and the cube. Kh, Kv , Kd are the gains associated to each factors, while
Hmax , vmax , and dcmax

are the maximum values for H, v, and dc , respectively. This model
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(a) (b)

(c) (d)

Figure 22: (a, b) TriFinger robot manipulating different objects. (c, d) CausalWorld [32]: a
robotic manipulation simulator featuring the TriFinger robot. (c) Observational experiment;
(d) Experiment with an intervention on the floor’s color.

captures the shading and blurring effects on the cube due to the height of the end-effector,
its velocity, and its distance from the cube. On the other hand, the floor, being darker and
larger than the cube, is only affected by the end-effector’s height.

The data collected from the scenario therefore includes the floor (Fc) and the cube (Cc)
colors, as well as the height (H), the absolute velocity (v) of the end-effector, and its
distance from the cube (dc). The ground-truth structural causal model for the variables Fc
and Cc is expressed as follows:

¨

Fc(t) = b(H(t − 1))
Cc(t) = b(H(t − 1), v(t − 1), dc(t − 1))

(12)

Note that H, v, and dc are obtained directly from the simulator and not explicitly modelled.

Experimental Results on Robotic Scenario – The evaluation involved three main
steps. (i) We generated observational data containing all the variables in the system (Fc ,
Cc , H, v, dc), as shown in Fig. 22c, and performed the causal analysis using LPCMCI.
(ii) We intentionally hid the variable H, representing the height of the end-effector, to
create a hidden confounder and a spurious relationship between Cc and Fc . Again, we
used LPCMCI for the causal analysis. (iii) We conducted an intervention on the floor’s
color, setting it to green (Fig. 22d), and collected data from the simulator. Then we used
CAnDOIT for the causal analysis with both observational and interventional, accounting
for the hidden confounder H. The observational time-series had a length of 600 samples,
while the interventional time-series consisted of 125 samples. Both were recorded at a
sampling rate of 10Hz. Also in this case, to ensure a fair analysis, LPCMCI and CAnDOIT
used exactly the same amount of data. Consequently, LPCMCI received the complete set
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Figure 23: Causal model of the robot camera in Causal World: (a) LPCMCI’s result with all the
variables being observable; (b) LPCMCI’s result with hidden H; (c) CAnDOIT’s causal model
with hidden H.

of observational data, whereas for CAnDOIT part of the observational data was replaced
by interventions, specifically 475 observational samples and 125 interventional ones.

Fig. 23 shows the results for each specific step: (Fig. 23a) causal model using LPCMCI
with observable variables only; (Fig. 23b) LPCMCI’s result with hidden H; (Fig. 23c)
causal model retrieved by CAnDOIT, leveraging both observational and interventional data
(generated by the simulations shown in Fig. 22c and 22d) and successfully identifying
the bidirected relation between Cc and Fc , which represents the presence of a latent
confounder (H).

Also in this experiment, we can see the benefit of using intervention data alongside the
observations. In Fig. 23b, LPCMCI is not able to orient the contemporaneous (spurious)
link between Fc and Cc due to the hidden confounder H. This yields the ambiguous
link Fc Cc , which does not encode the correct link↔ (the represents either→ or
←). Instead CAnDOIT, using interventional data, correctly identifies the bidirected link
Fc ↔ Cc , decreasing once again the uncertainty level and increasing the accuracy of the
reconstructed causal model.
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In this activity we implemented CAnDOIT, a new state-of-the-art algorithm that
enables causal discovery using both observational and interventional data via
context variables. This advancement addresses a critical need in both the robotics
and causality communities, where understanding cause-and-effect relationships is
essential for building intelligent, adaptive systems. We validated our approach
experimentally on random synthetic models and tested on a robotic simulator
for causal discovery, focusing on the significance of interventional data. Our
results confirmed that CAnDOIT outperforms previous causal discovery methods,
improving accuracy and enhancing model identifiability. They also highlight its
capability to handle interventional data effectively, and its potential benefit for
real-world robot applications. The proposed method lays the foundation for new
observations- and interventions-based causal discovery methods on time-series
data, with numerous opportunities for future research.

This activity resulted in the journal paper titled "CAnDOIT: Causal Discovery with
Observational and Interventional Data from Time Series", published on Advanced
Intelligent Systems [26]. Additionally, this work produced a publicly-available
Python implementation of the CAnDOIT algorithma.

ahttps://github.com/lcastri/causalflow

3.4 A ROS-based Causal Framework for Human-Robot Interaction Applications

In the activity presented in Section 3.2, we extended the state-of-the-art causal discovery
algorithm PCMCI by embedding an additional feature-selection module based on transfer
entropy. This step was necessary to reduce the computation cost of the causal analysis due
to the number of variables, which is a significant challenge for autonomous robots that
often operate with limited hardware resources and real-time constraints.

However, many causal discovery methods, including F-PCMCI, lack the capability to
run directly on the robot. This limitation pose challenges for exploiting the reconstructed
causal models in real-time. In particular, due to the aforementioned limitation, a robot
must accumulate a significant amount of data and then conduct offline causal analysis.
Subsequently, the reconstructed causal model has to be reintegrated into the robot for
utilisation. The limitation may stem from the lack of a software framework that facilitates
the integration between the two communities (i.e. robotics and causality) and that operates
directly inside the Robot Operating System (ROS)8, the standard de facto in robotics. The
solution presented in this part of the deliverable aims to streamline this process by enabling
the robot to conduct onboard causal discovery on data batches while concurrently collecting
data for future causal analysis. Moreover, given the integration of our framework within
ROS, the acquired causal model can be directly exploited by the robot for reasoning and
planning problems.

3.4.1 ROS-based Causal Analysis Framework

The proposed approach, named ROS-Causal, extracts and collects data from an HRI
scenario, such as agents’ trajectories, and then performs causal analysis on the collected
data in a batched manner. A modular ROS Python library implementation of ROS-Causal
has been developed and made publicly available9. The modular design allows for the
expansion of the library with new causal discovery methods. In the following, we provide

8https://www.ros.org/
9https://github.com/lcastri/roscausal.git
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a detailed explanation of the three main blocks that compose the ROS-Causal pipeline, as
depicted in Fig. 24. Information regarding subscribers and publishers for each ROS node
is summarised in Table 7.
Data Merging – The purpose of this block is to merge robot and human data from
various topics into custom ROS messages in the ROS-Causal framework. The nodes
roscausal_robot and roscausal_human extract the position, orientation, velocities
and target positions of the robot and the human, respectively. These data are retrieved
from ROS topics/params relative to the robotic platform and need to be configured within
the framework. Then, the two nodes merge the acquired data into the ROS messages
RobotState and HumanState published on the predefined topics /roscausal/robot
and /roscausal/human. The latter are utilised in the data collection block explained in
the following section.

Table 7: ROS-Causal subscribers and publisher.

roscausal_robot

subscribed topics description msg type

to be setup robot pose to be setup
to be setup robot velocity to be setup
to be setup robot goal to be setup

published topics description msg type

/roscausal/robot full robot state RobotState

roscausal_human

subscribed topics description msg type

to be setup human pose to be setup
to be setup human velocity to be setup
to be setup human goal to be setup

published topics description msg type

/roscausal/human full human state HumanState

roscausal_data

subscribed topics description msg type

/roscausal/robot full robot state RobotState
/roscausal/human full human state HumanState

roscausal_discovery

published topics description msg type

/roscausal/causal_model causal model
description

CausalModel

/roscausal/dag Summary DAG Image
/roscausal/tsdag Time-series DAG Image

Data Collection and Post-process-
ing – This block takes input
from the previous block’s topics
to create a data batch for the
causal discovery node. More
in detail, the roscausal_data
node subscribes to the topics
/roscausal/robot and
/roscausal/human and begins
collecting data in a CSV file. Once
the desired time-series length, con-
figurable as a ROS parameter, is
reached, the node provides the op-
tion to post-process the data, allow-
ing for the creation of a high-level
representation of the scenario. For
instance, from the low-level data,
such as agents’ trajectories, a post-
processing script can be specified
to generate distances and angles
between the agents. Once the post-
processing is complete, the CSV file
is saved into a designated folder
(e.g. “csv_pool” in Fig. 24).
Causal Discovery – The ROS node
roscausal_discovery performs

human topics

robot topics

roscausal

roscausal_robot

robot_state

HRI SCENARIO

roscausal_discovery

causal_discovery

roscausal_data

data_collection

csv pool

csv csv

roscausal/causal_model

roscausal/human

roscausal/robot

roscausal_human

human_state

postprocess

csv

Figure 24: ROS-Causal pipeline: (i) data extraction from human-robot interaction scenarios;
(ii) collection and post-processing of data to derive a high-level representation of the scenario.
(iii) causal discovery conducted on the extracted data, with the resulting causal model published
on a dedicated rostopic.
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causal discovery analysis on the collected data. Specifically, it continuously checks for the
presence of a CSV file in the designated folder. Upon locating a file, it initiates the causal
analysis on that specific data batch. It is important to note that the roscausal_data and
roscausal_discovery ROS nodes operate asynchronously, allowing the simultaneous
execution of causal analysis on one dataset while continuing the collection of another.
The roscausal_discovery ROS node incorporates two causal discovery methods: the
PCMCI [18] and its extension, F-PCMCI presented in Section 3.2. For both algorithms,
the following parameters, handled as ROS parameters, needs to be set: (i) significance
threshold (typically α = 0.05); (ii) minimum and maximum time lag; (iii) conditional
independence test. Once the causal analysis is complete, roscausal_discovery ROS
node deletes the just examined CSV dataset in order to maintain robot’s memory free and
decomposes the causal model into three n.lags × n.vars × n.vars matrices. Here,
n.lags represents the number of time lags to the current time where causal dependencies
are tested, defined as the difference between the maximum and minimum time lag, and
n.vars represents the number of variables. Each matrix contains distinct information
about the built causal model for each time lag (further details can be found in [33]).
The three matrices are embedded in the CausalModel ROS message and published on
/roscausal/causal_model, enabling access across the robotic system. Visualisations
of the causal model, as a summary DAG and time-series DAG, are published as Image
messages on /roscausal/dag and /roscausal/tsdag.

3.4.2 Human-Robot Interaction Simulator

Figure 25: HRI scenario involving a TIAGo robot and a
teleoperated person, created by ROS-Causal_HRISim.

To assess the effectiveness of
our approach in reconstructing
causal models from HRI scenar-
ios, we developed a dedicated
Gazebo-based simulator called
ROS-Causal_HRISim. This simu-
lator accurately mimics HRI sce-
narios involving a TIAGo10 robot
and multiple pedestrians mod-
elled using the pedsim_ros11 ROS
library. The latter simulates indi-
vidual and group social activities
(e.g., walking) using a social force
model. To better emulate human
behaviours, we incorporated the option for user teleoperation (via keyboard) of a sim-
ulated person, not influenced by social forces. A Docker image of ROS-Causal_HRISim,
comprising also ROS-Causal, has been created and is publicly available12. An HRI scenario
created by ROS-Causal_HRISim is shown in Fig. 25.

3.4.3 Experiments

Our evaluation strategy consisted of two steps. First, we validated the correctness and
effectiveness of ROS-Causal in a simulated HRSI environment. This step was crucial for
assessing ROS-Causal’s capability to reconstruct the correct causal model from data before
deploying it on the real robot. Second, we evaluated ROS-Causal in a real HRSI scenario,

10https://pal-robotics.com/robots/tiago/
11https://github.com/srl-freiburg/pedsim_ros
12https://github.com/lcastri/ROS-Causal_HRISim
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where data collection and causal discovery were performed directly on the real robot. The
experiments have been designed to investigate the following research questions:

R1) Is it feasible to generate causal models onboard the robot via ROS-Causal?
R2) If yes, how much data (i.e., time-series length and sampling frequency) are needed

to generate accurate causal models?
R3) If yes, how much execution time the generation takes?

The HRSI scenario chosen for the evaluation strategy takes inspiration from the human-
moving obstacles scenario, which we analysed in Section 3.1.1. The scenario depicts
a typical DARKO setting, where a person and a robot deliver parcels at different target
stations. The person has to reach a predefined target position, which dynamically changes
when reached, and avoid the robot that crosses his/her path. The robot follows a predeter-
mined path along its targets. When the person encounters the robot, he/she must avoid
it by decreasing his/her velocity and/or adjusting his/her steering. In addition, as the
person approaches the target position, he/she gradually reduces the velocity.

The set of variables used to model this scenario and the set of causal links between
them aligns with what already explained in Section 3.1.1. The robot was perceived as an
obstacle by the person. However, ROS-Causal can be further applied to various scenarios
involving robots and humans, such as a robot following a person or interactive tasks
between them.

ROS-Causal Simulation Evaluation – Our plan was to create the HRSI scenario just
discussed, collect the trajectories of the two agents (i.e., robot and person), process the
collected data to obtain the desired set of variables previously discussed (v, dg , r) and
finally execute the causal discovery on it. Fig. 25 shows the HRSI scenario created by
ROS-Causal_HRISim. It involves a TIAGo robot and a simulated person teleoperated by
one of the participants via keyboard, represented by the red manikin. The green dot
represents the person’s target position, while the blue line visualises the distance between
the person and his/her goal position. Finally, the green cone is the visualisation of the
collision risk. It is built from the person position to the enlarged encumbrance of the
TIAGo, which is perceived by the human as a moving obstacle.

Regarding the ROS-Causal parameters and settings used for the data collection and
causal analysis, we configured a desired time-series length corresponding to a timeframe of
150s and recorded the trajectories of the two agents, their linear velocity, and orientation,
with a sampling frequency of 10Hz. Subsequently, we compute the distance between
the human and the goal, as well as the risk of collision. For the causal discovery block,
we employed the F-PCMCI causal discovery method with a significance level of α =
0.05, a conditional independence test based on Gaussian Process regression and Distance
Correlation (GPDC). We also used a 1-step lag time, meaning variables at time t could
only be affected by those at time t − 1. The resulting causal model is depicted in Fig. 27a.
The graph faithfully represents the expected model discussed earlier and is consistent with
the result in Fig. 14 (right).

Dataset and Experimental Setup – After confirming the correct functionalities of
the ROS-Causal framework, we proceeded with the lab evaluation analysis, replicating
the scenario staged through ROS-Causal_HRISim in the lab environment, as shown in
Fig. 26a. The experiment and data collection occurred in a laboratory room of 5× 8.2m
in Fig. 26b. Fifteen participants (6 females), aged between 25 and 55, took part in the
experiment. Seven of them were researchers who regularly work with robots. Only point
cloud readings from the Velodyne VLP-16 3D LiDAR were recorded.
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Figure 26: (a) HRSI experiment in a lab scenario with a TIAGo robot, a person and his/her
four goal positions;(b) 2D map of an experiment with a person and TIAGo, with trajectories in
orange and blue respectively, and four goal positions (green dot); (c) RViz visualisation of the
scenario; (d) TIAGo robot with (1) a Velodyne VLP-16 3D LiDAR used for dataset collection.

Participants’ task was to navigate between four designated goal positions while avoiding
collisions with the robot when crossing paths. Specifically, they were instructed to begin
from a goal position randomly chosen by themselves, select and walk towards the next
one, also randomly chosen, and repeat this process until the robot stopped (i.e., after 5
minutes from the start). They were asked to pass through all the goal positions at least 7
times, avoiding the robot when they encountered it. No specific instructions were provided
on how to reach the goals or avoid the robot.

A predefined rectangular path (i.e., in blue in Fig. 26b) was set for the TIAGo robot
to navigate along the room and generate frequent interactions with the participants. As
mentioned earlier, in this experimental setting, the robot was considered by the participant
as an obstacle to avoid while walking towards their target positions. Fig. 26a shows an
example of the experiment, while Fig. 26b shows the trajectories of the two agents (i.e.,
the ones related to the robot in blue and the human in orange).

To track the motion of the agents, we used a Velodyne VLP-16 3D LiDAR and the Bayes
People Tracker13 [15] on the related point cloud. Fig. 26c illustrates, through RViz, the
human tracked by the robot. The robot equipped with the Velodyne is shown in Fig. 26d.
More details about the data collection process and the dataset resulted from this activity
can be found in [34].

ROS-Causal Evaluation in Lab Scenario – Data collection, post-processing, and causal
discovery were all executed by our ROS-Causal framework with the same parameters
used for the simulation, as explained in the ROS-Causal Simulation Evaluation paragraph.
Fig. 27b shows the causal model relative to one of the participants. The graph accurately
represents the expected model discussed in the Human-moving obstacles scenario para-
graph of Section 3.1.1 and is consistent with the result presented in Fig. 14 (right), as well
as with the model obtained from the simulation experiment in Fig. 27a. This demonstrates
the reliability of ROS-Causal_HRISim to mimic HRI scenarios and the ROS-Causal’s ability
to retrieve the expected causal model in both simulation and lab experiments, validating
the onboard causal discovery via ROS-Causal (R1).
Sampling Frequency analysis – Fig. 27c shows the impact of sampling frequency on
causal discovery. We analysed time-series data at varying frequencies, from 0.5Hz to
the original 10Hz. The Structural Hamming Distance (SHD) – a standard distance to
compare graphs by their adjacency matrix – of the retrieved causal models, compared to

13https://github.com/LCAS/bayestracking
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Figure 27: (a), (b) Causal model reconstructed by ROS-Causal from simulation and lab
experiments, respectively. Execution time (c) and SHD (d) analyses with various time horizons.
(e) SHD analysis based on the sampling frequency.

the baseline, was calculated for each frequency. The results indicate that the original 10Hz
frequency is crucial for obtaining accurate causal models.
Time-Horizon analysis – Fig. 27d and 27e present the SHD and execution time for
different time horizons. We tested time-series lengths ranging from 10% to 100% of
the full length, corresponding to approximately 5 minutes per participant. SHD values
were measured against a baseline causal graph obtained through simulation (Fig. 27a).
The results suggest that a time window between 30% and 70% of the full time-series
length (i.e., 90 to 210 seconds) provides sufficient data for accurate causal model retrieval.
Shorter time-series were insufficient for accurate model learning, while longer sequences
risked overfitting due to the parametric kernel estimator used in the causal discovery. Our
key findings can be summarised as follows:

• Sampling Frequency – The original 10Hz sampling rate is essential for generating
accurate causal models, as shown in Fig. 27c.

• Time-Series Length – A time-series length between 30% and 70% of the full duration
(roughly 90 to 210 seconds) is optimal for causal model accuracy, as illustrated in

37



H2020-ICT-2020-2: 101017274 DARKO Deliverable D5.3

Fig. 27d and 27e.
• Optimal Trade-off – A 40% length of the time-series (approximately 120 seconds)

recorded at 10Hz strikes the best balance between model accuracy and execution
time (∼ 100s), addressing the research questions (R2) and (R3).

Further details about the results can be found in our paper related to this activity [34].

In this work, we introduced ROS-Causal, a ROS-based framework for causal
analysis in human-robot spatial interaction (HRSI), and its complementary
ROS-Causal_HRISim simulator. ROS-Causal facilitates onboard data collection
and causal discovery, enabling robots to simultaneously reconstruct causal
models while gathering data for future analysis. To evaluate the effectiveness of
ROS-Causal in modelling these interactions, we designed identical HRSI scenarios
in both ROS-Causal_HRISim and real-world lab environments. Causal discovery
conducted on both setups produced consistent causal models, demonstrating the
simulator’s ability to replicate realistic HRSI scenarios. Our results validate the
feasibility of onboard causal discovery using a real robot and provide insights into
the simulator’s capability to represent useful HRSI situations. Furthermore, we
analysed the execution time and data requirements—specifically time-series length
and sampling frequency—needed for generating accurate causal models in a given
scenario.

This research work led to two publications:

• "ROS-Causal: A ROS-Based Causal Analysis Framework for Human-Robot
Interaction Applications", presented at the Workshop on Causal Learning for
Human-Robot Interaction (Causal-HRI), part of the ACM/IEEE International
Conference on Human-Robot Interaction (HRI) [33].

• "Experimental Evaluation of ROS-Causal in Real-World Human-Robot Spatial
Interaction Scenarios", presented at the IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN) [34].

This activity also produced several technical and software contributions:

• ROS-Causala: A ROS-based causal analysis framework for HRI applications.
• ROS-Causal_HRISimb: An ad-hoc simulator for HRI to facilitate scenario

design and collect both observational and interventional data for causal
analysis.

• Causal HRSI Datasetc: A dataset for evaluating human-robot spatial interac-
tions and enabling causal analysis using mobile platforms.

Finally, ROS-Causal is actively being used on the DARKO platform. Its capabilities
and functionalities were successfully demonstrated during a live stakeholder meet-
ing, where it reconstructed a causal model of a human-human spatial interaction
scenario using perception and localisation data provided by WP2 and WP3.

ahttps://github.com/lcastri/roscausal
bhttps://github.com/lcastri/ROS-Causal_HRISim
chttps://zenodo.org/records/10844902

38

https://github.com/lcastri/roscausal
https://github.com/lcastri/ROS-Causal_HRISim
https://zenodo.org/records/10844902


H2020-ICT-2020-2: 101017274 DARKO Deliverable D5.3

4 Conclusions

This deliverable highlights the activities and advancements related to T5.3 and T5.4 in
enhancing human-robot spatial interactions. In particular, in T5.3 we leveraged neuro-
symbolic (QTC-based) approaches for enhancing context-aware human motion represen-
tation, while in T5.4 we developed new causal discovery methods for robotics applications
to enable high-level reasoning on real sensor data. The activities detailed in this report
contribute to advancing the fields of mobile robotics, human motion representation, and
causal inference.

The document also presents the tools developed during these activities, namely neu-
ROSym, F-PCMCI, CAnDOIT, and ROS-Causal, which are all publicly available and currently
integrated into the DARKO platform.
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