
H2020-ICT-2020-2 Grant agreement no: 101017274

DELIVERABLE 4.2
Planning and control algorithms
for efficient manipulation

Dissemination Level: PUBLIC
Due date: month 48 (May 2025)
Deliverable type: Report
Lead beneficiary: UNIPI

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

1 Introduction

The design of suitable planning and control algorithms for robotic manipulators is a key
factor for enabling efficient manipulation in unstructured environments. In fact, these
scenarios present several challenges like uncertainties on inertia parameters due to grasped
objects, guaranteeing a safe interaction with the environment, and performing movements
as predictable as possible by human workers who share the workspace with the robot.
Furthermore, all these problems have to be dealt without losing the efficiency in task
performances.

This deliverable reports the latest results we achieved in the DARKO project regarding
motion planning and control of the manipulator. The document starts with the control
part, where we start with the presentation of Thunder Dynamics, a software library for
the implementation of adaptive control for robotic manipulators, and then we move to
describe a novel formulation of the Adaptive Computed Torque Control which permits to
avoid numerical problems given by the inversion of the estimated mass matrix. Then, we
present an approach to deal with the presence of elastic joints in the manipulator, like
elastic wrist available in the DARKO platform. After that, we move to the presentation
of a novel motion planning algorithm for generating human-like movements in artificial
systems. We start from the classical obstacle avoidance problem, and then we show the
application of this approach for the grasping of moving objects. In the end, we report the
framework developed for performing picking action with the pneumatic tools. For the
sake of clarity, each section is related to a single work and contains an introduction which
contextualize the presented results, providing to the reader all the necessary background
information.

2 Thunder Dynamics: a C++ Library for Adaptive Control of Serial
Manipulators

Nowadays the usage of robotic manipulators is exponentially increasing in a large number
of fields such as manufacturing, logistics, and healthcare [31,44,64]. This trend is driven
by the exceptional precision and ability of this type of system to handle heavy loads.

Behind the level of performance achieved, there is a strong theoretical background
given by the study of the dynamics of rigid bodies [33]. Over time, researchers have
developed a large set of algorithms to compute different entities related to rigid body
systems, such as forward and backward dynamic, in an efficient way [32]. From these
results, in the last decade, different software packages implementing in an easy way all
these algorithms have been released [20,34]. Several control techniques rely on a good
knowledge of the dynamic model of the manipulator requiring precise information of the
mechanical properties of each link. Also in this case, if the robot picks an object to perform
the desired task, the inertia of the grasped object will change the dynamic behavior of the
kinematic chain.

Different strategies have been proposed in the literature to deal with the effect of
uncertainties in the model. A possible way is to design controllers which provide a desired
robustness to model parameters uncertainties, like for example, Robust Model Predictive
Controls [14]. However they usually come with drawbacks in terms of level of performance
and computational load. Another possible approach is to estimate the discrepancy between
the model and the real and compensate for it. This class of approaches can be separated
into two types of solutions: the model identification and the adaptive control. The first type
tackles the problem offline by setting up an estimation procedure to identify the unknown
parameters [5,76]. The latter targets the problem online from a control perspective by

2

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

adapting the control action to compensate for parameter uncertainties. These types of
solutions are usually called adaptive controllers [57,139]. The most famous algorithm of
this family is the one proposed in [120], where the control law is composed of feedback
and feedforward parts, while parameters are modified online to ensure stability.

Even if this approach is effective in compensating for model errors, it requires factor-
ization of the robot dynamic equation to express it explicitly in a linear form with respect
to the inertial parameters [62]. Usually, this factorization uses the classical inertial repre-
sentation of rigid bodies (10 parameters for each link of the kinematic chain). However,
this set of parameters is not completely observable through the joint-space dynamic of the
manipulator itself, bringing to the construction of a larger regressor. In [41], the authors
addressed this problem by developing an algorithm that allows finding the minimal dy-
namic parametrization starting from the classical one. However, most of the computational
cost is related to the construction of the regressor matrix, which is addressed in this work.

The computation of the regressor matrix, which can be easily done by inspection for
manipulators with a couple of Degrees of Freedom (DoFs), becomes a daunting task for
many-DoF systems. Works that address this problem are [40] and [38], where the authors
have proposed algorithms to build the regressor and dynamical matrices related to the
inertial parameters. In [38], authors have also proposed a library, developed in Wolfram
Mathematica©, that integrates the algorithm for generating this regressor, through the
Denavit-Hartenberg (D-H) representation [27], concerning serial kinematic structures.
However, the existing solutions cannot be integrated in a straightforward manner into
a classical software control infrastructure, usually developed in a ROS framework using
languages like C++ or Python. Recently, authors in [92] have developed a high-level
Python toolbox based on Pinocchio library. However, the proposed tool is designed for the
identification and calibration of robot inertial and kinematic parameters and, to the best
of my knowledge, it does not provide information usable for the online implementation of
adaptive controllers. Moreover, it is not easy to add functions that are not already present
in the framework.

In this work, starting from the results obtained in [38], we have formulated a procedure
that does not require tensor algebra to compute the dynamic regressor and can be easily
implemented with standard software languages with low computational time. Moreover,
we have developed a software library, based on C++ and CasADI [4], able to provide the
information needed by adaptive control or similar techniques. The proposed library has
two possible use cases: a high-level and a low-level one. The high-level one allows a
non-specialized user to build a C++ system model that can be directly incorporated into the
control loop. This implementation is the easiest and the fastest to use, due to the efficiency
of the compiled C++ code. The low-level use case allows an experienced user to modify
the internal model, written in CasADi, to extend the functionalities of the library or to
solve user-defined problems. Furthermore, the CasADi base allows future implementation
of control optimization and planning in a straightforward manner. Finally, the entire
framework is developed inside a Docker Image to improve usability [16]. To test the
effectiveness of this method, we exploited a task-space adaptive backstepping controller
and we used this tool to implement the control algorithm for the 7 DoFs manipulator
Franka Emika. This controller is applied both in simulation and to the real system in
different scenarios with the aim of testing the capability of the overall system to handle the
inertial model, both in terms of trajectory tracking error, and inertial parameter estimation.
The results presented in this section are part of the manuscript "Thunder Dynamics: a C++
Library for Adaptive Control of Serial Manipulators", currently under review at IEEE Open
Journal of Industrial Electronics Society.

3

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

2.1 Theorethical framework

2.1.1 Direct Formulation of the Slotine-Li Regressor

The manipulator regressor Y (q, q̇, q̈) is a matrix function employed to write the manipulator
dynamics linearly in the inertial parameters π, i.e.,

B(q)q̈+ C(q, q̇)q̇+ G(q) = Y (q, q̇, q̈)π= τ, (1)

where q, q̇, q̈ ∈ Rn are the joint position, velocity and acceleration; B(q), C(q, q̇) ∈ Rn×n

are the inertia and Coriolis matrices; G(q) ∈ Rn is the gravitational force vector, and τ are
the joint torques.

Starting from the standard formulation, the one used by Slotine-Li in [120] can be
reported as:

B(q)q̈r + C(q, q̇)q̇r + G(q) = Yr(q, q̇, q̇r , q̈r)π, (2)

where q̇r(t) is the reference velocity generated for the adaptive control law and C(q, q̇) has
to be obtained via the Christoffel symbols. The difference between these two formulations
is that the last regressor matrix does not need acceleration signals which are difficult to
obtain.

To provide background context to this work, we briefly recall some of the results
reported in [38] necessary to establish the notation. For a complete explanation of how
these results are obtained, we refer the interested reader to [38]. Starting from equation
(2), the term B(q)q̈r + C(q, q̇)q̇r can be written in the following element-wise form:

[B(q)q̈r + C(q, q̇)q̇r]h =
n
∑

j=1

bh j q̈r j
+

n
∑

j=1

n
∑

k=1

1
2

�

∂ bh j

∂ qk
+
∂ bhk

∂ q j
−
∂ b jk

∂ qh

�

q̇kq̇r j
. (3)

The terms in (3) can be cast in tensor notation as

B(q)q̈r +

�

1
2

�

∂ B
∂ q
+
�

∂ B
∂ q

�T132

−
�

∂ B
∂ q

�T231
�

q̇

�

q̇r . (4)

Here, the generalized transpose operator was employed which is defined for tensors of
arbitrary order. If we let (D)i1,...,i j ,...,ik = di1,...,i j ,...,ik be a tensor of order k, the operator

(·)Tn1,...,n j ,...,nk allows to specify an arbitrary reordering to apply t the indices of a tensor, such
that if D̃ = DTn1,...,n j ,...,nk the j-th level in D̃ corresponds to the n j-th level in D, as follows

(D̃)i1,...,i j ,...,ik = din1
,...,in j

,...,ink
. (5)

Given that, from the Lagrangian formulation of standard dynamic for a serial robot,
B(q) and C(q, q̇) are link-wise additives, i.e.,

B(q) =
n
∑

i=1

B(q)(i), C(q, q̇) =
n
∑

i=1

C(q, q̇)(i), (6)

the terms can be expanded in

B(q)(i) = (J T
vi

Jvi
)mi

+
�

J T
ωi

0RiQ
0RT

i Jvi
− J T

vi

0RiQ
0RT

i Jωi

�

mi liGi

+
�

J T
ωi

0Ri E
0RT

i Jωi

�

J̄i ,

(7)

C(q, q̇)(i) =
1
2

�

∂ B(q)(i)

∂ q
+

�

∂ B(q)(i)

∂ q

�T132

−
�

∂ B(q)(i)

∂ q

�T231
�

q̇, (8)

4

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

where J̄i = [J̄i x x , J̄i x y , J̄i xz , J̄i y y , J̄i yz , J̄izz]T is the vector containing the elements of the
inertial tensor, Q ∈ R3×3×3 and E ∈ R3×3×6 are defined as:

Q = [Q1 Q2 Q3] , E =
�

E1 E2 E3 E4 E5 E6

�

,

Q1 =

0 0 0
0 0 −1
0 1 0

 , Q2 =

0 0 1
0 0 0
−1 0 0

 , Q3 =

0 −1 0
1 0 0
0 0 0

 ,

E1 =

1 0 0
0 0 0
0 0 0

 , E2 =

0 1 0
1 0 0
0 0 0

 , E3 =

0 0 1
0 0 0
1 0 0

 ,

E4 =

0 0 0
0 1 0
0 0 0

 , E5 =

0 0 0
0 0 1
0 1 0

 , E6 =

0 0 0
0 0 0
0 0 1

 ,

To better highlight the influence of the various inertia terms, we start rewriting (7)
and (8) in a factorized form as:

B(q)(i) = B(i)0 π
(i)
0 + B(i)1 π

(i)
1 + B(i)2 π

(i)
2 ,

C(q, q̇)(i) = C (i)0 π
(i)
0 + C (i)1 π

(i)
1 + C (i)2 π

(i)
2 ,

where

B(i)0 = (J
T
vi

Jvi
),

B(i)1 =
�

J T
ωi

0RiQ
0RT

i Jvi
− J T

vi

0RiQ
0RT

i Jωi

�

,

B(i)2 =
�

J T
ωi

0Ri E
0RT

i Jωi

�

,

C (i)j =
1
2

∂ B(i)j

∂ q
+

∂ B(i)j

∂ q

!T132

−

∂ B(i)j

∂ q

!T231

 q̇, j = 0,1, 2.

(9)

It is worth noting that B(i)0 , C (i)0 ∈ R
n×n, B(i)1 , C (i)1 ∈ R

n×3×n, B(i)2 , C (i)2 ∈ R
n×6×n. Highlighting

the linear dependencies of the inertia parameters we obtain
�

B(i)0 q̈r + C (i)0 q̇r + Z (i)0

�

π
(i)
0

+
�

B(i)1 q̈r + C (i)1 q̇r + Z (i)1

�

π
(i)
1 +

�

B(i)2 q̈r + C (i)2 q̇r

�

π
(i)
2

= Y (i)0 π
(i)
0 + Y (i)1 π

(i)
1 + Y (i)2 π

(i)
2 .

(10)

where Z (i)0 , Z (i)1 are derived from the potential energy term, i.e.,

�

∂ U (i)

∂ q

�T
= Z (i)0 mi + Z (i)1 mi liGi

. (11)

where mi are link masses and liGi
are the distance from the links to the centers of mass.

The equation (10) can be expanded by splitting Q and E into every part of the regressor.

Y (i)r =
�

Y0
(i) 1Y1

(i) 2Y1
(i) 3Y1

(i) 1Y2
(i) . . . 6Y2

(i)
�

(12)

5

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Y (i)0 = B(i)0 q̈r + C (i)0 q̇r + Z (i)0
h
Y (i)1 = B(Qh)

(i)
1 q̈r + C(Qh)

(i)
1 q̇r +

h
Z (i)1 h= 1,2, 3

k
Y (i)2 = B(Ek)

(i)
2 q̈r + C(Ek)

(i)
2 q̇r k = 1, 2, ..., 6

With this notation, we move from third-order tensor to matrix algebra: indeed B(i)0 , C (i)0 ,

B(Qh)
(i)
1 , C(Qh)

(i)
1 , B(Ek)

(i)
2 , C(Ek)

(i)
2 ∈ R

n×n.
Equation (12) shows the columns of the regressor matrix of each link. The complete

regressor can be written juxtaposing regressor blocks Y (i)r as

Yr(q, q̇, q̇r , q̈r) =
�

Y (1)r Y (2)r . . . Y (n)r

�

(13)

The following step is the computation of the Coriolis matrix. One of the main difficulties
encountered in computing this matrix is the derivative of the inertia matrix and the
rearrangements of its elements. The first problem is easily overcome using the symbolic
framework provided by the CasADi library [4]. The second is widely analyzed in literature
and many techniques are proposed as in [38]. However, these cannot be easily integrated
into standard control software for real hardware. The method proposed in this section is
based on creating a specific matrix to select the necessary terms of mass matrix derivative to
construct the Coriolis matrix. This avoids the use of tensor algebra which is not supported
in many computer algebra systems.

To explain the new algorithm it is necessary to define some notations. Considering a
matrix A∈ Rn×m and a vector v ∈ Rp, Table 1 shows the utilized notation.

A=

a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm

v =

v1
v2
...

vp

ai j = A(i, j) element in i-th row and j-th column of matrix A
vi = v(i) element in i-th position of vector v
Ari i-th row of matrix A
Ac j j-th column of matrix A

Av ≜
∂ A
∂ v

derivative of matrix A with respect to v
n,m[A] or reshape (A, p, q), command to reorganize the elements of a matrix,

where p · q = n ·m

Table 1: Summary of the mathematical notation used in this section.

In low-level programming languages, such as C++, matrices are typically represented
as arrays of arrays. Alternatively, they can be seen as a sequence of pointers, each pointing
to the memory addresses where the matrix elements are stored. Certain matrix operations
can be more straightforward when the matrix is treated as a one-dimensional vector, which
is achieved by reshaping the original matrix structure:

1,n·m[A] =
�

α1,α2, . . . ,αk, . . .αn·m
�

The reshaping process involves converting between matrix and vector forms, where the
conversion mapping follows this pattern:

A(i, j) = αi+(j−1)n,

αk = A(k− (⌈k/n⌉ − 1)n, ⌈k/n⌉),
(14)

6

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

where ⌈·⌉ is the ceiling function. The derivative of matrix A with respect to v in a low-level
programming language is usually defined as a matrix Av ∈ R(n·m)×p:

∂ A
∂ v
= Av ≜

∂ a11

∂ v1
. . .

∂ a11

∂ vp
...

. . .
...

∂ ai j

∂ v1
. . .

∂ ai j

∂ vp
...

. . .
...

∂ anm

∂ v1
. . .

∂ anm

∂ vp

=

∂ α1

∂ v1
. . .

∂ α1

∂ vp
...

. . .
...

∂ αk

∂ v1
. . .

∂ αk

∂ vp
...

. . .
...

∂ αn·m

∂ v1
. . .

∂ αn·m

∂ vp

The Coriolis matrix, written using Christoffel symbols, can be re-arranged as (15):

Ci j =
n
∑

k=1

Γi jk q̇k =
n
∑

k=1

1
2

�

∂ bi j

∂ qk
+
∂ bik

∂ q j
−
∂ b jk

∂ qi

�

q̇k

=
n
∑

k=1

1
2

�

∂ bi j

∂ qk
+
∂ bik

∂ q j
−
∂ b jk

∂ qi

�

q̇k

=
1
2

�

n
∑

k=1

�

∂ bi j

∂ qk

�

q̇k +
n
∑

k=1

�

∂ bik

∂ q j

�

q̇k −
n
∑

k=1

�

∂ b jk

∂ qi

�

q̇k

�

=
1
2

�

ICi j +
I ICi j − I I ICi j

�

(15)

Bearing in mind the notation of this work:

∂ B
∂ q
= Bq =

∂ β1

∂ q1
. . .

∂ β1

∂ qn
...

. . .
...

∂ βn·n

∂ q1
. . .

∂ βn·n

∂ qn

∈ R(n·n)×n

The elements of (15) become:

ICi j =
n
∑

k=1

�

∂ βh1

∂ qk

�

q̇k = B
rh1
q q̇ (16)

where h1 = i + (j − 1)n;

I ICi j =
n
∑

k=1

�

∂ βh2

∂ q j

�

q̇k =
�n,n�

βq j

��ri
q̇

=
n
∑

k=1

B
c j
q (h2) · q̇k =

n
∑

k=1

Qri (h2)B
c j
q (h2)

(17)

where h2 = i + (k− 1)n and Qri is the ri-th row of the matrix Q ∈ Rn×(n·n) defined as

Q= [In×nq̇1| . . . |In×nq̇n] ∈ Rn×(n·n) (18)

so that
I ICi j =QBq. (19)

7

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Noting that
I I ICi j =

I IC ji , (20)

the Coriolis matrix becomes

C(q, q̇) =
1
2

�n,n�
Bqq̇

�

+QBq − BT
q Q

T
�

(21)

2.1.2 Task-space backstepping control

In this section, we present a complete control law, in position and orientation, for the
end-effector tracking which will be used to test the library. The presented approach is based
on the more general adaptive backstepping control reported in [70]. The obtained closed-
loop system is asymptotically stable also in the presence of uncertainties in dynamical
parameters. In the literature, various works exploit backstepping theory to develop
adaptive task-space control for robotic manipulators. For example, in [96], the authors use
the theory of backstepping to develop an adaptive control law to follow a position path
in the Cartesian space with the end-effector of a mobile manipulator. A similar problem
is taken in [142] for a parallel manipulator with a fixed base. [90] uses an adaptive
backstepping control for the position tracking of a manipulator taking into consideration
also the motor currents. However, to the best of our knowledge, no work explicitly deals
with Cartesian orientation in presenting the proof of this approach. For this reason, for
the sake of completeness, in this section we report the proof taking into account explicitly
the orientation error in terms of axis-angle representation.

It is instrumental for the understanding of the following parts to introduce the ori-
entation error by the axis-angle representation, as exploited in [115]. We define the
frames

• {S}: fixed frame

• {B}: actual end-effector frame

• {Bd}: desired end-effector frame

and consequently the following rotation matrices (∈ SO(3))

R= [n s a]: rotation of {B} with respect to {S}
Rd = [nd sd ad]: rotation of {Bd} with respect to {S}
R̃= RdRT : rotation of {Bd} with respect to {B} in coordinates {S}

where n, s, a, nd , sd , ad ∈ R3. Moreover, it has to be defined the skew v̂ and the vect V v

operators. If we apply the skew operator to the vector v = [vx , vy , vz]T ∈ R3, we obtain
the following matrix

v̂ =

0 −vz vy
vz 0 −vx
−vy vx 0

 ∈ R3×3, (22)

that verify (uwT)v = 1
2 ŵu. On the other hand, if we apply the vect operator to a matrix V

that is antisymmetric, we obtain the vector V v = [vx , vy , vz]T ∈ R3.
We am looking for an error such that is zero when R̃= I and R= Rd . Bearing this in

mind, we define orientation error as:

eo ≜ r sin(θ), (23)

8

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

where r and θ are angle-axis parametrization of R̃. As mentioned in [132], it is known
that r and θ can be extracted from the matrix R̃, i.e.,

r =
1

2sin(θ)

r32 − r23
r13 − r31
r21 − r12

 , cos(θ) =
r11 + r22 + r33 − 1

2
. (24)

Noting that eo is the antisymmetric part of the matrix R̃, it is possible to write

eo = (nd nT + sdsT + ad aT)v

=
1
2
(n̂nd + ŝsd + âad).

(25)

For the next steps, it is useful to introduce the Poisson Theorem [131]

Ṙ= ω̂R (26)

that permits to write [ṅ ṡ ȧ] = ω̂[n s a], where ω is the angular velocity expressed in {S}
frame components. Moreover, the same relation also applies to the desired quantities
Rd ,ωd . Then, the orientation error derivative ėo from (25) becomes

ėo =
1
2
(ˆ̇nnd + ˆ̇ssd + ˆ̇aad + n̂ṅd + ŝṡd + âȧd)

=
1
2
((ω̂n)× nd + (ω̂s)× sd + (ω̂a)× ad

+ n× (ω̂d nd) + s× (ω̂dsd) + a× (ω̂d ad))

and using the antisymmetry property of the cross-product, we obtain

ėo =
1
2
(n̂d n̂+ ŝd ŝ+ âd â)ω−

1
2
(n̂n̂d + ŝŝd + ââd)ωd

=LT
oωd − Loω

(27)

where

Lo ≜ −
1
2
(n̂d n̂+ ŝd ŝ+ âd â). (28)

In a serial manipulator ω= Jo(q)q̇, so we can write:

ėo = LT
oωd − LoJo(q)q̇ (29)

where Jo(q) is the orientation part of geometric Jacobian. As regards position error, it can
be defined as

ep = pd − p. (30)

Consider a task where the goal is to follow a desired trajectory in Cartesian space defined
by position and orientation. Defining the position error ep as (30) and the orientation
error eo as (23), the complete system (1) can be rewritten in

ė =
�

ėp
ėo

�

= LTξd − LJq̇ (31)

q̈ = B−1(q)
�

τ− C(q, q̇)q̇− G(q)
�

, (32)

where, for compactness, the Jacobian conversion matrix L ∈ R6×6, and the desired end-
effector twist ξd ∈ R6 are defined as follows

L ≜
�

I 0
0 Lo

�

, ξd ≜
�

ṗd(t)
ωd(t)

�

. (33)

9

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

The overall control problem can be divided into three steps: 1) kinematic control,
2) dynamic control, and 3) adaptive control. First, in Proposition 1, the design of a
kinematic control law generates joint velocity references q̇r ∈ Rn that ensures the end-
effector position and orientation tracking. Then, in Proposition 2, the dynamic control
law generates the necessary joint torque command to follow the desired joint velocity
computed by the kinematic part. Finally, the entire loop is closed with inertial uncertainties
in Proposition 3.

Proposition 1 (Kinematic control asymptotic stability). Consider the kinematic error model
(31). Let e ≜ [eT

p , eT
o]

T be the Cartesian pose error as defined in (30), (23). If joint velocities
are as in

q̇ = q̇r ≜ J† L−1
�

LTξd +Λe
�

, (34)

where Λ ∈ R6×6 is a symmetric positive definite matrix and J† is the Moore-Penrose inverse of
the Jacobian matrix, the origin is an asymptotically stable (A.S.) equilibrium for the kinematic
error dynamics (31).

Proof. Taking the candidate Lyapunov function

V (e) =
1
2

eT Kpe, (35)

with Kp positive definite and time-invariant matrix. The time derivative of is

V̇ (e) =eT Kp ė = eT Kp

�

LTξd − LJq̇
�

=eT Kp

�

LTξd −����
LJJ† L−1

�

LTξd +Λe
�

�

=− eT KpΛe.

(36)

Being V (e) positive definite time-invariant and being V̇ negative definite, we can infer
asymptotic stability from the Lyapunov theorem.

For the dynamic part, we rewrite the dynamics (31), (32) in the new state coordinates
(e, s), where s ≜ q̇r − q̇, with q̇r defined as in (34).

Proposition 2 (Dynamic control asymptotic stability). Considering the state (e, s), the
torque control law

τ= τ∗ ≜ Bq̈r + Cq̇r + G + Kds+ J T Kp LT e, (37)

where Kd ∈ Rn×n, Kp ∈ R6×6 are the controller gains, makes system A.S. in the origin.

Proof. Taking the time-variant Lyapunov candidate

W (e, s, t) = V (e) +
1
2

sT B(q)s, (38)

where V (e) is the Lyapunov function used in the kinematic part (35). Computing the
derivative, we have

Ẇ = eT Kpė+ sT Bṡ+
1
2

sT Ḃs

= eT Kpė+ sT (Bq̈r − Bq̈) +
1
2

sT Ḃs

= eT Kpė+ sT (Bq̈r + Cq̇+ G −τ∗) +
1
2

sT Ḃs

= eT Kpė+ sT (Bq̈r + Cq̇r + G −τ∗) +
1
2

sT (Ḃ − 2C)s.

(39)

10

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

If C(q, q̇) is written in Christoffel form we have that (Ḃ − 2C) is skew-symmetric and so
1
2 sT (Ḃ − 2C)s is zero. At this point, we have

Ẇ = −sT Kds+ eT Kp ė−
�

q̇r − q̇
�T

J T LT K T
p e

=− sT Kds+���eT Kp ė−
�

���LTξd +Λe
�

K T
p e+������q̇T J T LT K T

p e

=− sT Kds− eT KpΛe.

(40)

Applying Lyapunov’s theorem for a time-variant system, the system in variables (e, s) has a
time-variant positive-definite candidate, W (e, s, t) that is limited by K∞ function as shown
in [60] and its derivative Ẇ (e, s) is time-invariant and negative-definite. Therefore, we
can deduce the condition of asymptotic stability.

Proposition 3 (Adaptive control asymptotic stability). Let π̂ be an estimate of the real
inertial parameters π and define π̃(t) = π − π̂(t) as the parameters’s estimation error.
Moreover, let the estimated dynamical matrices be (B̂, Ĉ , Ĝ), obtained by computing the
Euler-Lagrange equation using π̂ instead of the real parameters π. The control action (37)

τ= B̂q̈r + Ĉ q̇r + Ĝ + Kds+ J T Kp LT e. (41)

and the parameter update law

˙̂π= uπ ≜ Γ−1Y T
r (q, q̇, q̇r , q̈r)s. (42)

where Γ is a positive-definite gain matrix and Yr(q, q̇, q̇r , q̈r) is defined as (2), , lead to
asymptotic stability of the closed-loop system.

Proof. Choosing (e, s, π̃) as state-space coordinates, a new candidate Lyapunov function
can be defined as

Wπ(e, s, π̃, t) =W (e, s, t) +
1
2
π̃T Γ π̃. (43)

Computing the derivative, as in (40), we have

Ẇπ = eT Kp ė+ sT (Bq̈r + Cq̇r + G −τ) + π̃T Γ ˙̃π. (44)

where, since real parameters are fixed in time, ˙̃π= −uπ. From (2), the system dynamics
is linear in the dynamic parameters, and the control (41) can be rewritten in

τ= τ∗ − Yrπ̃. (45)

where τ∗ is the control action (37). Substituting (45) into (44), it becomes

Ẇπ = Ẇ = −sT Kds− eT KpΛe. (46)

Since exists U1, U2, U3 that holds

U1(e, s, π̃)≤Wπ(e, s, π̃, t)≤ U2(e, s, π̃),

Ẇπ(e, s)≤U3(e, s),
(47)

Using Theorem 8.4 from [61], it holds Ẇπ→ 0. From this and (46), it is

lim
t→∞

e(t) = 0, lim
t→∞

ė(t) = 0.

11

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Plant

Inverse Kinematics

Control

AdaptiveADAPTIVE BACKSTEPPING CONTROL

Figure 1: Overall scheme of the Adaptive Backstepping Control. The desired Cartesian
trajectory serves as the input to the Inverse Kinematics block, which generates new joint
references and new coordinates. These outputs are utilized by the Adaptive block for updating
inertial parameters and by the Control block to ensure asymptotic stability. The Plant block
completes the loop. All matrices are obtainable using the library proposed in this section.

Variable Value Ref.
τ B̂q̈r + Ĉ q̇r + Ĝ + Kds+ J T Kp LT e (41)

uπ Γ−1Y T
r (q, q̇, q̇r , q̈r)s (42)

q̇r J† L−1
�

LTξd +Λe
�

(34)
s q̇r − q̇

e
�

ep
eo

�

=
�

pd − p
r sinθ

�

(30),(23)

Table 2: Overall summary of the control law terms.

For the sake of clarity, we briefly report in Table 2 all the key components of the
proposed control law while in Figure 1 is depicted an overall block diagram representing
the control law.

Remark 1. The control law (41) is similar to the one from [120], as it only differs for
the term J T LT K T

p e, which introduces a term proportional to the tracking error. We also
explicitly include the inverse kinematic solution in the overall closed loop. The advantage of
this inclusion is that it ensures the asymptotic stability of end-effector tracking, as opposed
to the case when the adaptive controller tracks the solution in the joint space provided by
a separate external inverse kinematic solver. In this sense, it is possible to view adaptive
backstepping as a slight generalization of classical adaptive control techniques mainly used in
literature.

Remark 2. In the case that not all parameters have uncertainties, it is possible to split the
equation (78) into known (Ykπk) and unknown (Yuπu) parts, and reduce the number of
symbolic parameters. However, the resulting equation is no longer linear in the unknown
parameters πu. A possible solution is adding 1 to the new parameters representing the known
dynamics, i.e.,

τ= Ykπd k + Yuπu =
�

Ykπd k Yu

�

�

1
πd u

�

(48)

This method is used in the library to have symbolic selectivity and gain performances when a

12

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

parameter is perfectly known.

2.2 Software package description

Configuration

DH table

Inertial

Robot

model

arguments

create_function()

Kinematics

compute_chain(Robot)

compute_Jacobian(Robo

Dynamics

compute_M (Robot)

compute_C (Robot)

compute_G (Robot)

Regressor

compute_Yr (Robot)

compute_regM (Robot)

compute_regC (Robot)

compute_regG (Robot)

CODE GENERATION

Compute Functions

Robot

model

arguments

create_function()

user-defines Functions

...

C++
Python

Figure 2: Simplified UML diagram of the framework. The main program takes a configuration
file as input, creates the robot, and fills it with the computing functions. Then the code is
generated on a C++ library.

In this section, we briefly describe the library. At the actual state, the library includes,
among all the classical terms for a serial manipulator: forward kinematics, Jacobians,
dynamical matrices, the dynamic regressor, and the regressor of each part of the dynamic
equation (M(q)q̈r , C(q, q̇)q̇r , G(q)). The framework exhibits a continuous commitment to
evolution, with ongoing updates that introduce additional functionalities. It is important
to say that adding features that have to be in the generated C++ library is very easy. The
user has to create a function that adds the desired features to the robot, and then the code
generation and the Python bindings are automatic. The software package is open-source
and freely available1. For a detailed explanation regarding the usage of this library, we
refer the interested reader to the documentation inside the repository.

The framework offers a command-line utility designed for the creation of a customized
C++ library tailored to a specific robotic platform. To generate the library files for the
custom robot, the package requires a configuration file (YAML) housing the D-H table and
an initial estimate of inertia parameters. The only action required by the user is to execute
the command:

./thunder gen <path>/<robot>.yaml

where <path> is the relative path from the thunder binary to the folder containing the
.yaml configuration file, and <robot> is the robot name. The name will be used to create
library files. Upon execution of this command, the framework generates the specified
library within the folder generatedFiles. These files can be included in the control system
of the specific robot and can be used to obtain the desired quantities. Moreover, it created
automatically the Python bindings of the generated C++ library, allowing versatility and
efficiency at the same time.

The proposed library has two possible use cases: a high-level and a low-level one. The
high-level one allows a non-specialized user to build a C++ system model that can be
directly incorporated into the control loop. This implementation is the easiest and the
fastest to use, due to the efficiency of the compiled C++ code. The low-level use case
allows an experienced user to modify the internal model, written in CasADi, to extend

1https://github.com/CentroEPiaggio/thunder_dynamics.git

13

https://github.com/CentroEPiaggio/thunder_dynamics.git

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

the functionalities of the library or to solve user-defined problems. All the parameters
that represent the robot can be expressed in a symbolic or numerical way. This permits
building the robot structure and choosing which parameters have to be inputs or not at
the high-level interface. Furthermore, the CasADi base allows future implementation
of control optimization and planning in a straightforward manner. Finally, the entire
framework is developed inside a Docker Image to improve usability [16].

2.3 Experimental Validation

In this section, we provide both the theoretical and the technical validation of this frame-
work. We start evaluating the computational time required by our software package to
handle kinematic structures with increasing complexities. Then, we apply this library to
design the task-space adaptive backstepping controller described in the previous section
for a Franka Emika Panda, a 7-DoF manipulator. Furthermore, we test it both in simulation
and in real-world scenarios.

2.3.1 Execution time comparison

To evaluate the advantages of the new algorithm we focus on the execution time as a
comparison parameter. Figure 3 shows the comparisons of the time needed to compute
the Coriolis matrix and the regressor for different DoF serial manipulators. To perform
this test we used a PC with an 11th Gen Intel®CoreTM i7-1165G7. The main differences
between algorithms are how to compute the Coriolis terms: the "Cstd " uses the classic
approach with Christoffel symbols, "C" uses the algorithm proposed in this section, the
last three (Cbuil t , Cstd_buil t , Ybuil t) are obtained from C-code generation function, made
available by CasADi, of the first two algorithms and of the complete regressor matrix Yr .

As can be seen in Figure 3, the proposed approach to compute the Coriolis matrix
shows computational times up to one order of magnitude below the classical method. This
result leads to obtain a computational time for the whole regressor matrix Yr lower than
the one needed for Cstd with the increasing of the number of DoF involved. In this test, we
show also that the built code is faster by more than two orders of magnitude with respect
to the direct use of CasADi symbols. Another important result is that the required time to
evaluate these quantities meets the usual computational constraints in the implementation
of torque control in robotic manipulators. In fact, in Figure 3, it can be seen that the
evaluation time of the regressor always remains below 1 ms, which is coherent with the
control loop frequency required in standard manipulators (generally around 1 kHz).

Regarding the time needed to create the symbolic robot and compute the standard
quantities, and the time used to create the C++ library, they are resumed in Table 3. It is
important to note that, despite it is easy to create the C++ library for a high DoF robot,
problems can arise at compilation time because files are very large. In this case, for 15
and 30 DoF the generated .cpp files have sizes of 200 MB and 1.7 GB respectively.

DoF 3 5 7 9 15 30
Robot creation [ms] 23 81 326 954 5582 18454
Library creation [s] 0.6 0.8 1.1 2.3 12.1 155.1

Table 3: Time comparison for the robot and library creation

2.3.2 Adaptive control implementation

To test the proposed approach, we exploit the developed library to design a ROS package for
adaptive control. This software package is developed for Franka Emika Panda manipulator

14

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

3 4 5 6 7 8 9
DoF

10-4

10-2

100

102

ti
m

e
[m

s]

Computation time comparison

C
C

std

C
built

C
std_built

Y
built

Figure 3: Execution time comparison of different algorithms. The proposed algorithm is
generally faster and permits the real-time adaptive control of a 7 DoF manipulator

linki ai αi di θi

1 0 0 0.3330 0
2 0 -π/2 0 0
3 0 π/2 0.3160 0
4 0.0825 π/2 0 0
5 -0.0825 -π/2 0.384 0
6 0 π/2 0 0
7 0.088 π/2 0.107 0

Table 4: Denavit-Hartenberg Table of Franka Emika Panda.

and it is available online in the adaptive branch of the repository panda_controllers2. The
generated code of the new algorithm proposed in this work satisfies the strict constraints
of real-time scheduling that require the control loop to be 1Khz.

To use the direct formulation of the Slotine-Li regressor, we have to describe the robot
in the Denavit-Hartenberg (D-H) parametrization. Figure 4 shows how frames of each link
are chosen, in agreement with D-H rules, and the related D-H table is provided in Table 4.
Dimensions of the robot and parameters are provided by Franka Control Interface3.

The validation procedure can be divided into three phases. The first step is the
implementation and testing of the control algorithm in simulation. This part is fundamental
not only to perform a preliminary evaluation of the performance of the controller but also
to select the best set of gains to guarantee the right motion behavior of the robotic arm.
This phase is carried out by exploiting the robot model provided by Franka in the Gazebo
simulator [68]. After that, we moved to perform tests on the real robot. In the second
phase, we add errors in the dynamic model of the real arm and we evaluate the capacity
of the adaptive control law to manage this uncertainty with respect to the non-adaptive
version of the same control law. In the third and last phase, we mount an external end-

2https://github.com/CentroEPiaggio/panda_controllers.git
3https://frankaemika.github.io/docs/control_parameters.html

15

https://github.com/CentroEPiaggio/panda_controllers.git
https://frankaemika.github.io/docs/control_parameters.html

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 4: Frames obtained with Denavit-Hartenberg parametrization.

traj A [m] B [m] C [m] a [Hz] b [Hz] c [Hz]
3D 0.10 0.15 0.10 0.20 0.10 0.40

Table 5: Lissajous trajectories parameter

effector to perform similar trials also in case there is a real error in the inertial model of
the manipulator to test both the capability to reject the disturbance and to estimate the
new inertial parameters.

In all the steps mentioned above, to get meaningful results in terms of parameter
estimation, the reference trajectories were chosen "rich enough" to make errors observable
in the dynamic model of the manipulator. In the literature, different works try to address the
problem of generating optimal movement to maximize the information gathered [85,105].
However, given that the focus of the work is the adaptive controller, we exploited Lissajous,
a family of parametric curves defined as:

pd(t) =

Asin(2πa(t − t0))
B cos(2πb(t − t0))
C sin(2πc(t − t0))

+

x0
y0
z0

For these tests, we used the curve depicted in Figure 5, which can be obtained with the
coefficients reported in Table 5.

16

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 5: Lissajous Trajectory used for experimental validation with the manipulator (fx = 0.2
Hz, f y = 0.1 Hz, fz = 0.4 Hz).

10 20 30 40 50 60
time [s]

0

0.2

0.4

0.6

0.8
norm-2 error w.r.t. K

d

Figure 6: Error norm with respect to Kd (simulation test) (Real values: Mass = 0.736[kg],
CoMx = 0.0105[m], CoMy = −0.0043[m], CoMz = −0.0454[m]): Kd1 = [5,5,5,5,3,3,1]
(Blue), Kd2 = [10,10, 10,10, 5,5, 2] (Red), Kd3 = [30,30, 30,30, 15,15, 5] (Yellow).

For the controller setup, we use matrix gains as follows:

Λ=

λ1

λ2
. . .

λ6

∈ R6×6, Kd =

kd1

kd2
. . .

kd7

∈ R7×7 (49)

Γ =

Γl1
. . .

Γl7

 ∈ R70×70, Γli
= ri

rm
rmCoMx

. . .
rI6

∈ R10×10 (50)

Simulation tests: The first step of validation is performed in a simulated environment.
During this phase, we tested how the performances of the controller change with respect
to the values assigned to Kd and Γ . To reproduce the case where there are uncertainties
in the inertial parameters, we introduced an error in the internal dynamic model of the
controller. The real parameters and the internal ones are (m=0.73kg, CoM=(1.05, −0.43,
−4.52)cm) and (m=2.5kg, CoM=(20, 20, 20)cm) respectively for mass and center of
mass, while the inertial tensor terms are set to zero.

17

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

0 20 40 60
time [s]

0.5

1

1.5

2

2.5
Mass M [kg]

0 20 40 60
time [s]

0

0.05

0.1

0.15

0.2
M CoM

x
 [m*kg]

0 20 40 60
time [s]

0

0.05

0.1

0.15

0.2

M CoM
y
 [m*kg]

0 20 40 60
time [s]

0

0.05

0.1

0.15

0.2
M CoM

z
 [m*kg]

Figure 7: Parameters updating with respect to Kd (simulation test) (Real values: Mass =
0.736[kg], CoMx = 0.0105[m], CoMy = −0.0043[m], CoMz = −0.0454[m]): Kd1 =
[5,5,5,5,3,3,1] (Blue), Kd2 = [10,10,10,10,5,5,2] (Red), Kd3 = [30,30,30,30,15,15,5]
(Yellow).

First, we start with the discussion on the choice of the gain Kd . As it can be observed in
Figure 6, while the steady-state error and the settling time are similar with different gains,
the main effect is related to its initial amplitude. This happens because higher gain leads
to a controlled system which is less sensible to inertial parameter errors. Moving instead to
inertial parameter convergence (Figure 7), it can be observed that lower values of Kd lead
to faster convergence of them. The reason behind this behavior is that the parameter’s
update rate is strictly connected with the tracking error and, if the error decreases too
quickly, the update law slows down sooner and requires more time to converge. In those
cases, the selection of a more exciting trajectory could help in achieving the convergence
in a lower time.

After that, we move to the discussion on the effect of Γ on the system’s behavior. In
Figure 8 the tracking error convergence achieved with different values is depicted. As it
can be observed, higher values of Γ lead to slower tracking and parameter convergence.
This is because the update law is proportional to Γ−1 and the controlled system needs more
time to adapt the inertial model to the real system. This slower convergence is also shown
in Figure 9. However, it is evident from the plot that if we decrease Γ too much, undesired
oscillatory behavior in the parameter estimation appears, leading to the conclusion that it
is not convenient to decrease Γ arbitrarily.

Real manipulator tests: After the simulation campaign, we move on to the implementa-
tion of the controller on the real manipulator. The first step is to test the improvements
provided by an adaptive controller. In fact, as said previously, torque-based control could
be very sensitive in terms of tracking errors in the presence of inertial parameter uncertain-
ties. For this reason, we implemented on the manipulator two versions of the Backstepping
control, the classical version and the adaptive one, maintaining the same set of gains to
check the improvements provided by the adaptive law. Figure 10 represents the tracking

18

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

0 10 20 30 40 50 60
time [s]

0

0.2

0.4

0.6

norm-2 error w.r.t. R

Figure 8: Norm-2 of error with respect to Γ (laboratory test): r7 = 100 (Yellow), r7 = 10
(Red), r7 = 1 (Blue).

0 20 40 60
time [s]

0.5

1

1.5

2

2.5
Mass M [kg]

0 20 40 60
time [s]

0

0.05

0.1

0.15

0.2
M CoM

x
 [m*kg]

0 20 40 60
time [s]

0

0.1

0.2

0.3
M CoM

y
 [m*kg]

0 20 40 60time [s]

0

0.1

0.2

M CoM
z
 [m*kg]

Figure 9: Parameters updating with respect to R (laboratory test): r7 = 100 (Yellow), r7 = 10
(Red), r7 = 1 (Blue).

19

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 10: Norm-2 of error (laboratory test): no-adaptive controller (Red), adaptive controller
(Blue).

Figure 11: Setup used for test with real manipulator composed by a Franka Emika Panda with
Softhand mounted as end-effector.

error of the two controllers under the same conditions, showing how the adaptive law
permits handling the dynamic uncertainties in the model of the manipulator.

As the last experiments, a Softhand [21] was fixed to the robot’s flange, and adaptive
control law was used only on link 7. In this case, the inertial parameters of the Softhand
were not considered in the model. This test aims to verify the correct tracking with the
adaptive controller if an unidentified object is fixed on the end-effector. Figures 12 and
13 show the tracking error and the inertial parameter estimation respectively, proving
that the adaptive controller is effective in compensating for the disturbance related to the
unknown inertial parameters of the end-effector. The comparison between the true inertial
parameters of link 7 with SoftHand and the estimated ones are reported in Table 6.

Mass [kg] CoMx [m] CoMy [m] CoMz [m]
True 1.5655 0.06170 -0.0004 0.0009

Estimate 1.7542 0.0414 -0.0039 -0.0191
Initial 0.736 0.014 -0.004 -0.045

Table 6: Results of the estimation of Softhand + Link 7 parameters in {S7} through adaptive
control. "True" indicates contains the real values, "Estimate" indicates the final values of the
parameters, while "Initial" is the set of initial values of the parameters. The temporal evolution
of the estimates can be seen in Figure 13.

20

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 12: Norm-2 of error with Softhand on a 3D Lissajous trajectory.

Figure 13: Temporal behaviour of the parameters updating with Softhand on a 3D Lissajous
trajectory.

21

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

3 A Novel Formulation for Adaptive Computed Torque Control En-
abling Low Feedback Gains in Highly Dynamical Tasks

These days, robotic manipulators are becoming more and more common in industries and
everyday life, including manufacturing, logistics, and healthcare [45,65,141]. The ability
of this kind of system to manage large loads and execute highly dynamic movements with
a very high degree of precision is what drives this trend.

To move robotics manipulators into daily living situations, one has to guarantee a safe
physical interaction with the environment and humans. For this purpose, most of the
control algorithms used in these situations are based on active compliant control [111,121].
This technique facilitates the assignment of a desired compliant behavior to the manipulator
through the design of an appropriate control law. This enables the manipulator to interact
with the environment without the generation of excessive contact forces. Several works
employ this strategy [1,121]. However, in these controllers, errors in the dynamic model
of the manipulator can result in tracking errors on the desired motion.

To overcome this limitation, adaptive control laws or model reference adaptive control
(MRAC) laws are developed, see e.g.: [140]. One of the traditional control algorithms in the
literature that reaches asymptotic stability under parameter uncertainties is the Adaptive
Computed Torque control [24, 25, 28, 113], which consists in a feedback linearization
with the joint torque as the input of the system. However, for parameter updates, the
law incorporates the estimated mass matrix inverse and the joint accelerations, which
may lead to numerical issues such as the ill-conditioning of the estimated mass matrix
or the requirement for double derivation of the joint position measurements to obtain
acceleration. Furthermore, the solution of the Lyapunov equation for the linearized model
of the closed-loop system is also necessary. One possibility is to limit the variation of
the parameters in a meaningful physical region [79]. An alternative approach, largely
used in the literature, is the one proposed in [114,118,119], wherein authors introduce
a new reference combining velocity and position errors. This leads to a distinct law for
parameter updates that does not necessitate the aforementioned quantities. However, the
control structure does not permit a straightforward manner of setting the desired stiffness
of the manipulator. Indeed, imposing fixed stiffness gains in this type of control results
in using time-variant gains and the inverse of the estimated mass matrix (leading to the
same numerical problems of Adaptive Computed Torque control).

To address this challenge, we present a novel adaptive law for the Computed Torque
algorithm that eliminates the need for the aforementioned information. We formulate
the control law both in the joint and in the Cartesian domains, to encompass all the
possible reference trajectory types. Subsequently, we validate the framework through
simulations and experiments conducted on a seven-degree-of-freedom robot, executing
various tests. Finally, we evaluate the framework’s performance in a throwing task. We
selected this task for two reasons: 1) the highly dynamic nature of this action amplifies
the trajectory tracking error associated with uncertainties in inertial parameters, and 2)
the short duration of the movement necessitates the controller to avoid relying solely on
feedback action and instead possess a highly precise feedforward component. A crucial
aspect of these types of tasks is the friction. This impedes precise tracking and generates
errors in speed. Therefore, we have included this matter in the discussion. The results
presented in this section are reported in the manuscript "A Novel Formulation for Adaptive
Computed Torque Control Enabling Low Feedback Gains in Highly Dynamical Tasks" published
in IEEE Access [116].

22

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

3.1 Adaptive control: background

In this section, we provide a comprehensive analysis of adaptive control for robotic
manipulators, specifically addressing the primary limitations of conventional Adaptive
Computed Torque (ACT) control algorithms and the existing solutions within the robotics
domain.

Let us consider the dynamic model of a rigid robot manipulator described by Lagrange
equation (see [54]):

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ . (51)

As pointed out in [55], (51) is linear in the inertia parameters πd ∈ Rpd (link masses, first
and second moments of inertia), and can be hence rewritten as

τ= Yd(q, q̇, q̈)πd , (52)

where Yd ∈ Rn×pd is the regressor matrix and pd is the number of parameters.
Let us define π̂d ∈ Rpd as an estimate of πd , and let

�

M̂(·), Ĉ(·), Ĝ(·)
�

be the dynamic
matrices evaluated in π̂d . Let us define qd(t) ∈ Rn×R as the desired trajectory. Finally, let
then π̃d ≜ πd − π̂d be the parameters’ error and e(t) = qd(t)− q(t) be the tracking error.

Classical Computed Torque control [55] offers a linearization law for nonlinear systems.
However, it necessitates the knowledge of the dynamic model to generate both feed-forward
and feedback torque actions.

τ= M̂(q)q̈d + Ĉ(q, q̇)q̇+ Ĝ(q) + kv ė+ kpe, (53)

where kv , kp are positive definite gain matrices. Substituting (??) in (51), the error
dynamics becomes

M̂(q)ë+ kv ė+ kpe = M̃(q)q̈+ C̃(q, q̇)q̇+ G̃(q). (54)

Assuming perfect knowledge of the dynamic model, i.e., π̂d ≡ πd , the error follows a
mass-spring-damper dynamics with linear stiffness and damping, i.e.,

M(q)ë+ kv ė+ kpe = 0, (55)

with guarantees of asymptotic stability due to positive definiteness of M(q), kv , kp. In case
of parameters uncertainties, i.e., if π̂d ̸= πd , (54) can be written as

ë+ M̂−1(q)
�

kv ė+ kpe
�

= M̂−1(q)Yd(q, q̇, q̈)π̃d .

A possible solution, exploited in [24, 81, 86, 113], is to consider a new state x =
(e⊤, ė⊤)⊤, which represents the tracking error and its derivative, and rewrite (51) in
state-space form as follows

¨

ẋ = Ax + BM̂−1(q)Yd(q, q̇, q̈)π̃d
˙̃πd = − ˙̂πd

where A∈ R2n×2n, B ∈ R2n×2n are the dynamic and input matrices of a minimal state space
realization of the error system. By choosing the parameters’ update law as

˙̂πd = R−1Y⊤d (q, q̇, q̈)M̂−⊤(q)B⊤P x (56)

where R ∈ Rpd×pd is a gain matrix and P ∈ Rn×n is the solution of the Lyapunov equation,
it is possible to show the asymptotic stability of the tracking error (we refer the interested
reader to [24] for the theoretical proof). With this law, it is possible to assign the desired

23

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

stiffness kp and damping kv to the manipulator (see (55)). Although the theoretical
foundation is robust, the practical implementation may encounter distinct challenges.
Notably, the parameter update law necessitates the inversion of the estimated mass matrix
M̂ , which may be ill-conditioned. Additionally, the actual joint acceleration q̈ cannot be
directly measured and must be derived through differentiation. Furthermore, it requires
also the solution P of the Lyapunov equation, which is related to the controller gains and
must be computed each time they change.

In [119], Slotine and Li provide a control strategy that does not require all the above
quantities. This approach is also known as Adaptive Inertia-Related Control (AIRC) [55].
Let us indeed define q̇r ≜ q̇d +Λe as a new velocity reference, and s ≜ q̇r − q̇ as a joint
velocity error, the control law proposed in [119] is

τ= M̂(q)q̈r + Ĉ(q, q̇)q̇r + Ĝ(q) + kds. (57)

with update law of parameters

˙̂πd = R−1Y⊤r,d(q, q̇, q̇r , q̈r)s, (58)

where Yr,d(q, q̇, q̇r , q̈r) is known as the Slotine-Li regressor matrix, such that

Yr,d(q, q̇, q̇r , q̈r)πd = M(q)q̈r + C(q, q̇)q̇r + G(q) . (59)

It is important to note that the Slotine-Li regressor Yr,d(q, q̇, q̇r , q̈r) is a generalization of
the classical one Yd(q, q̇, q̈). Indeed, substituting (q̇r , q̈r) with (q̇, q̈) the two matrices are
identical.

Substituting (57) into (51), the error dynamics with the perfect model assumption is

Më+
�

MΛ+ C + kd

�

ė+
�

MΛ̇+ CΛ+ kdΛ
�

e = 0,

Notice that, by choosing the gains in (53) as follows

kv = M̂Λ+ Ĉ + kd ,

kp = M̂Λ̇+
�

Ĉ + kd

�

Λ,
(60)

the Computed Torque control law (53) acts exactly as (57). However, computing the
necessary gains Λ and kd to obtain the desired impedance kp and kv is not straightforward.
It requires the inertia matrix inverse and time-varying gains.

3.2 Novel adaptive Computed Torque control

We propose a novel formulation of the Adaptive Computed Torque control that does not
require the inverse of the estimated mass matrix, avoiding all the problems related to
the ill-conditioning of the matrix. We start with the definition of the dynamic system
representing the manipulator. Then we report the formulation and the proof of the novel
control law for both the joint and the Cartesian spaces. In the end, we discuss the most
critical parts from an implementation point of view and how to deal with them.

3.2.1 Model Definition

The primary objective of this section is to elucidate the system model employed throughout
this work, along with the underlying assumptions. Starting from the classical Lagrangian
model (51) [54], to address highly dynamic tasks (e.g., the throwing of objects), a friction
term is incorporated, resulting in the following equation:

M(q)q̈+ C(q, q̇)q̇+ D(q̇) + G(q) = τ , (61)

24

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

where q(t), q̇(t), q̈(t) ∈ Rn are the joint positions, velocities, and accelerations, respectively,
and n is the number of joints. M ∈ Rn×n is the inertia matrix; C ∈ Rn×n is the Coriolis
matrix, while D(q̇) ∈ Rn×n represents the damping terms. Finally, τ ∈ Rn is the torque
applied to the motors.

Let the system (61) meets the classical bounding properties [55]:

1. 0< ||M(q)||<∞, and M(q) positive definite.

2. ||C(q, q̇)||< l1||q̇||, l1 <∞.

3. ||G(q)||<∞.

4. ||D(q̇)||< l2||q̇||, l2 <∞.

For joint friction, we assume that it can be modeled as one described in [18], i.e.,

D(q̇)i = di,1q̇i + di,2sgn(q̇i) , (62)

where i is the joint index, and di,1, di,2 are the viscous and Coulomb coefficients respectively.
We disregard stiction because the considered task exhibits dynamic behavior. Moreover,
for continuity reasons, the sign function is implemented as

sgn(q̇i) =
q̇i

|q̇i |+δ
,

with δ > 0.
It is worth noting that the friction term is linear in a parameter vector π f ∈ R2n, i.e.,

D(q̇) = Y f π f with Y f ∈ Rn×2n the friction regressor matrix. As a consequence, the system
dynamics can be easily rewritten with a general regressor matrix Y by writing

τ= [Yd , Y f]
�

πd
π f

�

≜ Yπ,

The same is valid for the Slotine-Li regressor matrix where Yr ≜ [Yr,d , Yr, f].
Finally, let us define the desired trajectory qd(t) as in Sec. 3.1, and let us assume the

following assumptions:

1. qd is of class C 2.

2. ||q(3)d ||<∞.

3. Perfect knowledge of the kinematic model.

3.2.2 Control law definition

In this section, we present two control laws, one formulated in joint space and the other
in Cartesian space, that address the limitations of Adaptive Computed Torque as analyzed
in Section 3.1. Both control laws attain asymptotic stability, including a straightforward
compensation of the friction terms.

Joint-space control law: The initial control law introduced is the one defined in the joint
domain. In this case, the error is defined as e(t) = qd(t)− q(t). As previously mentioned,
the proposed control law does not necessitate the computation of the mass matrix inverse
or the solution of the Lyapunov equation.

25

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Theorem 1. Consider the system (61), under properties and assumptions reported above.
The control law

τ= M̂(q)q̈d + Ĉ(q, q̇)q̇d + D̂(q̇) + Ĝ(q) + kv ė+ kpe, (63)

with kp ∈ Rn×n, kv ∈ Rn×n positive gains, and the parameters update law

uπ = Rp

�

Y⊤r ė+ γY⊤Rt(τ− Y π̂)
�

, (64)

with Rp ∈ Rp×p, Rt ∈ Rn×n positive definite matrices and γ > 0, leads to asymptotic conver-
gence of the tracking error.

Proof. To improve the readability of the proof, we have eliminated the matrix dependencies.
By applying (63) into (61), the error model is

Më+
�

kv + C
�

ė+ kpe = M̃ q̈d + C̃ q̇d + D̃+ G̃ = Yrπ̃. (65)

Let us now consider the Lyapunov candidate:

V =
1
2

e⊤kpe+
1
2

ė⊤Mė+
1
2
π̃⊤R−1

p π̃. (66)

Since kp, Rt and M are positive definite matrices, the derivative of the Lyapunov candidate
is

V̇ = −ė⊤kv ė+
1
2

ė⊤(Ṁ − 2C)ė+ ė⊤Yrπ̃− π̃⊤R−1
p uπ.

Applying the adaptive law (64) and considering the Coriolis matrix written with the
Christoffel symbols, the matrix (Ṁ − 2C) is skew-symmetric and it results in

V̇ = −ė⊤kv ė− γπ̃⊤Y⊤Rt Y π̃. (67)

The Lyapunov derivative is negative semi-definite, and hence V is bounded. At this juncture,
we are unable to definitively ascertain the asymptotic stability of the system. However,
we require Barbalat’s Lemma, which requires that V̈ must be bounded. Deriving (67), we
obtain

V̈ = −2ė⊤kv ë− γπ̃⊤Y⊤Rt

�

Ẏ π̃− Yuπ
�

,

where the term Ẏ π̃ is

Ẏ π̃= τ̇−
�

M̂q(3) +
� ˆ̇M + Ĉ

�

q̈+ ˆ̇Cq̇+ ˆ̇D+ ˆ̇G
�

,

while
q(3) = M−1

�

τ̇−
�

Ṁ − C
�

q̈− Ċ q̇− Ḋ− Ġ
�

,

which is the third derivative of q. Moreover,

q̈ = M−1
�

τ− Cq̇− D− G
�

<∞.

All the quantities in V̈ are bounded because τ and τ̇ are also bounded. By Barbalat’s
Lemma, it is possible to conclude that V̇ → 0, implying that also ė = 0, ë = 0 and Y π̃= 0.
As a consequence, the error model (65) becomes

kpe = M̃ q̈d + C̃ q̇d + D̃+ G̃ = Yrπ̃.

Taking in consideration that q̈d = ë+ q̈ and q̇d = ė+ q̇, the error model reduces to

kpe = Y π̃= 0 ,

which concludes the demonstration, showing the asymptotic stability of the closed-loop
system.

26

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Remark 3. The adaptive law (64) and (56) require the joint acceleration values. Despite
it is possible to numerically filter the signals, Section 3.2.3 shows a method to obtain the
regressor with the only use of velocities.

Remark 4. The proposed MACT architecture ((63),(64)) differs from the ACT laws ((53),(56))
in the parameter adaptation. Unlike the Adaptive Computed Torque laws, the proposed control
architecture does not invert the inertia matrix M̂−1 and does not need the solution of the
Lyapunov equation P. Furthermore, it differs from the Adaptive Inertia-Related control laws
((57),(58)) since, in the proposed laws, there is no influence of the position error in the
velocity reference.

Task-space control: Despite the simplest way to control a manipulator is to generate
motion in the joint space, in terms of task planning, the most straightforward approach is
to compute the reference trajectories in the Cartesian domain. Nowadays, it is common to
have manipulators with more than six degrees of freedom. In such cases, the controller
must possess the capability to manage the redundancy inherent in the system. Considering
the system (61), defining (·)+ as the right pseudo-inverse operator, i.e., A+ ≜ A⊤(AA⊤)−1,
the system (61) can be written in the task space by substituting q̇ = J+ξ̇ + Nȧ, and
q̈ = J+

�

ξ̈+ J̇ q̇
�

+ Nä. The variables ȧ, ä are the joint velocity and acceleration that do
not affect the motion of the end-effector, given that they are projected in the null of
the Cartesian space by the null projector N = I − J+J . Let us incorporate the following
assumption

• ∃ J+(q) ∀ q(t), t ∈ [t0, t f] .

This assumption implies that the Jacobian is non-singular along the trajectory.

Theorem 2. Given the system (61), under the properties and the assumptions reported above,
define a desired trajectory in Cartesian space, denoted as ξd(t) ∈ SE(3)×R. Subsequently,
define the end-effector error as eξ = ξd − ξ. By using the control law

τ= M̂α+ Ĉβ + D̂+ Ĝ + kv(β − q̇) + J⊤kξpeξ, (68)

where α ≜ J+
�

ξ̈d − J̇ q̇
�

+ Näd , β ≜ J+ξ̇d + Nȧd are desired velocity and acceleration
respectively, and kξp ∈ R

6×6 is the gain matrix for the error in the Cartesian space, in
conjunction with the parameters update law

uπ = Rp

�

Y⊤r (q, q̇,β ,α)
�

β − q̇
�

+ γY⊤(·)Rt

�

τ− Y (·)π̂
�

�

, (69)

with Rp ∈ Rp×p, Rt ∈ Rn×n positive definite matrices and γ > 0, the closed loop system is
stable and the end-effector follows the desired trajectory, i.e.,

lim
t→∞
||eξ||= 0.

Proof. In the demonstration, we eliminate the matrix dependencies that are superfluous.
Defining ėq, ëq the joint velocity and acceleration errors, i.e.,

ëq =J+
�

ëξ − J̇ ėq

�

+ N ëN ,

ėq =J+ ėξ + N ėN ,

and applying (68) in (61), the error dynamics becomes

ëq = M−1
�

Yr(q, q̇,β ,α)π̃−
�

C + kv

�

ėq − J⊤kξpeξ
�

. (70)

27

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Taking the Lyapunov candidate

Vξ =
1
2

e⊤ξ kξpeξ +
1
2

ė⊤q Mėq +
1
2
π̃⊤R−1

p π̃, (71)

its derivative is
V̇ξ = −ė⊤q k⊤v ėq − γπ̃⊤Y⊤(·)Rt Y (·)π̃.

that is negative semi-definite. By applying Barbalat’s lemma we can show, similarly to
Theorem 1, that ėξ = 0, ëξ = 0, Y (·)π̃= 0. By substituting in (70), it results in

J⊤kξpeξ = 0. (72)

Since the kernel of J⊤ is composed of structural wrenches, and the robot is not in singularity
by assumptions, the equation (72) implies kξpeξ = 0, concluding the demonstration.

3.2.3 Implementation consideration

In addition to the theoretical considerations presented thus far, several implementation-
related aspects merit further discussion. The following sections provide a brief overview
of these elements.

Choosing control gain matrices: With regard to control action, the gains kp, kv , kξp can
be selected to achieve the desired behavior of the closed-loop system. High-gain matrices
result in a stiff behavior and robustness. Conversely, if interaction with the environment
or cooperation is required, low stiffness facilitates a safe attitude. On the other hand, the
choice of the adaptive gain matrices depends on the choice of control parameters. There
are three quantities on the control law that determine the adaptive behavior: γ, Rp, Rt .
Intuitively, the parameters update law is divided into two components. The first one can
be viewed as the classical direct law, which guarantees tracking convergence and stability.
The second one is more general and permits parameter convergence regardless of error
convergence. However, the latter suffers from delays or noise due to the acceleration
estimate. The union of the two instead ensures the asymptotic stability of the overall
system. Finally, the gain γ balances the two parts. We propose to appropriately select the
adaptive gains in proportion to the magnitudes of the model parameters, so that

R−1
p ∗ π̂(t0)≈ η ∗ I

with η being a scalar gain. In this manner, the values are updated with quantities that
are proportional to their magnitude. For the purpose of Rt , it regulates the update by the
torques applied to the joints. A suitable choice is to set this gain to the anticipated torque
on the actuators.

Parameters observability: In the context of adaptive control, the observability of dy-
namic parameters presents a fundamental challenge. Starting from the classical represen-
tation of the dynamic of a rigid body (mass m, center of mass (cx , cy , cz), and moments of
inertia (Ix x , I y y , Izz , Ix y , Ixz , I yz), the most common choice to represent the dynamic of a
serial manipulator is the union of the dynamic parameters of each link of the kinematic
chain. However, it is well known that this set of dynamic parameters is not fully observable.
Several works have been conducted to identify minimum sets of parameters [43] and
define estimation procedures for complex kinematic chains [19].

The other main aspect related to the observability of the inertial parameter regards
the motion performed during the estimation procedure. The performed movement should

28

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

be rich enough to permit each parameter to have an effect on the manipulator dynamics.
This condition is called persistent excitation [118,119], and it is verified if exists l0, l1, l2
such that

∀ t < 0, l1 I ≤
∫ t+l0

t

Y⊤(r)Y (r)dr ≤ l2 I .

In the case of cyclic trajectories, it permits the controller to learn a set of parameters that
ensure tracking of that movement. The problem can also be addressed within the active
sensing control framework, as outlined in [84,105]. By optimally designing the reference
trajectory, a substantial amount of information about the unknown parameters can be
collected. This approach assumes the perfect knowledge of the kinematic information. In
reality, the regressor Y is nonlinearly dependent on these quantities, making it challenging
to quantify the impact of errors or uncertainties on performance. The literature contains
some works proposing solutions for kinematic uncertainties [82,133], but this falls outside
the scope of this manuscript.

Eliminating the Requirement for Accelerations in the Regressor Computation: The
regressor Y (q, q̇, q̈) used in (56), (64) needs precise kinematic information. While com-
mercial manipulators generally provide precise information about joint angle and velocity,
joint acceleration is not provided. The classical solution is to derive it numerically from
velocity measures, filtering them to avoid distortion due to measurement noise. However,
in this section, we also propose a possible solution to address this issue.

As noted in [118,123], it is possible to analytically obtain a filtered regressor that does
not depend on accelerations. Let us define the filtered torque y ∈ Rn as

y ≜ f
�

τ(t)
�

=

∫ t

0

φ(t − r)
�

Mq̈+ Cq̇+ D+ G
�

dr,

where φ is the impulsive response of a low-pass filter f . Then, it is possible to eliminate q̈
integrating by parts the first term

y =
�

φ(t − r)Mq̇
�t

0 −
∫ t

0

�d
�

φ(t − r)M
�

d t
q̇ +φ(t − r)

�

Cq̇+ D+ G
�

�

dr

Since real parameters are not affected by the filter, a regressor matrix W (q, q̇) ∈ Rn×n

exists for the filtered dynamics that do not depend on accelerations, i.e.,

y =W (q, q̇)π=

�

Wa(q, q̇)−
∫ t

0

Wb(q, q̇) dr

�

π,

where Wa, Wb are the regressors of the two parts inside and outside the integral. This
filtered regressor W (q, q̇) can be used in the adaptive law (64), (56) substituting terms
(τ, Y (q, q̇, q̈)) with (y, W (q, q̇)).

3.3 Validation

The entire validation covers both aspects of control in joint and Cartesian spaces, both in
simulations and experiments. The adaptive framework is developed on ROS Noetic and is
based on the library Thunder_dynamics1. The code for both simulations and experiments
is available at the repository panda_mact_controller2. All the tests are performed using
a Franka Emika Panda, a 7 degrees of freedom collaborative manipulator [51]. The
validation is composed of three parts:

1https://github.com/CentroEPiaggio/thunder_dynamics
2https://github.com/CentroEPiaggio/panda_mact_controller.git

29

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

5 10 15 20 25 30 35 40
[s]

0

0.5

1

1.5

2

||e
||

[r
ad

]

Figure 14: Simulations in joint-space. The MACT (blue) achieves a better error correction
than the non-adaptive CT (red), and a similar convergence of the AIRC (gray). In (yellow)
the classical ACT suffers from the inertia conditioning problem (Figure 15b).

1. simulation tests, where both controllers (joint-space and Cartesian space) are tested
introducing uncertainties across the entire kinematic chain;

2. real robot test, where both controllers are tested on the real hardware with an
unknown payload attached at the end-effector;

3. real dynamic task test, where we choose the throwing as example task for evaluating
the improvement that our control law could bring in the execution of these tasks
(Figure 25).

In all the tracking tests we compare our MACT control with the non-adaptive version (CT)
and with AIRC.

3.3.1 Simulations

Simulations are performed using the Franka manipulator model provided by the manu-
facturer within the Gazebo environment [69]. For the controllers, the initial parameter
estimation is set so that the error is approximately 15% relative to the actual robot param-
eters. Notice that parameter error is challenging to quantify, as each parameter exerts a
distinct impact on the error and should be analyzed independently. Gains are chosen low
(kp ≈ 30N/rad and kξp ≈ 30N/m) to have compliancy. In the AIRC the gains are chosen
empirically, following equations (60), to have similar equivalent stiffness and damping
w.r.t. the Computed Torque. It is noteworthy that gains not only encompass the potential
interaction with the environment but also are instrumental in mitigating uncertainties.
High gains facilitate rapid error correction, but they also result in substantial interaction
forces in the event of collisions. For this reason, we use low gains during the tests.

Joint-space simulations: The simulation entails executing a trajectory-tracking task on a
joint-space Lissajous curve while simultaneously monitoring joint errors. These trajectories
are cyclic and well-suited for dynamic pick-and-place tasks. The gains chosen for CT, ACT,
MACT controllers are

kp = diag(30,30, 30,30, 15,15, 3),

kv = diag(15,15, 15,15, 7.5,7.5, 1.5),
(73)

30

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

10 20 30 40
[s]

20

25

30
||K

||

Kp AIRC [Nm/rad]

KvAIRC [Nms/rad]

Kp MACT [Nm/rad]

KvMACT [Nms/rad]

(a) Equivalent gains of IRC.

0 10 20 30 40
[s]

10 2

10 4

10 6

lo
g(

m
ax

/
m

in
)

(b) Mass matrix condition number.

Figure 15: Problems of the existing controllers: AIRC has time-varying stiffness and damping
gains. ACT presents ill-conditioning of the Inertia matrix.

CT ACT AIRC MACT
RMSE [m] 0.3112 1.0727 0.1729 0.1371

Table 7: RMSE of the joint trajectory tracking obtained in simulation with four different control
laws: classical Computed Torque (CT), classical Adaptive Computed Torque (ACT), Adaptive
Inertia Related Control (AIRC) and our Modified Adaptive Computed Torque (MACT).

while the AIRC controller has

Λ= diag(2,2, 2,2, 1,1, 0.2),
kd = kv .

(74)

Figure 14 shows the tracking error, represented as the norm of the joint trajectory
error. From the plot, we can notice that our approach outperforms both the classical
adaptive and non-adaptive computed torque controllers and achieves similar results of the
AIRC. The Root Mean Square Error (RMSE) for each control law is reported in Table 7.
While for the non-adaptive controller (shown in red) the error is due to the not perfect
knowledge of the inertial parameters, for the classical adaptive computed torque control
(shown in yellow) the main problem is related to the ill-conditioned mass matrix. In fact,
we can observe that when the condition number grows up (Figure 15b) also the tracking
error diverges. Despite the AIRC control obtains very good tracking, the equivalent gains
(60) are time-variant and depend on the manipulator movement. Figure 15a plots these
equivalent gains and the fixed ones.

Cartesian-space simulations: In a similar vein to the joint-space scenario, the simulation
involves the tracking of a Lissajous curve in Cartesian space. We compare our Cartesian
controller with the adaptive inertia-related control. Since AIRC works in joint space, the
Cartesian trajectory is obtained by a second-order CLIK algorithm [115]. The controller
gains are

kξp = diag(30,30, 30,3, 3,3),

kv = diag(15,15, 15,15, 7.5,7.5, 1.5),
(75)

for CT and MACT controllers, while the AIRC has the same gains of the joint controller. We
show two different trajectories: a slow tridimensional movement defined by a Lissajous,
and a fast linear movement on the YZ plane. Figure 17 shows the error in position (Figure
17a) and orientation (Figure 17b). As observed, there is no significant difference in the

31

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 16: Slow Cartesian trajectory.

10 20 30 40 50 60
[s]

0

0.1

0.2

0.3

||e
||

[m
]

AIRC + CLIK
MACT
CT

(a) Position error.

0 20 40 60
[s]

0

0.2

0.4

0.6

||e
||

[r
ad

]

AIRC + CLIK
MACT
CT

(b) Orientation error.

Figure 17: Simulation error on the slow 3D Lissajous Cartesian trajectory. While the difference
is clear on the position plot, the orientation is less affected by uncertainties.

(a) Cartesian trajectory.

5 10 15 20
[s]

0

0.02

0.04

0.06

0.08

0.1

||e
||

[m
]

AIRC + CLIK
MACT
CT

(b) Cartesian error.

Figure 18: Simulation of fast Cartesian linear trajectory. The trajectories of MACT and AIRC
are similar, while CT has an increased error. The dashed line on Figure 18a is the desired path.

32

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

CT AIRC MACT
RMSE liss3D [m] 0.2545 0.0266 0.0505
RMSE linear [m] 0.0768 0.0313 0.0315

Table 8: RMSE of the Cartesian trajectory tracking obtained in simulation with three different
control laws: classical Computed Torque (CT), Adaptive Inertia Related Control (AIRC) and
our Modified Adaptive Computed Torque (MACT).

0 100 200 300
[s]

0.6

0.8

1

1.2

1.4

1.6

m
as

s
[k

g]

(a) Mass parameter.

0 100 200 300
[s]

-0.05

0

0.05

0.1

0.15

[m
kg

]

m l
x

m l
y

m l
z

(b) First moment parameters.

Figure 19: Principal parameters estimate behavior on the real robot. The manipulator follows
a joint-space reference while updating the internal model of the end-effector.

orientation plot, indicating that, with our chosen gains, the controller corrects orientation
by feedback. Therefore, we have chosen to display only the position error in the following
plots. In this slow trajectory, most of the error is due to incorrect gravity compensation.
For what concerns the fast linear trajectory, in Figure 18b the cartesian view and the errors
are plotted. Table 8 resumes the RMSE for the simulations. In this case, both gravity
compensation and dynamical quantities like inertia and friction were sources of errors.

3.3.2 Experiments

Moving beyond simulation, experimental validation is conducted using the physical Franka
Emika Panda robot. To introduce an error in the manipulator’s inertial model, we mounted
an additional gripper (a Pisa/IIT SoftHand [21]) at the end-effector. This decision was
made for two primary reasons: 1) the constructor incorporates the inertial parameters of
the gripper, thereby facilitating the evaluation of the framework’s capability for inertial
parameter estimation, and 2) the SoftHand’s center of mass is positioned farther from
the attachment flange of the robot compared to the conventional two-finger gripper
provided by Franka, resulting in a more pronounced impact of the model error on the
system’s performance. The SoftHand have a mass of 0.83 kg and the center-of-mass in
[0.102,−0.003, 0.037]T m w.r.t. its base. Also in this case the experiments are divided into
joint and Cartesian space. For what concerns acceleration measurements, it is a traditional
problem. Nowadays, with very high sampling rates and the high resolution of sensors, the
measurements obtained from numerical filters are more than acceptable. For this reason,
we used a numerical filter to take the derivative of the velocity and smooth the signal.

Joint-space experiments: The first experiment involves executing a joint Lissajous
trajectory while monitoring actual states. In this phase, we evaluate both the trajectory
tracking error and the estimation of the unknown end-effector’s inertial parameters of the
MACT controller. In this test, the gains are set to the same values as those used in the
simulation, as defined in (73).

33

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

(a) Robot movements.

0 100 200 300
[s]

0

0.05

0.1

0.15

0.2

0.25

||e
||

[r
ad

]

(b) Joint errors on estimating trajectory.

Figure 20: Robot movements and trajectory error on the estimated trajectory. During this
phase, our algorithm attempts to estimate the dynamic parameters of the unknown hand.

(a) Cartesian trajectory.

5 10 15 20 25 30
[s]

0

0.05

0.1

0.15
||e

||
[m

]
AIRC + CLIK
MACT
CT

(b) Position error.

Figure 21: Experimental error on the slow 3D Lissajous Cartesian trajectory. The tracking
error is comparable among the three controllers, primarily due to the high gains employed.
The dashed line represents the desired trajectory.

As shown in [42] and Section 3.2.3, the classical representation of the rigid body
inertia (the mass, the three coordinates of the center of mass, and the six components of
the central inertia tensor) for each link of the kinematic chain is not completely observable
from the measurements of the robot’s torque. To achieve convergence to the last link’s
inertial parameters, the adaptive controller’s update law was restricted to the last link of
the kinematic chain (where the unknown end-effector is attached). To obtain the reference
for the last link’s inertial parameters, we merge the Franka link 7 inertia with the one of
the SoftHand using the Huygens-Steiner theorem.

Figure 19 represents the estimation of the mass (19a) and the 3 first inertia moment
(19b) parameters (those are the ones that have a major impact on the dynamics) and
related real values showing the capability of our adaptive controller to correct the known
dynamic model to go toward the real parameters of the system. The error norms of the
final parameters are em = 0.0340 kg, eCOM = 0.0284 m·kg, eI = 0.0282 m2·kg for the mass,
first moment, and second moment of Inertia. In Figure 20a snapshots of the trajectory
executed by the Franka robot are merged to give an overall idea of the robot movements.
Figure 20b shows the joint errors on the same trajectory. The overall RMSE value of the
entire experiment is ||e||rms = 0.741rad. Since from time t = 100s the error is quite
repetitive, the RMSE value from this time is 0.655 rad.

34

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

(a) Cartesian trajectory.

5 10 15 20
[s]

0

0.02

0.04

0.06

0.08

0.1

||e
||

[m
]

AIRC + CLIK
MACT
CT

(b) Position error.

Figure 22: Fast Cartesian linear trajectory Experiment. The high dynamic movement generates
more error in the non-adaptive control. The dashed line is the desired path.

(a) Cartesian trajectory.

5 10 15 20 25 30
[s]

0

0.05

0.1

0.15

||e
||

[m
]

AIRC + CLIK
MACT
CT

(b) Position error.

Figure 23: Cartesian Circle Trajectory Experiment. This experiment demonstrates the effect of
decreased gains on the performance of a non-adaptive controller. As gains are reduced, the
error in the controller’s trajectory increases. The dashed line represents the desired path.

CT AIRC MACT
RMSE liss3D [m] 0.0537 0.0267 0.0350
RMSE linear [m] 0.0571 0.0347 0.0387
RMSE circle [m] 0.0862 0.0357 0.0491

Table 9: RMSE of the Cartesian trajectory tracking obtained with the actual hardware, em-
ploying three distinct control algorithms: classical Computed Torque (CT), Adaptive Inertia
Related Control (AIRC) and our Modified Adaptive Computed Torque (MACT).

35

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Cartesian-space experiments: We tested the MACT controller on three different tra-
jectories performed by the Franka arm against CT and AIRC + CLIK controllers. In the
tests, the end-effector had unknown dynamic parameters, including its mass, center of
mass, and moments of inertia. We used two different sets of gains for kξp for the modified
adaptive computed torque, i.e.,

kξ
a
p = diag(100, 100,100, 10,10, 10),

kξ
b
p = diag(50, 50,50, 5,5, 5),

(76)

while kv is the same of the simulations. The AIRC has the same gains as the joint controller.
For each trajectory, Figure (a) shows the desired and actual Cartesian trajectory, while
Figure (b) shows the tracking error over time. In the first two trajectories (Lissajous
3D and linear) our cartesian controller uses kξp = kξ

a
p. In the third trajectory (a circle)

the gains are switched to kξp = kξ
b
p to decrease the stiffness. The first test is shown in

Figure 21, showing a slow 3D Cartesian trajectory (Figure 21a) and the associated tracking
error (Figure 21b). We did the same test on the fast Cartesian linear trajectory in Figure
22 where the dynamic uncertainties should have a major impact on the error. In both
trajectories, there is not so much difference in the tracking error, so we chose to decrease
the stiffness on the circle trajectory. Figure 23 shows the trajectory (Figure 23a) and
the error (Figure 23b) using these new gains. As a result, decreasing the gains leads to
increasing the error on the non-adaptive computed torque, while the adaptive controllers
maintain similar errors reached on the other trajectories. The root-mean-square of the
experiments conducted above is presented in Table 9.

3.3.3 The throwing problem

This section presents the throwing task, as an example of a dynamic task where an accurate
knowledge of the dynamic model has an important effect in terms of its success rate. In
our scenario, the controller lacks prior knowledge regarding the inertial characteristics of
the object and must acquire this information during the task it-self. In this type of task,
the object has to reach a desired landing position pd = (xd , yd , zd). For this purpose, the
gripper must release the object in a precise Cartesian pose and with a precise velocity.
Considering the projectile motion, the object movement is planar on the plane defined by
the end-effector velocity at the release time and the gravity acceleration vector g⃗. In our
reference system is aligned with the z axes. The final end-effector position and velocity
influence directly the landing distance from the releasing pose through the range equation,

Figure 24: Projectile Motion Scheme. This figure illustrates the factors that influence the
landing points of a thrown object. The primary factors are the initial velocity (v) and the angle
(θ).

36

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 25: Example of a dynamic task. The robot refines dynamic parameters to improve the
throwing performance.

i.e.,

d =
v cos(θ)

g

�

v sin(θ) +
q

v2 sin2(θ) + 2gh
�

, (77)

where d ∈ R is the landing distance, v ∈ R is the initial speed, θ ∈ R is the throwing angle,
g ∈ R is the gravity acceleration and h ∈ R is the height difference between the releasing
and the landing points. Figure 24 provides a visual representation of the formula (77).

In this analysis, we presume that the object’s release time is instantaneous. Conse-
quently, the trajectory followed by the robot prior to the release does not influence the
trajectory of the object after release. We select a minimum-jerk trajectory to traverse from
the initial end-effector position ξ0 ∈ R3 to the release point ξr ∈ R3 with velocity ξ̇r ∈ R3.
The selection of this trajectory for task execution was made to ensure smooth movements,
characterized by continuous acceleration and minimal jerk. The orientation is considered
fixed to maintain no angular velocity and simplify the hand opening motion. It is worth
noting that the solution proposed in this work to perform the throwing is not necessarily
the optimal one. There are several works in the literature that address the problem of
generating optimal and robust throwing motions [80,138]. However, the primary focus of
this section is on evaluating the enhancement introduced by our controller in dynamic
tasks. The integration of this approach with an optimal throwing motion will be a subject
of future research endeavors.

The experimental setup comprises a Franka Emika Panda equipped with a SoftHand

(a) Setup. (b) Objects.

Figure 26: Experimental setup and objects used in the throws. The objects are a wooden box
(221 g) in the top right, a heavy tennis ball (427 g), and a silicon tube (445 g).

37

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

25 50 75 100
0

0.05

0.1

0.15

25 50 75 100
[s]

0

0.1

0.2

(a) Tracking error.

0 10 20 30
y [cm]

-20

-15

-10

-5

0

5

x
[c

m
]

(b) Landing point distribution.

Figure 27: Throwing experiments. (a) position and velocity tracking errors: to reduce the
errors in the inertia parameter, the manipulator executes a series of repetitions of the throwing
trajectory without releasing the object at the end of the movement. Subsequently, the launch is
performed. (b) landing point distribution for adaptive low gains, non-adaptive low gains,
non-adaptive high gains (the black rectangle is the desired landing point).

Figure 28: The throwing sequence of the robot. The heavy tennis ball is only able to reach the
box in the scenario where adaptive control is employed.

as the gripper. The manipulator, commencing from a predetermined initial position, is
tasked with propelling the grasped object to the designated target. The dynamic model
of the manipulator incorporates the inertia of the SoftHand, but not that of the grasped
object. This decision was made to simulate the scenario where the manipulator is required
to launch an unfamiliar object acquired using a soft, under-actuated gripper. In such a
situation, even if the system possesses complete knowledge of the object’s inertia, the
structure of the gripper precludes the ability to ascertain the precise manner in which the
object is grasped, thereby rendering it infeasible to modify the dynamic model of the robot
with the necessary accuracy.

Precise throwing: In this study, we conducted tests with three distinct controllers:
our adaptive computed torque with low gains (kp ≈ 30N/m), the conventional non-
adaptive computed torque with low gains (kp ≈ 30N/m), and the conventional non-
adaptive computed torque with high gains (kp ≈ 300N/m). The decision to evaluate the
non-adaptive controller with two gain levels was motivated by the common practice of
increasing manipulator stiffness to mitigate inertial model errors. However, this approach
entails elevated interaction forces with the environment, compromising system safety. The
primary objective of this test is to demonstrate that our methodology can achieve superior
performance while maintaining a low stiffness profile. The gain kv was selected in each
case to achieve critical or overdamped damping behavior, thereby preventing oscillations.

As previously introduced, the motion performed in this series of tests comprises the

38

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

minimum jerk trajectory that connects the designated starting point to the desired release
point, thereby propelling the object to the intended target. For the purpose of throwing,
we utilize a silicon tube (Figure 26b), which weighs 445 g. Prior to executing the throwing
motion, the adaptive controller executes a four-repeat sequence of the desired trajectory.
This allows the update law to correct the dynamic model. It is noteworthy that this
strategy is not the optimal approach for estimating inertial parameters. Various works
in the literature address this issue, including [19,105]. However, the optimal trajectory
generation for inertial parameter estimation is not the primary focus of this work and
warrants a separate discussion.

To assess the performance of the controllers, we evaluated the dispersion of the object’s
position after being thrown relative to the desired target. As depicted in Figure 27b, the
results obtained by the three tested controllers demonstrate the superiority of our approach
over the others. In Figure 27a, the convergence of the position and velocity errors during
the "learning phase" before the throw is shown. The RMSE for the position and velocity of
the throwing movement are 6.03 · 10−4 m, 0.0174 m/s, respectively.

Throwing an object into a box: To further validate the performance of our adaptive
control system, we conducted a second phase of throws. The goal of this phase was to
successfully land the object within a box positioned over the robot’s natural workspace.
The experimental setup for these tests is depicted in Figure 26a. In this comparative
analysis, we evaluate the adaptive and non-adaptive controllers against two novel objects
(see Figure 26b): 1) a wooden box and 2) a heavy tennis ball. In these tests, we observe
that the experiments involving non-adaptive controllers fail to reach the box due to their
inability to compensate for the errors caused by the weight of the grasped object. Figure 28
presents a photographic sequence illustrating this phenomenon with the heavy tennis ball.

4 Throwing with an Elastic Wrist

Figure 29: Floating Elastic Wrist

In applications that need precise manipulation and contact with the environment,
robotic wrists are essential for improving the dexterity and flexibility of robotic systems.
Numerous methods, concentrating on both rigid and compliant structures, have been
developed throughout time to model and control robotic wrists [10]. Although they
provide strong control and stability, rigid wrist designs frequently falter in jobs that call for
compliance and flexibility in response to outside pressures. On the other hand, as shown
in [77], compliant wrists which are made of elastic or flexible components, are interesting
because of their capacity to absorb shocks and adjust to environmental uncertainty.

39

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Within the realm of compliant wrists, elastic joints, and stiffness-based control schemes
are receiving growing attention. Work on variable stiffness actuators (VSAs) [134] and
other compliance mechanisms highlights how adding elasticity to joints can produce
smoother robot–environment interactions and enhance safety in human–robot collabora-
tion. Elastic elements also offer an avenue for energy storage and release, as demonstrated
in [39]. The European DARKO project further underscores these advantages: by lever-
aging an elastic wrist, the robot can perform pick-and-place operations, and particularly
high-speed throwing more efficiently, achieving the end-effector velocities required for
such dynamic tasks.

The floating nature of the wrist permits the decoupling of the wrist system from the
connected manipulator. However, in the final part, we integrate the wrist with the Franka
manipulator, considering the constraints that it requires. This section describes in depth
the theoretical and control aspects of elastic throwing using a Franka arm combined with
an elastic wrist system. It systematically moves from the comprehensive nonlinear model
to a simplified linearized representation, followed by separate solutions for optimal wrist
and base motions.

4.1 Complete Model of the Floating Wrist

We consider a robotic system comprising two rigid links: a floating base and an end-effector
(EE). These two bodies are connected by a Series Elastic Actuator (SEA). The floating
base has full six degrees of freedom, three translational and three rotational, and can
move freely in three-dimensional space. The EE is coupled to the base through an internal
joint, driven by a motor described by coordinate θ , and elastically connected to the EE’s
coordinate q. By so, the difference θ − q is the spring deflection in the series elastic
actuator.

The model is obtained from the Euler-Lagrange equation of motion (see [54]) using
the base frame trajectory and the wrist angle as coordinates. The base frame is free to
move and follow a trajectory rb ∈ SE(3) in position and orientation, meanwhile the wrist
angle φ ∈ R is the rotation of the wrist joint. Defining q = (rb,φ) as the configuration,
and νb ∈ R6 as the base twist, the system dynamics is

M(q)ν̈+ C(q, ν̇)ν̇+ G(q) +
�

0
K(φ − θ)

�

=
�

τb
0

�

, (78)

where ν= [νT
b , φ̇]T ∈ R7 are the system velocities, M ∈ R7×7 is the positive definite mass

matrix, C ∈ R7×7 is the Coriolis matrix, G ∈ R7 is the gravity vector, K ∈ R is the stiffness
of the wrist joint, θ ∈ R is the wrist motor angle, and τb ∈ R6 is the wrench at the base.
Finally, define r ∈ SE(3) as the end-effector pose, ξ ∈ R6 as the end-effector twist, and
let J ∈ R6×7 be the Jacobian matrix that maps the system velocities to the end-effector
twist with the relation ξ = Jν. Here, we assume that the inputs of the system are the wrist
motor angle θ and the base trajectory rb. Moreover, external forces are considered zero in
order to simplify the discussion.

4.2 Simplified Model of the Floating Wrist

For analytic traceability, we focus on the wrist dynamics only, assuming zero inertia and
damping of the base. This simplification results in a linear second-order differential
equation:

I q̈ = −k
�

q− θ
�

− cq̇+mrc

�

�

ẍb − g sin(α)
�

sin(q)−
�

z̈b + g cos(α)
�

cos(q)
�

(79)

40

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

where I ∈ R the wrist inertia, k ∈ R is the spring stiffness, c ∈ R is the damping coefficient,
m ∈ R is the end-effector(EE) mass, rc ∈ R the distance from the EE’s center of mass,
g ∈ R gravitational acceleration, α ∈ R is the angle of the base relative to gravity, and
ẍb, z̈b ∈ R are the base accelerations in x and z direction respectively. Then, we linearize
the nonlinear dynamics around a nominal operating point (q ≈ 0), leading to

I q̈ =
�

rcm
�

ẍb − g sin(α)
�

− k
�

q− cq̇+ kθ − rcm
�

z̈b + g cos(α)
�

. (80)

This simplified model is used in the optimal problem definitions to find the optimal
wrist motor movement and base accelerations. This part is divided into two sections: the
first related only to the wrist motor movement 4.3, and the second related to only the
base accelerations 4.4.

4.3 Optimization of the Wrist Movement

In this section, the system (80) is considered without base accelerations (ẍb = z̈b = 0).
Considering an input change for static gravity compensation as θ = ub + k−1rcmg cos(α),
and an effective stiffness ke f f = k+rcmg sin(α), it is possible to write the dynamic equation
(80) as a secondary order ODE:

q̈+ 2ζω0q̇+ω2
0q =

k
I

ub (81)

where ω2
0 =

ke f f

I is the natural frequency and 2ζω0 =
c
I is the damping factor. In this

tractation, we consider the underdamped case (0≤ ζ < 1) because the overdamped case
eliminates the benefits of having an elastic system. Having x = [q, q̇]T , and rearranging
the terms in matrix form we have

ẋ = Ab x + Bbub =
�

0 1
−ω2

0 −2ζω0

�

x +
�

0
k/I

�

ub (82)

In the general case, the solution of the differential equation (81) is

q(t) = e−ζω0 t
�

q0 cos(wd t) +
q̇0 + ζω0q0

ωd
sin(ωd t)

�

+

∫ t

0

g(t − h)u(h)dh, (83)

with g(t) as the impulse response of the system, i.e.

g(t) =
k

Iωd
e−ζω0 t sin(ωd t), (84)

where ωd ≜ω0

p

1− ζ2.
Our objective is to maximise the end-effector angular velocity q̇(T) at a prescribed

time T while ensuring the tip is at its neutral position and considering the wrist motor
angle constraint θmax. The optimal problem is formulated as

max
ub

1
2

q̇(T)

s.t. q(T) = 0

ẋ(t) = Ab x(t) + Bbub(t)
|θ (t)| ≤ θmax

(85)

A single switch of θ is allowed at the time t1 ∈ [0, T], reflecting the one-stroke nature of a
throwing motion. A similar approach is used in [39], where the purpose is to use elastic
elements to have a kicking motion.

41

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Introducing the co-states λ= [λ1,λ2]T , the Hamiltonian is

H = λ1 x2 +λ2

�k
I

u−ω2
0 x1 − 2ζω0 x2

�

. (86)

Because u enters (86) linearly and the admissible set is compact, the optimal control is
bang-bang:

u⋆(t) = θmax sign
�

λ2(t)
�

. (87)

or,

u⋆(t) =

¨

−θmax, 0≤ t < t1,

θmax, t1 ≤ t ≤ T.
(88)

The purpose of the following sections is to find the switching function λ2(t) in order
to obtain the control switching time t1. Different from [39], the gravity and the damping
are taken into account in the optimal problem. The slope of the wrist in space α acts
as a stiffness change, and so it modifies the system oscillation frequency ω0. In order
to simplify the discussion, we first introduce the simplest case. Then, we introduce the
viscous damping.

4.3.1 Optimal control for the lossless level case (ζ= 0,α= 0)

With ζ = 0 and α = 0, equation (82) reduces to the well-known undamped oscillator. The
Pontryagin Hamiltonian

H = λ1 x2 +λ2ω
2
0(u− x1) (89)

leads to the co-state ODE

λ̇=
�

0 −1
ω2

0 0

�

λ

with terminal condition λ(T) = [ν; 1]T, and ν ∈ R a constant value. The unique solution is

λ2(t) = cos
�

ω0(T − t)
�

+
ν

ω0
sin
�

ω0(T − t)
�

. (90)

Enforcing a single zero of (90) together with q(T) = 0, exploiting equation (83), yields
closed-form expressions for the Lagrange multiplier and the switching instant:

ν= −ω0 cot
�

ω0(T − t1)
�

, t1 =
Tω0 − arccos

�

1
2

�

1+ cosω0T
��

ω0
.

The attainable tip speed is

q̇(T) = θmaxω0

�

2
Ç

1− cos4(ω0 T
2)− sin(ω0T)

�

. (91)

4.3.2 Viscously damped case (ζ > 0)

Considering the Hamiltonian (86), the co-state now satisfies

λ̇=
�

0 ω2
0

−1 2ζω0

�

λ, λ(T) =
�

ν
1

�

. (92)

Solving gives the damped sinusoid

λ2(t) = eζω0(T−t)
�

cos(ωd(T − t)) + ν+ζp
1−ζ2

sin(ωd(T − t))
�

. (93)

At this point, t1 can be obtained numerically by integrating equation (83) on the entire
horizon T , keeping in mind that x(T) = 0. Once t1 is known, ν follows from the boundary
condition λ2(T) = 0, i.e.

ν= −
�

ζ+
p

1− ζ2 cot (ωd(T − t1)
�

(94)

42

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

4.4 Optimization of the Base Movement

Next, we isolate the optimization problem for base movements, assuming constant wrist
position q. In this way, we can directly use the rigid optimization already developed
in [117] to obtain the base movement. This strategy combines the simplicity of the base
optimization with the effectiveness of the elasticity in the wrist, leading to a general
improvement of the performance.

Initially, a throwing point pt and velocity vt are selected inside the manipulator
workspace, solving an optimization problem. Then, the method computes an intermediate
robot configuration qi that, using a constant acceleration of joints, reaches the throwing
point pt and the velocity vt in a time T . Then, the robot computes the minimum-jerk
trajectory to go from the initial configuration q0 to the intermediate one in the predefined
time t i . Finally, the complete trajectory is sent to the robot that performs the throwing
motion. In this framework, some aspects require a bit of attention, and they are:

• After reaching the throwing point, the robot has to stop. This is achieved by creating
a breaking trajectory that decrease all the joint velocities in a small amount of time.

• Since the hand has an opening delay, the opening time is anticipated with respect to
the reaching of the throwing point.

• The hand orientation is fixed with the palm oriented towards the throwing velocity
to permit the object to leave the hand freely.

5 A general approach for generating artificial human-like motions
from functional components of human upper limb movements

Human-likeness (HL) is a key characteristic for artificial systems designed for a safe,
effective and trustworthy human-machine interaction, e.g. with humanoid robots or
virtual avatars [13,102]. HL is a broad term which encompasses several characteristics of
the system, such as its design, appearance and motion [104]. While much has been done to
increase the realism of body design, with a large spread of hyper-realistic humanoids [22,
48,52], the motion of these systems is far from the naturalness of human movements. The
problem of generating Human-Like movements is still under-explored, albeit representing
a key aspect for the realism, acceptability and predictability of human-machine interaction
[2,29,37,137], even in non-anthropomorphic systems (such as industrial manipulators)
where ensuring these features also only at the end-effector could improve the interaction
between human and robot [56,75].

Human motion has different key features which make it peculiar with respect to
movements generated by classical planning algorithms. For example, in [49] the authors
analyzed human hand motion in 3D space during reaching tasks, with and without ob-
stacles, finding that the movement paths are largely planar. In [74], the authors found
that there is a relation between the curvature of a path and the velocity at which humans
have to follow it. In [36] the authors observed that humans tend to minimize jerk during
movement execution.

Many researchers proposed strategies for generating Human-Like movements in differ-
ent applications [50,91]. One of the most popular solutions to achieve HL is to formalize
an optimization problem whose functional cost is devised from neuroscientific observations.
For example, in [97] the authors developed an optimization-based framework to generate
minimum-jerk trajectories building on [36], while [67] exploited the minimization of
the torque-change following the model proposed in [126]. However, such optimization
approaches usually build upon hypotheses on motion generation, which can reduce the

43

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

variability of the planned movement (and, sometimes also lack experimental support [87]).
To cope with this problem, an interesting approach was the one proposed in [103] where
the authors proposed a model of motion planning based on constraint hierarchy instead
of optimizing some cost functions. In this way, the model focuses more on satisfying the
constraints related to the desired task (e.g. final target arm posture, obstacle avoidance,
etc.) instead of minimizing a predefined cost index.

Another possible approach to generate Human-Like movements exploits learning and
data-driven methods. This is a solution used very often in the field of animations and
computer graphics where, after an extensive campaign of data recording via motion
capture systems, the recorded datasets are used to train neural networks to animate the
avatars [72,89,136]. For example, in [88] the authors used a recurrent neural network to
act as a near-optimal feedback controller generating stable and realistic behaviour. Another
example is [101], where the authors used Generative Adversarial Neural Networks for
synthesizing gestures directly from speech. Some of these approaches are also applied in
robotic applications for the generation of human-like movements with humanoid robots
[110]. However, the common limitation of learning-based methods is related to the need
for reliable datasets, whose dimensionality can be significant.

An interesting approach that lies in between model and learning-based solutions
exploits Dynamic Movement Primitives (DMP) [109]. The idea is to use a dynamical
system with convenient stability properties and modulate it with nonlinear terms such
that it achieves a desired attractor behaviour. One of the strengths of this framework
is the low number of demonstrations required to handle different situations [78]. This
approach has been extensively studied and used in literature [108]. One problem that
this method has to deal with is related to obstacle avoidance. The solution presented in
several papers is to add a second nonlinear term to guide the evolution of the dynamical
system around obstacles. There are two ways to compute this term: 1) through potential
fields to repulse the system from the obstacles [46, 59]; 2) through neural networks
learning the coupling term from a set of examples [99,125]. These approaches permit to
handle also time-varying environments given the negligible computational time required to
compute this term. However, the selection of the specific potential field could influence the
behaviour of the trajectory, which could lose its desired characteristics, while implementing
learning-based techniques could require a large number of examples to generalize for a
wide range of obstacle setups.

A possible solution to design an efficient Human-Like motion planning framework,
overcoming the aforementioned issues, is to directly embed main human motion charac-
teristics in the algorithmic structure. Many works in the literature addressed the analysis
of human motion to extract movement patterns and obtain a reduced yet meaningful
characterization of human kinematics [107]. Regarding the upper limb motion, in [8] the
authors exploited functional Principal Component Analysis (fPCA) to identify a geometrical
basis of mathematical functions whose elements can be combined to reconstruct the overall
trajectory. These basis elements were also used to develop a planning algorithm in the
joint space domain, which intrinsically embeds HL in the generated motion [9]. This
planner, however, is strictly related to the kinematic description used to acquire human
upper limb data, and a mapping strategy is needed to generalise the planning outcomes
to manipulators with different kinematic structures. A solution to the latter problem was
proposed in [7], where Cartesian impedance control was used to implement fPCA-based
planning with manipulators with redundant anthropomorphic kinematic architectures -
although dissimilar with respect to the human model used for functional mode extraction.
However, these approaches in the joint space are associated with non-negligible compu-
tational time: for example, while obstacle-free planning can be solved in a closed form,
devising a trajectory in presence of obstacles requires solving an optimization problem,

44

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

which can require up to several seconds.
To address both the problem of mapping and the reduction of the computational

time, we propose a novel planning algorithm able to compute Human-Like trajectories of
artificial upper limb/arm directly in the Cartesian domain. To this aim, we built upon the
results we presented in [12], where we showed that a geometrical representation of the
human end-effector trajectory in terms of functional elements still holds in the Cartesian
space, confirming the outcomes reported in [8] at the joint level. This approach permits to
obtain a reference trajectory with an intrinsic Human-Like behaviour which can be applied
to any kinematic chain used for describing an artificial manipulator in a lower time than
the previous approach developed in the joint domain (less than 7 ms on average). The
results reported in this section are reported in the work "A general approach for generating
artificial human-like motions from functional components of human upper limb movements"
published in the journal Control Engineering Practice [11].

5.1 Method

5.1.1 Functional Principal Component Analysis (fPCA)

Functional Principal Component Analysis (fPCA) is a statistical method to identify a
geometrical basis of functions whose elements can be combined to reconstruct time series.
In this section, we will provide a brief introduction to the underpinning theory and its
application - without loss of generality - to the description of hand trajectories (i.e. the
trajectories of the end-effector of the upper limb kinematic chain), while referring the
interested reader to [100] for more details. Given a dataset of hand motions, the generic
motion x(t) can be represented as a weighted sum of a set of basis functions Si(t), or
functional Principal Components (fPCs) extracted from the dataset, that is:

x(t)≃ x̄ + S0(t) +
smax
∑

i=1

αi ◦ Si(t) (95)

where x̄ is the average pose of the hand, S0(t) is the average trajectory across all the
trajectories in the dataset, αi is a vector of weights, smax is the number of basis elements,
Si(t) is the i th basis element, the symbol ◦ represents the Hadamard product (i.e. the
element-wise product) and t ∈ [0,1] is the normalized time axis.

The first element of the functional basis or first fPC can be computed from the R
motions of the dataset as:

max
S1

R
∑

j=1

�∫

S1(t)x j(t)d t

�2

(96)

subject to
||S1(t)||22 = 1 (97)

The other components Si(t) can be computed as:

max
Si

R
∑

j=1

�∫

Si(t)x j(t)d t

�2

(98)

subject to
||Si(t)||22 = 1 (99)

∫ tend

0

Si(t)Sk(t)d t = 0,∀k ∈ {1, ..., i − 1} (100)

45

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

In this manner, we can identify a basis of functional elements, ordered in terms of the
explained variance that each element accounts for.

For our purpose, to obtain a general representation of the human hand motion, we used
the dataset proposed in [6], containing the recording of 30 different activities of daily living
performed by 30 different subjects belonging to three main classes of actions: Transitive,
Intransitive and Tool-mediated, which were assumed to be representative of the human
example [8]. However, in [12], we recomputed fPCA independently for each participant
(90 trajectories for each participant) showing that, with the same set of tasks, a stable
functional representation in terms of the shape of the fPCs can be extracted from a reduced
dataset (90 movements) even if it contains heterogeneous tasks. This is possible thanks to
the structure of fPCA, which allows us to handle datasets containing time series that are very
different from each other without requiring a large number of examples. Instead learning-
based methods, to generalize on more variable patterns, require higher dimensionality of
the datasets. For example, in [53], the authors recorded, from 10 different subjects, a total
of 400 trials taking into account only 8 different reaching movements (similar to the ones
that, in our classification, belong to the Intransitive movements). Deep learning based
solutions are notably even more data-hungry. To provide an example, recent generative
based solutions require thousands of independent motion examples replicated on tenths
of different characters [98].

5.1.2 Planning Algorithm

The fPCs extracted from a dataset that can be considered representative of the most
common upper limb movements can be used to plan trajectories that intrinsically embed
HL. In the following section, we provide a formalization of the planning problem starting
with the no-obstacle case, and then we extend the approach to deal with the presence of
an arbitrary number of fixed obstacles. Of note, fPCA is performed for each Degree of
Freedom (DoF) separately that, in our case, are the Cartesian position and orientation of
the hand with respect to the center of the chest. In the following, we report the equations
for a single DoF of the end effector, while the extension to multiple DoFs (e.g. the six DoFs
describing the pose of the end effector) is trivial.

The reconstruction of the single DoF trajectory can be attained as:

x(t)≃ x̄ + S0(t) +
smax
∑

i=1

αiSi(t) (101)

To find the coefficients x̄ and αi given a set of constraints to be satisfied we can define
an equation system to obtain the desired trajectory to be planned. For example, setting
the initial and final position, velocity and acceleration, the following equation system is
defined:

1 S1(t0) . . . S5(t0)
1 S1(t f) . . . S5(t f)
0 Ṡ1(t0) . . . Ṡ5(t0)
0 Ṡ1(t f) . . . Ṡ5(t f)
0 S̈1(t0) . . . S̈5(t0)
0 S̈1(t f) . . . S̈5(t f)

x̄
α1
α2
α3
α4
α5

=

x(t0)− S0(t0)
x(t f)− S0(t f)
ẋ(t0)− Ṡ0(t0)
ẋ(t f)− Ṡ0(t f)
ẍ(t0)− S̈0(t0)
ẍ(t f)− S̈0(t f)

(102)

by solving the system we can obtain the desired planned trajectory

x(t) = x̄ + S0(t) +
5
∑

i=1

αiSi(t) (103)

In the presence of obstacles, instead of numerical optimization, it is possible to define a
set of via points (e.g. points defined in the trajectory domain through which the trajectory

46

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

itself has to go [130]) and build a similar extended system of equations to solve the
problem in a closed form. In a nutshell, the idea is to plan the trajectory in pieces between
two successive points, ensuring continuity at the junction point. This strategy moves
the problem of collision avoidance to the selection of the best via points to guide the
trajectory around the obstacles. The optimal via point guarantees collision avoidance with
a minimum path length. To find it, we can use a sampling-based algorithm that selects a set
of possible points (that ensure obstacle avoidance) inside the workspace and then identify
the one with the minimum path length. This approach exploits the low computational load
in generating a single trajectory to perform a random sampling in space to find the best
solution in a short time. For our purpose, the velocity and acceleration values have to be
set in the via point as constraints to solve the equation system. Without loss of generality,
we set the velocity as the mean velocity to go from the initial to the final target point,
while we decide to pass the via point with an acceleration equal to zero.

5.2 Simulation Framework

To evaluate the performance of our approach we tested it in simulation against a classical
DMP approach. We have chosen this type of planner as a comparison for testing our
method because it is placed in the middle between optimization-based techniques (usually
computationally expensive) and learning-based techniques (that are faster to compute a
solution but greedier in terms of data required for training and generalisation). Briefly, a
DMP for a single DoF trajectory y of a discrete movement (point-to-point) is defined by
the following set of nonlinear differential equation

τż = K(g − y)− Dz + (g − y0) f (x)
τ ẏ = z

τ ẋ = −αx

(104)

where x is the phase variable and z is an auxiliary variable. Parameters K and D are
respectively the spring and the damping terms which define the behaviour of the second-
order system described by in (104). With the choice τ > 0, D = 2

p
K and α > 0 the

convergence of the underlying dynamic system to a unique attractor point at y = g, z = 0
is ensured. The forcing term f (x) is defined as a linear combination of N nonlinear basis
functions, which enables the robot to follow any smooth trajectory from the initial position
y0 to the final configuration g

f (x) =

∑N
i=1 wiΦi(x)
∑N

i=1Φi(x)
x (105)

Usually, the classical implementation of DMP uses for the forcing term a basis of Gaussian
functions [59]. However, as discussed in [47], there are also other types of basis functions
that could be used, such as the mollifiers-like basis functions given by:

Φi(x) =

¨

exp
�

− 1
1−r(x)2

�

, if r < 1

0, otherwise
(106)

with r(x) = |ai(x − ci)|, where ci is the center and ai is the width of the function. To select
the suitable number of functions for implementing DMPs, we run a preliminary analysis
with different cardinality of the basis of function elements. We started with 50 elements
(which was stated as the usual maximum number of functions to be used in [47]) and
we brought it down to 10 elements evaluating the jerk and the tracking performances.
We found that the performance levels of all the tested setups were comparable. For

47

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

our purpose, we used 21 functions. This solution exhibited a slightly lower level of jerk
compared to the other cardinalities we tested. To learn the weights for the forcing term, we
considered human reaching motions extracted from the same dataset we used to perform
fPCA [6] and we trained DMPs on one of these movements. For additional details on the
building of this subset of motions, we refer the reader to Section 5.2.1.

To implement obstacle avoidance, we used the strategy presented in [95], where a
dynamic potential field was used in combination with DMP to deviate the trajectory around
the obstacles. In this work, the repulsive field is defined as:

Ud yn(y, z) =

¨

λ(− cosθ)β ∥z∥p(y) ,
π
2 < θ ≤ π

0, 0≤ θ ≤ π2
(107)

where θ is the angle taken between the current velocity z and the relative position of the
trajectory with respect to the obstacle (with respect to the latter the distance is defined
as p(y), while β is a scalar coefficient). Mathematically, given the equation in (107), the
potential field generates a repulsion force only when the trajectory moves towards the
obstacle, while in all the other cases it does not influence the evolution of the dynamic
system.

The validation of the planning algorithm is composed by different parts. First, given
that our approach is based on sampling, we have studied how the output of the algorithm
is influenced by the number of samples taken. After that, we move to the evaluation
of the Human-Likeness of the generated trajectory which is divided into three parts: 1)
comparison with a set of real reaching motions extracted by the original dataset; 2) large-
scale simulation with different sets of obstacles; and 3) a reduced set of scenarios that
reproduce some daily living activities, where the trajectories produced by the two planners
served as references for the controllers of an anthropomorphic kinematic chain. More
details regarding the simulation scenarios are provided in the following. All the validation
is performed using MATLAB R2020b.

5.2.1 Comparison with Real Human Motion

To evaluate the Human-Likeness of the proposed approach and DMPs, we compared it
with a set of recorded human motions to check the similarity of the output of the planning
algorithm with them. Given that the algorithm is designed to compute a trajectory to reach
a desired position from an initial point, we extracted from the dataset proposed in [6]
180 human upper limb reaching movements and compared the similarity of the generated
path with respect to the human example. More specifically, given that the original dataset
does not contain this type of movement, we extracted for 3 subjects the 30 intransitive
motions performed (3 repetitions of 10 different tasks) and we manually segmented the
forward and the backward motion of each trial. For each example movement contained in
this subset, we extracted the initial and the final point, which were then used as start and
goal positions for the planning algorithms.

5.2.2 Large Scale Obstacle Avoidance Simulation

Given that we do not have a dataset of real human motion performing reaching motion
in the presence of obstacles, we performed this evaluation in simulation comparing the
output of our planning algorithm with respect to DMP. To do this, we generated a large
number of simulation settings, where each of them is defined in terms of a starting point,
an ending point and a set of spherical obstacles. We have decided to use spherical obstacles
due to the ease of verifying the collision on this shape. However, this choice does not
limit the extension of this framework to any general obstacle shape [94]. We defined 4

48

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

different types of possible scenarios and, for each group, we generated 1000 different
realizations of it. The 4 different classes are: 1) 5 spherical obstacles with r = 0.1m; 2) 1
single spherical obstacle with r = 0.2m; 3) 3 spherical obstacles with r = 0.1m and 4) 3
spherical obstacles with r = 0.2m. All these scenarios were generated randomly extracting
starting points, target points and the centres of the obstacles.

5.2.3 Dynamic Arm Simulation

The second part of the validation regards the application of the planner to daily living
sample tasks and the usage of these trajectories as a reference to control an anthropomor-
phic kinematic chain. The dynamic of the arm was simulated using the "Robotics Toolbox
for MATLAB" developed by Peter Corke [23].

To follow the Cartesian reference, we implemented a Cartesian computed torque
controller defined as:

τ= J T MX (ξ̈d + KV
˙̃ξ+ KP ξ̃) + h(q, q̇)− J T MX J̇ q̇ (108)

where ξd , ξ̇d and ξ̈d are Cartesian desired position, velocity and acceleration, ξ̃ = ξ− ξd ,
˙̃ξ = ξ̇− ξ̇d , J is the Jacobian, MX is the Cartesian generalized mass and h(q, q̇) is the term
related to gravity and coriolis effects.

However, the most common kinematic representation of the human arm has 7 DoFs (3
for the shoulder, 2 for the elbow and 2 for the wrist), while a Cartesian controller has only
6 independent inputs. To solve the redundancy of the kinematic chain, a common solution
is to design additional controllers projected in the null space of the primary controller. In
our case, we exploited this additional DoF to avoid collision with the whole arm (while the
planner guarantees collision avoidance only for the end-point trajectory) and to control
the elevation of the elbow. For collision avoidance, we can generate a set of repulsive
forces that push away the arm from the obstacles and use them to control torque as:

τobs = J T
el b Fel b + J T

armFarm + J T
f orearmF f orearm (109)

The single repulsive force applied on the link is generated as:

Fi =
ξi − ξobs

||ξi − ξobs||
·

1
di

(110)

where di is the distance between the i th point in the kinematic chain and the centre of the
obstacle. Regarding elbow posture, we can simply implement a joint impedance controller
to keep a desired static posture. The control torque can be computed as:

τel b = −Kv q̇+ Kp(q̄− q) (111)

where q̄ is the desired arm posture. In our implementation, q̄ is computed as mean posture
when the participants were in the rest position during data recording in [6]. These two
control actions can be added to the main controller (108) as τnull :

τnull = P(τobs +τel b) (112)

where P = I − JJ T is the Cartesian space null projector.
To perform these simulations, we selected 5 different tasks from the list of tasks

contained in [6] (Hitchhiking, Block out sun from own face, Stop gesture, Exultation and
Self-feeding). These 5 tasks span most of the possible movement directions of the human
hand. For each task, four different scenarios are simulated: 1) without obstacles, 2) a
single obstacle in the middle of the hand path, 3) a single obstacle in the elbow proximity
and 4) the previous 2 obstacles at the same time. Furthermore, to avoid collision with
any part of the simulated hand, we set a clearance zone of 0.2m from the surface of the
obstacles to take into account the volumetric occupancy of the end-effector.

49

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

5.3 Results

5.3.1 Sampling Density Evaluation

Since our planning strategy is based on sampling, the first step is to evaluate how the
number of samples used to find a possible trajectory affects the behavior of the algorithm
both in terms of computational time and characteristics of the trajectory returned. For
this reason, we considered the same scenario described in Section 5.2.2 and we tested our
algorithm using different numbers of samples, ranging from 10 to 104.

In terms of failure rate, the proposed algorithm achieved an overall failure rate which
ranges from 0.8% using 10 samples only, to 0.18% using 104 samples. Regarding the
computational time, it ranges from 0.848ms using 10 samples to 46ms using 104 samples.
Merging these two pieces of information we found that 103 represents the most effective
trade-off to fulfill performance and computational requirements, with an average compu-
tational time of 6.88ms and a failure rate of 0.2%. In Figure 30 the average computational
time and failure rate are computed for each scenario separately for different numbers of
samples. Of note, even if the computational time shown is low and suitable for one-shot

Figure 30: Average computational time and failure rate for each scenario varying the number
of samples used by the planning algorithm to find a suitable trajectory.

planning of relatively long trajectories, it is generally larger compared to DMPs. In fact,
while our approach has to compute the entire trajectory in advance, DMP allows computing
it in real time, while the system is moving, making the latter more suitable for dealing
with unstructured environments, e.g. where obstacles move and the trajectory must be
recomputed at run time.

Then, we evaluated if the different sampling densities affect the average jerk of the
computed trajectory. To do this, we applied the Kruskal-Wallis test [71] to check if the
average jerk values obtained for each sampling density come from the same distribution.
We applied this test for each scenario separately and we found that the number of samples
used by the algorithm does not affect the jerk of the computed trajectory.

5.3.2 Comparison with Real Human Motion

The first index we considered is the similarity between the Cartesian path of the human
example movements and the ones produced by our proposed approach and DMPs. To this
aim, we computed the Root Mean Square (RMS) distance between the real path and the
one produced by the two algorithms. In Table 10 the values of this metric are reported for
both our algorithm and DMP-based one, showing that they have similar performances in
generating a path similar to the ones done by humans.

50

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Table 10: Average RMS Distance [m] between real human movement and the ones generated
by the proposed algorithm (fPC) and DMP

fPC DMP
RMS Distance 0.0306± 0.0194 0.0411± 0.0256

Another metric is related to the jerk of the computed trajectories. We computed the
jerk for each trajectory contained in this subset and compared it with the ones obtained by
the two planning algorithms. In Table 11 the median of the average jerk for each group is
reported. We can see that DMP returns trajectory with a higher level of jerk with respect
to our approach. We can also observe that real movements tend to have a jerk slightly
higher with respect to the one returned by our approach. This can be explained by the fact
that, given that the data of the real movements comes from measurements which, also
after filtering, can contain residual noise that could amplify the level of computed jerk.

Table 11: Median of average jerk of the real movements, our approach (fPC) and DMP [m/s3]

Real fPC DMP
0.1976 0.0884 1.1503

5.3.3 Large Scale Obstacle Avoidance Simulation

To compare the two planning algorithms we used different metrics to assess the effec-
tiveness in reaching the target and the capability to maintain the human-likeness of the
computed trajectory.

The first step is to check the capability of the proposed approaches to compute a
trajectory which reaches the target in a given time. In our comparison, the two algorithms
are based on completely different planning techniques that can have different problems in
guaranteeing the reaching of the goal. For example, our approach is based on viapoint
sampling and, as shown in Section 5.3.1, it could be possible to not find a suitable
trajectory. On the other hand, DMP generates trajectories exploiting a dynamic system
and the convergence behaviour to the target point could strongly depend on the obstacle
configuration in the scenario. To evaluate this aspect we have computed the distance from
the desired point at the final time. In Table 12 the mean values and their relative standard
deviation computed with respect to the five scenarios are reported. We can observe from
these results that the fPCA-based planner can reach the target exactly at the desired time
while DMP has a variable error depending on the configuration of the obstacles.

Table 12: Final target error at desired final time [m]

fPC DMP
Scenario 1 2.12± 2.02 · 10−14 3.24± 5.42 · 10−2

Scenario 2 1.87± 1.75 · 10−14 0.80± 1.25 · 10−2

Scenario 3 1.87± 1.71 · 10−14 1.84± 3.24 · 10−2

Scenario 4 2.06± 1.98 · 10−14 2.30± 4.56 · 10−2

After this first assessment, we can move to evaluate the HL of the two algorithms. To
do this we used the jerk of the trajectory. We can observe from Table 13 that the fPC-based
solution outperforms consistently the DMP.

51

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 31: An example of trajectory computed by our algorithm in the presence of obstacles.
The starting point, the goal point and the viapoint are respectively drawn in blue, red and
black.

Table 13: Median of the mean jerk [m/s3]

fPC DMP
Scenario 1 0.22 1.19
Scenario 2 0.21 1.59
Scenario 3 0.22 1.31
Scenario 4 0.26 1.28

Higher level of jerk (p < 0.01 Wilcoxon rank sum test) obtained by the DMP planner
is related to the specific structure of the planner itself. In fact, the usage of a basis of
function to learn the desired behaviour as done in DMP produces a ripple in the velocity
profile, which brings to a higher level of jerk.

In Figure 31 we have reported an example of a Cartesian trajectory computed with our
approach while in Figure 32 its position and velocity temporal evolutions are depicted. It
is interesting to note that the behaviour shown by our planner, in terms of velocity profiles,
is similar to the one reported in [36].

Figure 32: Temporal evolution of the trajectory depicted in Figure 31. In the first image, each
Cartesian direction is shown separately (in black the viapoint used by the planning algorithm).
In the second image, the plot of the velocity norm achieved by the computed motion is depicted.

5.3.4 Dynamics Arm Simulation

The second part of the validation involves also the dynamic of the kinematic chain. The
goal is to check if the properties found in the previous analysis are also preserved by

52

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

a manipulator which uses a Cartesian controller to follow the computed trajectory as
reference. A snapshot of these simulations is reported in Figures 33 and 34.

The first step, as done in the previous analysis, is to test the capability of the two
planners to compute a trajectory to reach the target pose. Our planning algorithm is able
to find a feasible trajectory for each of the 20 scenarios taken into account. Instead, the
DMP has a final median error norm of 0.049m. However, with this technique, there are
two scenarios ("Hitchhiking" task with 2 obstacles and "Stop" task with 2 obstacles) which
have noticeable errors in reaching the final pose (respectively 0.13m and 0.48m).

After that, we can evaluate the HL of the movement generated by the planners them-
selves and the combination between the planning algorithm and the controller. To quantify
this property the main index used in this work is the jerk of the motion produced. Given
that the end-effector trajectory has 6 DoFs, to keep the consistency of the measurement
units, we split the jerk analysis into two values, one for the end-effector translation and one
for the rotation. The first step is to evaluate jerk for the reference trajectories computed
by the two algorithms. For each trajectory, the mean of the jerk norm of the movement is
computed. The results are reported in Table 14. We can observe a significant difference
between the jerk values produced by the two methods. The statistical difference between
the two planning algorithms was tested with the Wilcoxon rank sum test which fails to
reject the null hypothesis with a p < 0.01.

Table 14: Median of Reference Hand Trajectory Jerk

Translation
[m/s3]

Orientation
[rad/s3]

fPC 0.28 0.31
DMP 1.65 3.19

The same analysis was performed also on the actual simulated arm motion to check if
the control policy affects the smoothness of the movement. In this case, we have evaluated
both the Cartesian performance (as done for the reference movements) and the joint
behaviour. For the joint domain, we have computed for each movement the average jerk
across all the seven joints of the kinematic chain. From the results reported in Table 15,
we can see that the proposed approach performs better than the DMP. Also in this case the
statistical difference was tested using the Wilcoxon rank sum test and it fails to reject the
null hypothesis with a p < 0.01.

Table 15: Median of Real Arm Trajectory Jerk

Translation
[m/s3]

Orientation
[rad/s3]

Joint
[rad/s3]

fPC 0.32 0.97 0.78
DMP 1.87 5.77 3.00

6 Human-like motion for grasping moving objects

Grasping is one of the basic actions which permit us to perform complex tasks and interact
with the environment. For this reason, object manipulation with robotic systems generates
huge interest in research groups worldwide. [15,17,135]. The problem has been studied
from several perspectives, from the exploitation of environmental constraints [26,30] to
grasping in cluttered space [35,124].

53

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 33: Simulation of self-feeding task with two obstacles. The desired trajectory is depicted
in green and the viapoint in purple.

Figure 34: Simulation of hitchhiking task with two obstacles. The desired trajectory is depicted
in green and the viapoint in purple.

Impact-aware manipulation is one of these hot topics in this research branch in the
last period. In fact, in the real world, there are several situations where humans need to
handle dynamic tasks, such as pushing or stopping objects with large inertia [63,122] or
performing dual-arm picking [127–129]. Among these, the dynamic grasping of moving
objects has shown great interest in the robotic community for a large range of applications
not only in real life but also in industrial setups where objects can be moved in different
places of a warehouse using conveyor belts. Furthermore, handling relative motions
between the robot and the target during grasping could also be beneficial for mobile
robots, which could perform the task without stopping.

Historically, one of the most used techniques to solve this problem is visual servo
control [58], where the information provided by a camera is used as feedback to control
robot motion and reach the desired target. With this approach, the most used setup
is the in-hand configuration, where the camera is integrated into the manipulator end-
effector [3, 112]. Over the years, several other approaches were developed to handle
more complex scenarios. In [83] the authors proposed a framework able to automatically
switch between a local planner, which moves the robot to maintain a certain pre-grasp
relative pose while the object is moving, and a global planner which moves the gripper in
a different relative pose to change the grasping point on the target object. In [66,106], the
authors targeted the problem of catching flying objects with robotic manipulators using
approaches based on dynamic systems.

These approaches target only the task of object grasping without giving any guarantees
on the motion behavior of the robotic arm. However, to build a system capable of working
beside humans it is necessary to guarantee a predictable and acceptable behavior. In this
sense, generating human-like motion can sensibly improve the human-robot interaction
[137]. However, dealing with the problem of ensuring human-likeness in combination
with the time constraint given by the task makes the problem not trivial. Furthermore, as
mentioned in the Introduction, we live in a world designed for humans: under this regard,
the human inspiration, for what concerns both the end-effector design and the primitives
used for grasping, should be also considered.

54

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

In this section, we focus on the exploitation of the human-like motion planning al-
gorithm presented previously [11] as a base to build a framework capable of grasping
moving objects. Leveraging on the low computational time, the proposed algorithm can
recompute a new trajectory to correct the reaching motion with respect to the motion
state estimation of the object. To validate this approach, we proposed as testing scenario
the grasping of objects placed on a conveyor belt moving at constant unknown velocity.

6.1 Method

The problem of reaching a moving object to perform grasping can be seen as a rendezvous
manoeuvre, where the end effector of the manipulator has to intercept the target object
with a null relative velocity. This is necessary especially when the time required to close
the fingers of the gripper is not negligible.

Under ideal assumption (perfect knowledge of the motion state of the target over the
whole trajectory), one can decide the interception position or time, compute all the other
kinematic quantities, and plan the desired motion for the grasping. Taking as example the
use case proposed here, knowing exactly the initial position of the object and its velocity
permits to perfectly predict any position in the future of the object itself. In this case, the
problem can be simply solved by fixing the interception position, computing the time to
reach the desired point, and performing a single-shot planning solving (102).

However, in the real world, the presence of noise in the sensing system could lead to
not negligible errors in the state estimation (for example a drift in the position prediction
due to a wrong velocity estimate). This problem makes single-shot planning unfeasible
and it is necessary to correct the motion in real time requiring low computational load
algorithms.

6.1.1 Missing condition

The first step is to define the missing condition which triggers the replanning routine.
To do this, we decided to fix a reference position pref, based on the workspace of the
manipulator, around which the grasp is performed. Based on the estimation of the initial
position p̂0 and velocity v̂0, the time of arrival at the reference position can be computed
as

t̂OA =
(pref − p̂0)

v̂0
. (113)

At the generic instant k, the missing condition can be written as

|pref − (p̂k + v̂k t̂OA)|> pth, (114)

which means that, using the actual estimation of position and velocity, at the desired time
of arrival the distance between the reference position and the object position is higher
than pth. This condition triggers the replanning routine recomputing also the new time of
arrival in function of the strategy used.

6.1.2 Adaptation of the planning algorithm for online replanning

Even if the planner presented as in Section 5 could be already feasible for the task, two
main modifications were made to improve the output.

The first is to not use the information of the initial and final acceleration to compute
the trajectory, exploiting a reduced version of the linear system (102). This choice was
made to avoid the computation through numerical differentiation of the actual Cartesian
acceleration of the manipulator which should be necessary as an initial condition for
replanning the trajectory.

55

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 35: Representation of the Variable structure strategy. Inside the red area, the planning
algorithm computes the trajectory toward the new final position keeping the same final time.
Outside the red area, the algorithm recomputes the trajectory with a new final time toward a
fixed desired position.

The other modification is related to the definition of the time axis of the fPCs. In fact,
instead of using the entire fPC to replan the rest of the trajectory as if it were a new motion,
we decided to use only the last part of the components to plan the missing part of the
motion. This choice was made to avoid uncontrolled increasing in the sampling density in
the trajectory.

Following the two modifications described, the new linear system to replan the rest of
the motion at the time tk can be defined as

1 S1(tk) S2(tk) S3(tk)
1 S1(t f) S3(t f) S3(t f)
0 Ṡ1(tk) Ṡ2(tk) Ṡ3(tk)
0 Ṡ1(t f) Ṡ2(t f) Ṡ3(t f)

x̄
α1
α2
α3

=

x(tk)− S0(tk)
x(t f)− S0(t f)
ẋ(tk)− Ṡ0(tk)
ẋ(t f)− Ṡ0(t f)

. (115)

6.1.3 Replanning strategy

Once the basic structure of the planner is designed, it is necessary to design the replanning
strategy. As said before, given the trajectory of the target object there are infinite possible
interception positions that can be chosen. Here we present two possible strategies that
can be used to solve this problem.

Variable structure strategy: This method is very simple and consists of keeping one
between t f or x(t f) constant during replanning and only recalculating the other variable
based on the updated motion state estimation. In particular, the idea was to change t f for
larger scale corrections, while choosing different grasping positions x(t f) in the vicinity
of pref was used for fine-tuning of the trajectory. A narrow area was defined as shown
in Figure 35, and the replanning method was changed based on whether the estimated
p̂k(t f) fell inside or outside of the depicted area. The region was chosen asymmetric with
respect to pref, to favour grasp conditions with a lead on it rather than delayed.

Time augmentation strategy The main idea behind this method is to always replan
towards pref as an initial guess, taking as t f the t̂OA calculated by the vision node. Then,
for fine-tuning, the value of t f was incremented or decremented based on a number of
corrective terms, and the new x(t f) was derived from the target’s trajectory. The new

56

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

final position and time are computed as:

t f = tOA +α
N − F

N
(po +λ(fnew − fold) +φ(pKF,y − pEE,y)) (116)

p(t f) = p̂k + v̂k t̂ f (117)

where p̂k and v̂k are the estimated object kinematics, pEE is the current position of robot end
effector, N is the total number of fPCA samples, F is number of already crossed samples,
fold and fnew are the previous and updated planning node frame rate, and α, po,λ,φ are
numeric coefficients that were determined by trial and error. A brief explanation for the
various corrective terms:

• α and po are respectively a scale factor and a constant corrective term, which can
be used to correct repeated biases of the system. po in particular skews correction
towards lead or delay

• λ(fnew− fold) was added to weight negatively sudden frequency changes in software
operation, to smooth the variation of the velocity reference as much as possible

• φ(pKF,y − pEE,y) was used to account for the asymmetry of the system along the
direction of the conveyor belt, by increasing the lead in grasp position when the
robot end effector was well behind the targeted object

• N−F
N is a coefficient that becomes 0 when F → N , reducing the dimension of the

corrective terms when the robot end effector approached the targeted object, to
avoid overshoots.

6.2 Experimental validation

6.2.1 Experimental setup

The experimental setup comprises a 7 DoF Franka Emika manipulator equipped with a
SoftHand [21] as gripper, a conveyor belt and an RGB-D camera for the perception of the
object (Figure 36). The relative pose between the camera and the robot was calibrated
through a custom procedure exploring the AprilTag library [93].

The perception pipeline to get the relative pose from the point cloud recorded by the
camera is composed of the following steps: 1) downsampling to decrease the weight of
the data processed; 2) cluster extraction to isolate the target; 3) centroid computation to
obtain the reference position of the target; 4) segmentation of the planar surface of the
cluster; 5) Principal Component Analysis on the surface cluster to obtain the principal
dimension of the target.

While the output of the PCA is used to set a reference frame on the object, the infor-
mation about the position is used as input of a Kalman filter to estimate the velocity of
the object. In our case, we chose to model the motion of the object as a constant velocity
motion

pk+1 = pk + vk · d t. (118)

Starting from this model, defining the state as xk = [pT
k , vT

k]
T , the prediction step of the

Kalman filter can be defined as

xk|k−1 = At xk−1|k−1

Pk|k−1 = At Pk−1|k−1AT
t + Dk−1νDT

k−1

(119)

57

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 36: Picture representing the entire experimental scenario. The setup is composed of a
Franka Emika Panda manipulator equipped with a SoftHand, a conveyor belt and a RealSense
RGB-D camera mounted on a pole aside to the manipulator.

where

At =
�

I3 d t I3
03 I3

�

Dk = [v
T
k−1, vT

k−1]
T .

The update step can be defined as

ek = yk − C xk|k−1

Sk = R+ C Pk|k−1C T

Lk = Pk+1|kC T S−1
k

Jk = I6 − LkC

xk|k = xk|k−1 + Lkek

Pk|k = Jk Pk|k−1J T
k + LkRLT

k .

(120)

where C = [I3, 03] is the observation matrix and R is the noise covariance matrix. Given
the assumption of constant unknown velocity of the desired target, the state of the Kalman
filter is initialized with the first position registered by the camera and a null velocity.

6.2.2 Replanning strategy testing

The first step was to test the two replanning strategies proposed. In Figure 37 the different
behaviour between the two strategies is represented. It can be observed that the Time
Augmentation strategy is capable of replanning a lower number of times (shown by the
lower number of peaks in the jerk plot) and consequently has a lower level of jerk. This is
also confirmed by the mean jerk obtained by the two methods (2.6 · 10−3m/s3 for Variable
structure against 0.4 · 10−3m/s3 for Time Augmentation).

58

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 37: Comparisons between Variable structure replanning strategy (left) and Time Aug-
mentation replanning strategy (right) in terms of planned motion along y direction (direction
of motion of the conveyor belt) and of jerk.

6.2.3 Moving object grasping test

The last part of the experimental validation consists of evaluating the success rate in
grasping moving objects. To do this, we tested different objects and different velocities of
the conveyor belt. In Figure 40 we reported a set of snapshot of one of the trials performed.
The grasp strategy implemented with the SoftHand is a top grasp choosing the orientation
of the hand in a way that the principal dimension of the object identified through the
vision pipeline lies between the thumb and the index finger.

We performed a grand total of 117 trials obtaining an overall success rate of 76%. In
Figure 38 we reported the representation of the success rate pie chart of both the total set
of trials and the results split between box-like objects and other objects. The results show
that the success rate is stable also for heterogeneous objects.

We also evaluated the success rate obtained at different velocities of the conveyor belt.
We used three different velocities (0.16m/s, 0.26m/s and 0.38m/s). As expected, the
success rate decreased with the increasing of the velocity obtaining respectively 95%, 91%
and 52% for the tested velocities (Figure 39). This is due to the assumption of not knowing
the velocity of the conveyor belt. In this scenario, the estimation of the Kalman filter has
to converge to the right velocity estimation. Higher velocities give less time to the filter
to converge and, consequently, the planner has less margin to adjust the trajectory and
intercept the target. However, we tested as comparison the same framework without the
replanning strategy obtaining a success rate of 81% with the low velocity and 31% with
the medium velocity (the higher velocity was not tested extensively due to not succeeding
in any grasp in the preliminary setup of the validation scenario). These results prove the
effectiveness of the replanning strategy proposed.

59

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 38: Representation of the success rate obtained during the validation test. The results
are presented both as overall success rate and split with respect the type of object (box-type vs
other).

Figure 39: Representation of the success rate obtained at different velocities of the conveyor
belt.

Figure 40: Snapshot of one of the trials performed during the validation tests.

Table 16: Success rate at different velocities

0.16 m/s 0.26 m/s 0.38 m/s
replan 95% 91% 52%

no replan 81% 31% 0%

60

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

Figure 41: Structure of the ROS wrapper of MegaPose.

(a) (b) (c) (d) (e) (f) (g)

Figure 42: CAD models for MegaPose.

7 Object picking with pneumatic tool

In classical warehouse automation, one of the most used type of end-effector is the suction
gripper. This choice was made because the simplicity and efficiency of this solution, allow-
ing robots to pick up a wide range of objects, including fragile or irregularly shaped items,
without causing damage. However, this solution directly integrated into the manipulator
relies on the fact that robots are grounded in these scenarios, permitting them to have an
air supply easily, and they are heavily specialised in picking specific objects.

In the DARKO project, these conditions are not satisfied, given that we deal with a
mobile system which has to be capable of doing different types of task. For this reason, for
the project a custom hand pneumatic tool has been designed, to permit the system to use
it if needed. However, handling this tool with a soft anthropomorphic gripper could lead
to additional uncertainties in performing picking with it, related to how the robot grasps
the tool itself. In this section, we present a framework for handling this uncertainties and
perform picking with pneumatic tool in an efficient way.

7.1 Vision layer

To identify the pose of the tool and the objects in the scenarios, we used MegaPose [73], a
method to estimate the 6D pose of novel objects, that is, objects unseen during training,
relying on the CAD model of the object itself. To use it in the DARKO framework, we
build up a ROS1 wrapper for the MegaPose framework. The package consists of the
nodes megapose_client and megapose_server. These two works in the classical
client-server configuration (see Figure 41), where the client subscripts to the camera topics
and publishes the pose of the desired object (Figure 42). To exploit this framework, we
built the CAD model of the pneumatic tool and some objects in the DARKO scenarios using
Blender.

We tested the precision of pose estimation obtained from MegaPose using as groundtruth
a marker-based system [93]. For the pneumatic tool, the system is capable to obtain a
pose with position error always less than 1 cm even if the pneumatic tool is moving, which
permits the overall system to operate in a robust way. For the objects, we tested the
framework both with single object in motion, obtaining results similar to the ones obtained

61

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

with the tool, and in cluttered scenarios. In this case, the vision system is capable to work
even in the case of partial occlusions (Figure 43).

(1) box1 (2) box4 (3) box2

Figure 43: Three cases of the cluttered scenario tests.

7.2 Visual servoing control

For solving the problem of bringing the end-effector in the desired position for picking,
we decide to use visual serving. We can define the Cartesian error using the axis-angle
representation as:

e =
�

ep
eo

�

=
�

xd − x
rsin(θ)

�

(121)

From this, we can define the dynamic of the Cartesian error e as:

ė =
�

ep
eo

�

=
�

ẋd
LTωd

�

−
�

I 0
0 L

��

Jp
Jo

�

q̇ (122)

where ẋd e ωd are the Cartesian velocity references, while the matrix L can be obtained
from the rotation matrices Rd = (nd , sd , ad) e R= (n, s, a) as:

L = −
1
2
(cndbn+Òsdbs+cadba) (123)

Here we can define the control law as:

q̇ = J+
�

I 0
0 L−1

���

ẋ d
LTωd

�

+
�

Kp 0
0 Ko

��

ep
eo

��

(124)

where Kp e Ko are the gains and J is the Jacobian matrix.

7.3 Experimental validation

We tested the framework composed by the vision layer and the visual servoing control both
for picking directly with the SoftHand (Figure 44) and through the pneumatic tool handles
by the SoftHand (Figure 45). The system shows a good versatility in being used both to
grasp objects directly with the SoftHand and by using the pneumatic tool to perform the
task. Several scenarios have been tested with different objects, and we reached an overall
95% of success rate.

8 Conclusions

In this document, we reported an exhaustive description of the latest results achieved
in the DARKO project about motion planning and control for efficient manipulation. All

62

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

(1) Reach (2) Grasp (3) Release (4) Pose

Figure 44: Picking with SoftHand: (1) The SoftHand reaches the desired object; (2) The
desired object is grasped; (3) The object is released in the target ; (4) Estimated pose from the
vision layer.

(1) Reach (2) Pick (3) Release (4) Posa

Figure 45: Picking with SoftHand-Tool: (1) In the first part, the SoftHand grasp the pneumatic
tool and reach the target object; (2) The pneumatic tool is activated and the object extracted
form the shelf; (3) The object is released in the target box; (4) Estimated pose from the vision
layer.

the proposed works have been designed to address the specific needs of the use-case
taken into account in this project, and they proved to be effective in fulfilling the desired
requirements.

From a control point of view, we have presented a software library for implementing
adaptive control for a robotic serial manipulator. To test the feasibility of the proposed
library to be used for real-time control implementation, we evaluated the computation
time needed to evaluate the required quantities, showing that the results obtained meet
the computational constraints for real-time torque control (which generally stands around
1 kHz). Exploiting this library, we have then propose a novel adaptive Computed Torque
strategy that is asymptotically stable. The new law does not require the inertia matrix
inversion and the solution of the Lyapunov equation. The proposed controller, formulated
both in the joint and the Cartesian domains, permits setting the desired stiffness of the
manipulator and being robust to inertial parameters error at the same time. We tested
them both in general trajectory tracking and in the accomplishment of dynamic tasks like
throwing, showing how much this approach can be effective in increasing the efficiency
and the precision in the tasks related to the DARKO use case.

From a planning point of view, in this deliverable, we proposed a framework capable to
exploit elastic actuators to increase the performances of manipulators which has both rigid
and elastic joints, as the one mounted on the DARKO platform. Another result showed
here is the development of a new planning algorithm for the generation of human-like
motion in artificial arm. The proposed algorithm can compute motions similar to the
ones produced by humans, improving the predictability of the system during human-robot
interactions, with reduced computational time, leading to a system capable to replan
trajectory in real time. This particular feature has been exploited to extend the planning
algorithm to the grasping of moving objects. In fact, the low computational load permits
to adjust the computed trajectory to intercept the moving target. In the end, we also
proposed a visual servo-based framework to perform picking with the pneumatic tool
included in the DARKO system, enabling an efficient picking routine for cases where the

63

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

SoftHand could struggle (like a well-stacked box on the shelves).
Furthermore, the results reported here not only provide suitable tools to handle manip-

ulation problems related to the DARKO use-case right now, but could also provide a strong
base for future improvements of the state of the art regarding motion planning and control
of manipulators with rigid and elastic joints, robotic manipulation, and human-robot
interaction.

References

[1] Fares J Abu-Dakka and Matteo Saveriano. Variable impedance control and learn-
ing—a review. Frontiers in Robotics and AI, 7:590681, 2020.

[2] Abdulaziz Abubshait and Eva Wiese. You look human, but act like a machine: agent
appearance and behavior modulate different aspects of human–robot interaction.
Frontiers in psychology, 8:1393, 2017.

[3] Peter K Allen, Aleksandar Timcenko, Billibon Yoshimi, and Paul Michelman. Auto-
mated tracking and grasping of a moving object with a robotic hand-eye system.
IEEE Transactions on Robotics and Automation, 9(2):152–165, 1993.

[4] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
CasADi – A software framework for nonlinear optimization and optimal control.
Mathematical Programming Computation, 2018.

[5] Christopher G. Atkeson, Chae H. An, and John M. Hollerbach. Estimation of inertial
parameters of manipulator loads and links. 5(3):101–119, 1986. Publisher: SAGE
Publications Ltd STM.

[6] Giuseppe Averta, Federica Barontini, Vincenzo Catrambone, Sami Haddadin, Gia-
como Handjaras, Jeremia PO Held, Tingli Hu, Eike Jakubowitz, Christoph M Kanzler,
Johannes Kühn, et al. U-limb: A multi-modal, multi-center database on arm motion
control in healthy and post-stroke conditions. GigaScience, 10(6):giab043, 2021.

[7] Giuseppe Averta, Danilo Caporale, Cosimo Della Santina, Antonio Bicchi, and
Matteo Bianchi. A technical framework for human-like motion generation with
autonomous anthropomorphic redundant manipulators. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 3853–3859. IEEE, 2020.

[8] Giuseppe Averta, Cosimo Della Santina, Edoardo Battaglia, Federica Felici, Matteo
Bianchi, and Antonio Bicchi. Unvealing the principal modes of human upper limb
movements through functional analysis. Frontiers in Robotics and AI, 4:37, 2017.

[9] Giuseppe Averta, Cosimo Della Santina, Gaetano Valenza, Antonio Bicchi, and
Matteo Bianchi. Exploiting upper-limb functional principal components for human-
like motion generation of anthropomorphic robots. Journal of NeuroEngineering
and Rehabilitation, 17(1):1–15, 2020.

[10] Neil M. Bajaj, Adam J. Spiers, and Aaron M. Dollar. State of the art in artificial
wrists: A review of prosthetic and robotic wrist design. 35(1):261–277. Conference
Name: IEEE Transactions on Robotics.

[11] Marco Baracca, Giuseppe Averta, and Matteo Bianchi. A general approach for
generating artificial human-like motions from functional components of human
upper limb movements. Control Engineering Practice, 148:105968, 2024.

64

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

[12] Marco Baracca, Paolo Bonifati, Ylenia Nisticò, Vincenzo Catrambone, Gaetano
Valenza, A Bicchi, Giuseppe Averta, and Matteo Bianchi. Functional analysis of
upper-limb movements in the cartesian domain. In Converging Clinical and Engineer-
ing Research on Neurorehabilitation IV: Proceedings of the 5th International Conference
on Neurorehabilitation (ICNR2020), October 13–16, 2020, pages 339–343. Springer,
2022.

[13] Christoph Bartneck, Dana Kulić, Elizabeth Croft, and Susana Zoghbi. Measurement
instruments for the anthropomorphism, animacy, likeability, perceived intelligence,
and perceived safety of robots. International journal of social robotics, 1:71–81,
2009.

[14] Alberto Bemporad and Manfred Morari. Robust model predictive control: A survey.
In Robustness in identification and control, pages 207–226. Springer, 2007.

[15] Antonio Bicchi and Vijay Kumar. Robotic grasping and contact: A review. In
Proceedings 2000 ICRA. Millennium conference. IEEE international conference on
robotics and automation. Symposia proceedings (Cat. No. 00CH37065), volume 1,
pages 348–353. IEEE, 2000.

[16] Carl Boettiger. An introduction to docker for reproducible research. ACM SIGOPS
Operating Systems Review, 49(1):71–79, 2015.

[17] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. Data-driven
grasp synthesis—a survey. IEEE Transactions on robotics, 30(2):289–309, 2013.

[18] B. Bona and Marina Indri. Friction compensation in robotics: an overview. volume
2005, pages 4360–4367.

[19] Vincent Bonnet, Philippe Fraisse, André Crosnier, Maxime Gautier, Alejandro
González, and Gentiane Venture. Optimal exciting dance for identifying iner-
tial parameters of an anthropomorphic structure. IEEE Transactions on Robotics,
32(4):823–836, 2016.

[20] Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel, Florent
Lamiraux, Olivier Stasse, and Nicolas Mansard. The pinocchio c++ library: A fast
and flexible implementation of rigid body dynamics algorithms and their analytical
derivatives. In 2019 IEEE/SICE International Symposium on System Integration (SII),
pages 614–619. IEEE, 2019.

[21] Manuel G Catalano, Giorgio Grioli, Edoardo Farnioli, Alessandro Serio, Cristina
Piazza, and Antonio Bicchi. Adaptive synergies for the design and control of the
pisa/iit softhand. The International Journal of Robotics Research, 33(5):768–782,
2014.

[22] Lorenzo Cominelli, Gustav Hoegen, and Danilo De Rossi. Abel: integrating hu-
manoid body, emotions, and time perception to investigate social interaction and
human cognition. Applied Sciences, 11(3):1070, 2021.

[23] Peter Corke. Matlab toolboxes: robotics and vision for students and teachers. IEEE
Robotics & automation magazine, 14(4):16–17, 2007.

[24] J. Craig, Ping Hsu, and S. Sastry. Adaptive control of mechanical manipulators.
In 1986 IEEE International Conference on Robotics and Automation Proceedings,
volume 3, pages 190–195.

65

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

[25] J.J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley series
in electrical and computer engineering: control engineering. Pearson/Prentice Hall,
2005.

[26] Cosimo Della Santina, Matteo Bianchi, Giuseppe Averta, Simone Ciotti, Visar Arapi,
Simone Fani, Edoardo Battaglia, Manuel Giuseppe Catalano, Marco Santello, and
Antonio Bicchi. Postural hand synergies during environmental constraint exploita-
tion. Frontiers in neurorobotics, 11:41, 2017.

[27] Jacques Denavit and Richard S Hartenberg. A kinematic notation for lower-pair
mechanisms based on matrices. Journal of Applied Mechanics, 1955.

[28] Rajeshree Deotalu and Shital Chiddarwar. Trajectory tracking of the manipulator
using adaptive computed torque control. In 2020 IEEE International Conference for
Innovation in Technology (INOCON), pages 1–6, 2020.

[29] Brian R Duffy. Anthropomorphism and the social robot. Robotics and autonomous
systems, 42(3-4):177–190, 2003.

[30] Clemens Eppner, Raphael Deimel, José Alvarez-Ruiz, Marianne Maertens, and Oliver
Brock. Exploitation of environmental constraints in human and robotic grasping.
The International Journal of Robotics Research, 34(7):1021–1038, 2015.

[31] Linn Danielsen Evjemo, Signe Moe, Jan Tommy Gravdahl, Olivier Roulet-Dubonnet,
Lars Tore Gellein, Vegard Br, et al. Additive manufacturing by robot manipulator:
An overview of the state-of-the-art and proof-of-concept results. In 2017 22nd IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA),
pages 1–8. IEEE, 2017.

[32] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.

[33] Roy Featherstone and David E. Orin. Springer Handbook of Robotics. Springer Cham,
2016.

[34] Martin L Felis. Rbdl: an efficient rigid-body dynamics library using recursive
algorithms. Autonomous Robots, 41(2):495–511, 2017.

[35] David Fischinger and Markus Vincze. Empty the basket-a shape based learning
approach for grasping piles of unknown objects. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2051–2057. IEEE, 2012.

[36] Tamar Flash and Neville Hogan. The coordination of arm movements: an experi-
mentally confirmed mathematical model. Journal of neuroscience, 5(7):1688–1703,
1985.

[37] Terrence Fong, Illah Nourbakhsh, and Kerstin Dautenhahn. A survey of socially
interactive robots. Robotics and autonomous systems, 42(3-4):143–166, 2003.

[38] Marco Gabiccini, Andrea Bracci, D De Carli, M Fredianelli, Antonio Bicchi, et al.
Explicit lagrangian formulation of the dynamic regressors for serial manipulators.
In Proceedings of the XIX Aimeta Congress, Ancona, Italy, pages 14–17, 2009.

[39] Manolo Garabini, Andrea Passaglia, Felipe Belo, Paolo Salaris, and Antonio Bicchi.
Optimality principles in stiffness control: The VSA kick. In 2012 IEEE International
Conference on Robotics and Automation, pages 3341–3346. ISSN: 1050-4729.

66

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

[40] Gianluca Garofalo, Christian Ott, and Alin Albu-Schäffer. On the closed form
computation of the dynamic matrices and their differentiations. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2364–2359, 2013.
ISSN: 2153-0866.

[41] M. Gautier and W. Khalil. Direct calculation of minimum set of inertial parameters
of serial robots. IEEE Transactions on Robotics and Automation, 6(3):368–373, 1990.
Conference Name: IEEE Transactions on Robotics and Automation.

[42] Maxime Gautier and Wisama Khalil. Identification of the minimum inertial param-
eters of robots. In 1989 IEEE International Conference on Robotics and Automation,
pages 1529–1530. IEEE Computer Society, 1989.

[43] Maxime Gautier and Wisama Khalil. Direct calculation of minimum set of inertial
parameters of serial robots. IEEE Transactions on robotics and Automation, 6(3):368–
373, 1990.

[44] Nooshin Ghodsian, Khaled Benfriha, Adel Olabi, Varun Gopinath, and Aurélien
Arnou. Mobile manipulators in industry 4.0: A review of developments for industrial
applications. Sensors, 23(19):8026, 2023.

[45] Nooshin Ghodsian, Khaled Benfriha, Adel Olabi, Varun Gopinath, and Aurélien
Arnou. Mobile manipulators in industry 4.0: A review of developments for industrial
applications. Sensors, 23(19):8026, 2023.

[46] Michele Ginesi, Daniele Meli, Andrea Roberti, Nicola Sansonetto, and Paolo Fiorini.
Dynamic movement primitives: Volumetric obstacle avoidance using dynamic
potential functions. Journal of Intelligent & Robotic Systems, 101:1–20, 2021.

[47] Michele Ginesi, Nicola Sansonetto, and Paolo Fiorini. Overcoming some drawbacks
of dynamic movement primitives. Robotics and Autonomous Systems, 144:103844,
2021.

[48] Dylan F Glas, Takashi Minato, Carlos T Ishi, Tatsuya Kawahara, and Hiroshi Ishiguro.
Erica: The erato intelligent conversational android. In 2016 25th IEEE International
symposium on robot and human interactive communication (RO-MAN), pages 22–29.
IEEE, 2016.

[49] Britta Grimme, John Lipinski, and Gregor Schöner. Naturalistic arm movements
during obstacle avoidance in 3d and the identification of movement primitives.
Experimental brain research, 222:185–200, 2012.

[50] Gianpaolo Gulletta, Wolfram Erlhagen, and Estela Bicho. Human-like arm motion
generation: A review. Robotics, 9(4):102, 2020.

[51] Sami Haddadin, Sven Parusel, Lars Johannsmeier, Saskia Golz, Simon Gabl, Florian
Walch, Mohamadreza Sabaghian, Christoph Jähne, Lukas Hausperger, and Simon
Haddadin. The franka emika robot: A reference platform for robotics research and
education. IEEE Robotics & Automation Magazine, 29(2):46–64, 2022.

[52] David Hanson. Hanson robotics website, 2023.

[53] Chang He, Xiao-Wei Xu, Xiong-Fei Zheng, Cai-Hua Xiong, Quan-Lin Li, Wen-Bin
Chen, and Bai-Yang Sun. Anthropomorphic reaching movement generating method
for human-like upper limb robot. IEEE Transactions on Cybernetics, 52(12):13225–
13236, 2021.

67

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

[54] John Hollerbach, Wisama Khalil, and Maxime Gautier. Dynamics, pages 37–66.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[55] John Hollerbach, Wisama Khalil, and Maxime Gautier. Motion Control, pages
163–194. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[56] Damian Hostettler, Simon Mayer, and Christian Hildebrand. Human-like movements
of industrial robots positively impact observer perception. International Journal of
Social Robotics, 15(8):1399–1417, 2023.

[57] T Hsia. Adaptive control of robot manipulators-a review. In Proceedings. 1986 IEEE
International Conference on Robotics and Automation, volume 3, pages 183–189.
IEEE, 1986.

[58] Seth Hutchinson, Gregory D Hager, and Peter I Corke. A tutorial on visual servo
control. IEEE transactions on robotics and automation, 12(5):651–670, 1996.

[59] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal.
Dynamical movement primitives: learning attractor models for motor behaviors.
Neural computation, 25(2):328–373, 2013.

[60] H.K. Khalil. Nonlinear Systems. Pearson Education. Prentice Hall, 2002.

[61] H.K. Khalil. Nonlinear Systems. Pearson Education. Prentice Hall, 2002.

[62] Pradeep K. Khosla and Takeo Kanade. Parameter identification of robot dynamics.
In 1985 24th IEEE Conference on Decision and Control, pages 1754–1760, 1985.

[63] Harshit Khurana and Aude Billard. Motion planning and inertia-based control for
impact aware manipulation. IEEE Transactions on Robotics, 40:2201–2216, 2023.

[64] Jung Kim, Gwang Min Gu, and Pilwon Heo. Robotics for healthcare. Biomedical
Engineering: Frontier Research and Converging Technologies, pages 489–509, 2016.

[65] Jung Kim, Gwang Min Gu, and Pilwon Heo. Robotics for healthcare. Biomedical
Engineering: Frontier Research and Converging Technologies, pages 489–509, 2016.

[66] Seungsu Kim, Ashwini Shukla, and Aude Billard. Catching objects in flight. IEEE
Transactions on Robotics, 30(5):1049–1065, 2014.

[67] Mary D Klein Breteler, Stan CAM Gielen, and Ruud GJ Meulenbroek. End-point
constraints in aiming movements: effects of approach angle and speed. Biological
Cybernetics, 85:65–75, 2001.

[68] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ international conference on
intelligent robots and systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages
2149–2154. IEEE, 2004.

[69] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2149–2154, Sendai, Japan, Sep 2004.

[70] Miroslav Krstic, Ioannis Kanellakopoulos, and Petar V. Kokotovic. Nonlinear and
Adaptive Control Design. Wiley, 1995.

[71] William H Kruskal and W Allen Wallis. Use of ranks in one-criterion variance
analysis. Journal of the American statistical Association, 47(260):583–621, 1952.

68

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

[72] Ariel Kwiatkowski, Eduardo Alvarado, Vicky Kalogeiton, C Karen Liu, Julien Pettré,
Michiel van de Panne, and Marie-Paule Cani. A survey on reinforcement learning
methods in character animation. In Computer Graphics Forum, volume 41, pages
613–639. Wiley Online Library, 2022.

[73] Yann Labbé, Lucas Manuelli, Arsalan Mousavian, Stephen Tyree, Stan Birchfield,
Jonathan Tremblay, Justin Carpentier, Mathieu Aubry, Dieter Fox, and Josef Sivic.
Megapose: 6d pose estimation of novel objects via render & compare. arXiv preprint
arXiv:2212.06870, 2022.

[74] Francesco Lacquaniti, Carlo Terzuolo, and Paolo Viviani. The law relating the
kinematic and figural aspects of drawing movements. Acta psychologica, 54(1-
3):115–130, 1983.

[75] Marta Lagomarsino, Marta Lorenzini, Elena De Momi, and Arash Ajoudani. Pro-
mind: Proximity and reactivity optimisation of robot motion to tune safety limits, hu-
man stress, and productivity in industrial settings. arXiv preprint arXiv:2409.06864,
2024.

[76] Quentin Leboutet, Julien Roux, Alexandre Janot, Julio Rogelio Guadarrama-Olvera,
and Gordon Cheng. Inertial parameter identification in robotics: A survey. Applied
Sciences, 11(9):4303, 2021.

[77] Yu-Feng Lee, Cheng-Yu Chu, Jia-You Xu, and Chao-Chieh Lan. A humanoid robotic
wrist with two-dimensional series elastic actuation for accurate force/torque in-
teraction. 21(3):1315–1325. Conference Name: IEEE/ASME Transactions on
Mechatronics.

[78] Gianluca Lentini, Giorgio Grioli, Manuel G Catalano, and Antonio Bicchi. Robot
programming without coding. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 7576–7582. IEEE, 2020.

[79] W. Li and J.-J.E. Slotine. Indirect adaptive robot control. In 1988 IEEE International
Conference on Robotics and Automation Proceedings, pages 704–709 vol.2.

[80] Yang Liu and Aude Billard. Tube acceleration: robust dexterous throwing against
release uncertainty. IEEE Transactions on Robotics, 2024.

[81] Jadesada Maneeratanaporn, Pakpoom Patompak, Siripong Varongkriengkrai, It-
thisek Nilkhamhang, and Kanokvate Tungpimolrut. Adaptive inverse dynamics
control for triple rotary joint mainipulator. In ECTI-CON2010: The 2010 ECTI
International Confernce on Electrical Engineering/Electronics, Computer, Telecommu-
nications and Information Technology, pages 523–527, 2010.

[82] Murilo Marques Marinho and Bruno Vilhena Adorno. Adaptive constrained kine-
matic control using partial or complete task-space measurements. IEEE Transactions
on Robotics, 38(6):3498–3513, 2022.

[83] Naresh Marturi, Marek Kopicki, Alireza Rastegarpanah, Vijaykumar Rajasekaran,
Maxime Adjigble, Rustam Stolkin, Aleš Leonardis, and Yasemin Bekiroglu. Dynamic
grasp and trajectory planning for moving objects. Autonomous Robots, 43:1241–
1256, 2019.

[84] Nikos Mavrakis and Rustam Stolkin. Estimation and exploitation of objects ’ inertial
parameters in robotic grasping and manipulation: A survey. 124:103374.

69

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

[85] Nikos Mavrakis and Rustam Stolkin. Estimation and exploitation of objects’ in-
ertial parameters in robotic grasping and manipulation: A survey. Robotics and
Autonomous Systems, 124:103374, 2020.

[86] R.H. Middleton and G.C. Goodwin. Adaptive computed torque control for rigid link
manipulations. 10(1):9–16.

[87] Sylvain Miossec and Abderrahmane Kheddar. Human motion in cooperative tasks:
Moving object case study. In 2008 IEEE International Conference on Robotics and
Biomimetics, pages 1509–1514, 2009.

[88] Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, and Emanuel V
Todorov. Interactive control of diverse complex characters with neural networks.
Advances in neural information processing systems, 28, 2015.

[89] Lucas Mourot, Ludovic Hoyet, François Le Clerc, François Schnitzler, and Pierre
Hellier. A survey on deep learning for skeleton-based human animation. In Computer
Graphics Forum, volume 41, pages 122–157. Wiley Online Library, 2022.

[90] D. Nganga-Kouya, M. Saad, L. Lamarche, and C. Khairallah. Backstepping adaptive
position control for robotic manipulators. In Proceedings of the 2001 American
Control Conference. (Cat. No.01CH37148), volume 1, pages 636–640 vol.1, 2001.
ISSN: 0743-1619.

[91] Clautilde Nguiadem, Maxime Raison, and Sofiane Achiche. Motion planning of
upper-limb exoskeleton robots: a review. Applied Sciences, 10(21):7626, 2020.

[92] Dinh Vinh Thanh Nguyen, Vincent Bonnet, Sabbah Maxime, Maxime Gautier, Pierre
Fernbach, and Florent Lamiraux. FIGAROH: a python toolbox for dynamic identifi-
cation and geometric calibration of robots and humans. 2023.

[93] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE
international conference on robotics and automation, pages 3400–3407. IEEE, 2011.

[94] Joseph O’Rourke and Norman Badler. Decomposition of three-dimensional objects
into spheres. IEEE Transactions on Pattern Analysis and Machine Intelligence, (3):295–
305, 1979.

[95] Dae-Hyung Park, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Movement
reproduction and obstacle avoidance with dynamic movement primitives and poten-
tial fields. In Humanoids 2008-8th IEEE-RAS International Conference on Humanoid
Robots, pages 91–98. IEEE, 2008.

[96] Bhavik Patel, Ya-Jun Pan, and Usman Ahmad. Adaptive backstepping control ap-
proach for the trajectory tracking of mobile manipulators. In 2017 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pages 1769–1774, 2017.

[97] Aurelio Piazzi and Antonio Visioli. Global minimum-jerk trajectory planning of
robot manipulators. IEEE transactions on industrial electronics, 47(1):140–149,
2000.

[98] Sigal Raab, Inbal Leibovitch, Peizhuo Li, Kfir Aberman, Olga Sorkine-Hornung, and
Daniel Cohen-Or. Modi: Unconditional motion synthesis from diverse data. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13873–13883, 2023.

70

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

[99] Akshara Rai, Giovanni Sutanto, Stefan Schaal, and Franziska Meier. Learning
feedback terms for reactive planning and control. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 2184–2191. IEEE, 2017.

[100] James O Ramsay, Giles Hooker, and Spencer Graves. Functional data analysis with
R and MATLAB. Springer Science & Business Media, 2009.

[101] Manuel Rebol, Christian Gütl, and Krzysztof Pietroszek. Real-time gesture animation
generation from speech for virtual human interaction. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Computing Systems, pages 1–4, 2021.

[102] Laurel D Riek, Tal-Chen Rabinowitch, Bhismadev Chakrabarti, and Peter Robinson.
How anthropomorphism affects empathy toward robots. In Proceedings of the 4th
ACM/IEEE international conference on Human robot interaction, pages 245–246,
2009.

[103] David A Rosenbaum, Ruud GJ Meulenbroek, Jonathan Vaughan, and Chris Jansen.
Posture-based motion planning: Applications to grasping. Psychological Review,
4(108):709–734, 2001.

[104] Nina Rothstein, John Kounios, Hasan Ayaz, and Ewart J de Visser. Assessment of
human-likeness and anthropomorphism of robots: A literature review. In Advances
in Neuroergonomics and Cognitive Engineering: Proceedings of the AHFE 2020 Virtual
Conferences on Neuroergonomics and Cognitive Engineering, and Industrial Cognitive
Ergonomics and Engineering Psychology, July 16-20, 2020, USA, pages 190–196.
Springer, 2021.

[105] Paolo Salaris, Marco Cognetti, Riccardo Spica, and Paolo Robuffo Giordano. Online
optimal perception-aware trajectory generation. IEEE Transactions on Robotics,
35(6):1307–1322, 2019.

[106] Seyed Sina Mirrazavi Salehian, Mahdi Khoramshahi, and Aude Billard. A dynamical
system approach for softly catching a flying object: Theory and experiment. IEEE
Transactions on Robotics, 32(2):462–471, 2016.

[107] Marco Santello, Matteo Bianchi, Marco Gabiccini, Emiliano Ricciardi, Gionata
Salvietti, Domenico Prattichizzo, Marc Ernst, Alessandro Moscatelli, Henrik Jörntell,
Astrid M.L. Kappers, Kostas Kyriakopoulos, Alin Albu-Schäffer, Claudio Castellini,
and Antonio Bicchi. Hand synergies: Integration of robotics and neuroscience for
understanding the control of biological and artificial hands. Physics of Life Reviews,
17:1–23, 2016.

[108] Matteo Saveriano, Fares J Abu-Dakka, Aljaž Kramberger, and Luka Peternel. Dy-
namic movement primitives in robotics: A tutorial survey. The International Journal
of Robotics Research, 42(13):1133–1184, 2023.

[109] Stefan Schaal. Dynamic movement primitives-a framework for motor control in
humans and humanoid robotics. Adaptive motion of animals and machines, pages
261–280, 2006.

[110] Trenton Schulz, Jim Torresen, and Jo Herstad. Animation techniques in human-
robot interaction user studies: A systematic literature review. ACM Transactions on
Human-Robot Interaction (THRI), 8(2):1–22, 2019.

[111] Marie Schumacher, Janis Wojtusch, Philipp Beckerle, and Oskar von Stryk. An
introductory review of active compliant control. Robotics and Autonomous Systems,
119:185–200, 2019.

71

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

[112] Navid Shahriari, Silvia Fantasia, Fabrizio Flacco, and Giuseppe Oriolo. Robotic
visual servoing of moving targets. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 77–82. IEEE, 2013.

[113] Wei-Wei Shang, Shuang Cong, and Yuan Ge. Adaptive computed torque control for
a parallel manipulator with redundant actuation. Robotica, 30:457 – 466, 05 2012.

[114] Mojtaba Sharifi, Saeed Behzadipour, and Gholamreza Vossoughi. Nonlinear model
reference adaptive impedance control for human–robot interactions. Control Engi-
neering Practice, 32:9–27, 2014.

[115] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Planning and
Control. Advanced Textbooks in Control and Signal Processing. Springer London,
2010.

[116] Giorgio Simonini, Marco Baracca, Tommaso V Cavaliere, Antonio Bicchi, and Paolo
Salaris. A novel formulation for adaptive computed torque control enabling low
feedback gains in highly dynamical tasks. IEEE Access, 2025.

[117] Giorgio Simonini, Riccardo Di Majo, Lorenzo Boccalini, Matteo Guerci, Antonio
Bicchi, and Paolo Salaris. Optimality principles in stiffness control: The vsa kick. In
I-RIM Conference, Rome, Italy, 2023.

[118] Jean-Jacques E. Slotine and Weiping Li. Composite adaptive control of robot
manipulators. 25(4):509–519.

[119] Jean-jacques E. Slotine and Weiping Li. Adaptive robot control: A new perspective.
In 26th IEEE Conference on Decision and Control, volume 26, pages 192–198, 1987.

[120] Jean-Jacques E Slotine and Weiping Li. On the adaptive control of robot manipula-
tors. The international journal of robotics research, 6(3):49–59, 1987.

[121] Peng Song, Yueqing Yu, and Xuping Zhang. A tutorial survey and comparison of
impedance control on robotic manipulation. Robotica, 37(5), 2019.

[122] Theodoros Stouraitis, Lei Yan, Joao Moura, Michael Gienger, and Sethu Vijayaku-
mar. Multi-mode trajectory optimization for impact-aware manipulation. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
9425–9432. IEEE, 2020.

[123] Tairen Sun, Liang Peng, Long Cheng, Zeng-Guang Hou, and Yongping Pan. Com-
posite learning enhanced robot impedance control. 31(3):1052–1059. Conference
Name: IEEE Transactions on Neural Networks and Learning Systems.

[124] Ashok M Sundaram, Werner Friedl, and Máximo A Roa. Environment-aware
grasp strategy planning in clutter for a variable stiffness hand. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 9377–9384.
IEEE, 2020.

[125] Giovanni Sutanto, Zhe Su, Stefan Schaal, and Franziska Meier. Learning sensor
feedback models from demonstrations via phase-modulated neural networks. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pages 1142–
1149. IEEE, 2018.

[126] Yoji Uno, Mitsuo Kawato, and Rika Suzuki. Formation and control of optimal
trajectory in human multijoint arm movement. Biological cybernetics, 61(2):89–101,
1989.

72

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

[127] Jari van Steen, Daan Stokbroekx, Nathan van de Wouw, and Alessandro Saccon.
Impact-aware robotic manipulation: Quantifying the sim-to-real gap for velocity
jumps. arXiv preprint arXiv:2411.06319, 2024.

[128] Jari Van Steen, Gijs Van Den Brandt, Nathan van de Wouw, Jens Kober, and Alessan-
dro Saccon. Quadratic programming-based reference spreading control for dual-arm
robotic manipulation with planned simultaneous impacts. IEEE Transactions on
Robotics, 2024.

[129] Jari J van Steen, Abdullah Coşgun, Nathan van de Wouw, and Alessandro Saccon.
Dual arm impact-aware grasping through time-invariant reference spreading control.
IFAC-PapersOnLine, 56(2):1009–1016, 2023.

[130] Jonathan Vaughan, David A Rosenbaum, and Ruud GJ Meulenbroek. Planning
reaching and grasping movements: The problem of obstacle avoidance. Motor
control, 5(2):116–135, 2001.

[131] Nguyen X. Vinh. Flight Mechanics of High-Performance Aircraft. Cambridge University
Press, 1993. Google-Books-ID: ND9dDeOARkMC.

[132] Kenneth J. Waldron and James Schmiedeler. Springer Handbook of Robotics. Springer
Cham, 2016.

[133] Hanlei Wang. Adaptive control of robot manipulators with uncertain kinematics
and dynamics. IEEE Transactions on Automatic Control, 62(2):948–954, 2017.

[134] Sebastian Wolf, Giorgio Grioli, Oliver Eiberger, Werner Friedl, Markus Grebenstein,
Hannes Höppner, Etienne Burdet, Darwin G. Caldwell, Raffaella Carloni, Manuel G.
Catalano, Dirk Lefeber, Stefano Stramigioli, Nikos Tsagarakis, Michaël Van Damme,
Ronald Van Ham, Bram Vanderborght, Ludo C. Visser, Antonio Bicchi, and Alin
Albu-Schäffer. Variable stiffness actuators: Review on design and components.
21(5):2418–2430. Conference Name: IEEE/ASME Transactions on Mechatronics.

[135] Zhen Xie, Xinquan Liang, and Canale Roberto. Learning-based robotic grasping: A
review. Frontiers in Robotics and AI, 10:1038658, 2023.

[136] Wenjie Yin, Hang Yin, Danica Kragic, and Mårten Björkman. Graph-based normal-
izing flow for human motion generation and reconstruction. In 2021 30th IEEE
International Conference on Robot & Human Interactive Communication (RO-MAN),
pages 641–648. IEEE, 2021.

[137] Andrea Maria Zanchettin, Luca Bascetta, and Paolo Rocco. Acceptability of robotic
manipulators in shared working environments through human-like redundancy
resolution. Applied ergonomics, 44(6):982–989, 2013.

[138] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser.
Tossingbot: Learning to throw arbitrary objects with residual physics. IEEE Transac-
tions on Robotics, 36(4):1307–1319, 2020.

[139] Dan Zhang and Bin Wei. A review on model reference adaptive control of robotic
manipulators. Annual Reviews in Control, 43:188–198, 2017.

[140] Dan Zhang and Bin Wei. A review on model reference adaptive control of robotic
manipulators. Annual Reviews in Control, 43:188–198, 2017.

[141] Krishna S. Dhir Zoltan Dobra. Technology jump in the industry: human–robot
cooperation in production. Emerald Publishing Limited, 2020.

73

H2020-ICT-2020-2: 101017274 DARKO Deliverable D4.2

[142] Jing Zou and John Schueller. Adaptive backstepping control for parallel robot with
uncertainties in dynamics and kinematics. 32:1–24, 2014.

74

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101017274

	Introduction
	Thunder Dynamics: a C++ Library for Adaptive Control of Serial Manipulators
	Theorethical framework
	Software package description
	Experimental Validation

	A Novel Formulation for Adaptive Computed Torque Control Enabling Low Feedback Gains in Highly Dynamical Tasks
	Adaptive control: background
	Novel adaptive Computed Torque control
	Validation

	Throwing with an Elastic Wrist
	Complete Model of the Floating Wrist
	Simplified Model of the Floating Wrist
	Optimization of the Wrist Movement
	Optimization of the Base Movement

	A general approach for generating artificial human-like motions from functional components of human upper limb movements
	Method
	Simulation Framework
	Results

	Human-like motion for grasping moving objects
	Method
	Experimental validation

	Object picking with pneumatic tool
	Vision layer
	Visual servoing control
	Experimental validation

	Conclusions

